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Abstract: Many major advances have been made
atvarious levels inbiclogy, but the approach at the
community level has stalled. Community ecology
remains in its infancy and lags far behind other
organismal and suborganismal disciplines due to
its innate complexity, multi-dimensionality, mul-
tiple causality, as well as the extensive scale in
spaceand time involved and serious empirical dif-
ficulties of data collection and analysis. Pristine
natural systems are vanishing rapidly before we
have learned how they are organized or how they
behave. The study of communities must of neces-
sity remain to some degree abstract and complex.
Community ecology is also extremely promising
andimportant, as well as exceedingly urgent. Major
new insights could well lie just around the corner.
Community ecology is not for the faint at heart,
however;itis one of the most challenging and most
difficult of all sciences. We are still in the process
of developing a vocabulary. Identification of ap-
Propriate aggregate variables or macrodescriptors
is not only essential, but also constitutes a double-
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edged sword: macrodescriptorsenable progress but
simultaneously constrain the discipline’s direc-
tions. At this early stage in community ecology, it
is perhaps safest not to become overly “locked in”
by words, concepts, and methodologies. A diver-
sity of approaches seems desirable.

Many community-level properties are probably
simply epiphenomena that arise from pooling com-
ponent populations; examples would presumably
include trophic levels, guilds, subwebs, and eco-
logical pyramids. Do communities, however, also
possess truly emergent properties that transcend
those of mere collections of populations? For ex-
ample, are patterns of resource utilization among
coexisting species co-adjusted so that theymeshin
a meaningful way? If so, truly emergent commu-
nity-level properties arise as a result of orderly
interactions among component populations. This
fundamental question needs tobe answered. Either
way, transcendent phenomena or epiphenomena
cannot be studied at the level of individuals or
populations, but at the level of community ecology.

A major pitfall for community ecologists is that
communities are not designed directly by natural
selection (as are individual organisms). We must
keep clearly in mind that natural selection oper-
ates by differential reproductive success of indi-
vidual organisms, It is tempting, but dangerously
misleading, to view ecosystems as “super-
organisms” that have been “designed” for efficient
and orderly function. Antagonistic interactions at
the level of individuals and populations (such as
competition, predation, parasitism, and even
mutualisms) must frequently impair certain as-
pects of ecosystem performance while enhancing
other properties.

The traditional ecological approach to popula-
tion interactions has been to consider species in
pairs. Whilefruitful, this focushas diverted atten-
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tion away from a more holistic systems-level ap-
proach. We must now make a determined effort to
understand indirect as well as direct interactions
within complex networks of interacting species.
Properties of such networks themselves need to be
evaluated. Approaches that incorporate mutual-
ism and variable intensity in interactions must be
developed. Competitive interactions should also
be included and distinguished from the vertical
ones that operate between trophic levels. Strong
interactions may be more important than weak
ones, but the cumulative effects of many weak in-
teractions (as in diffuse competition and diffuse
coevolution) could nevertheless be considerable.
We need to ascertain the extent to which indirect
effects can and actually do balance direct effects.

Whereas the reductionistic approach has been
quite successful in other scientific disciplines, it
will not lead to generalizations in communityecol-
ogy. A holistic approach is required. In this chap-
ter, I present examples from my own research. A
hybrid protocol for the analysis of community struc-
turehasbeen developed thatincorporates resource
availability, electivities, nearness rank of neigh-
bors in niche space, null models, and Monte Carlo
statistical methodology. This new approach facili-
tates graphical comparisons of very different sys-
tems and is illustrated using assemblages of
neotropical fish plus Australian and Kalahari
desert lizards.

Another neglected area with promise in com-
munity ecology is the effect of large-scale regional
factors on the diversity and community structure
at the local level. Most ecologists, including my-
self, have focused on local-level processes. Toillus-
tratetheregional approach, I briefly describe some
of my own work in progress on the fire succession
cycle in inland Western Australia.

INTRODUCTION

SAW MY FIRST LIZARD ON A TRIP MY PARENTS
I made across country when I was about six
years old. I still remember it, an Anolis at a
roadside park. I recall doing my utmost to
capture this lizard and breaking its tail off,
but not being able to catch it. About a year
later I caught my first snake, a Thamnophis,
which soon escaped. Then,inthesecond grade,
I discovered that the classroom next door had

a baby alligator. I was transfixed by that alli-
gator and stood by its aquarium for hours on
end reveling in its every move. I suspect that
most herpetologists had similar experiences
in their childhood. This fascination with and
commitment to the animals is what binds us
and our discipline together.

In short, I knew I was destined to become a
biologist even before I had any real inkling of
what science was. In graduate school, I dis-
covered the layers in the biological cake (Fig-
ure 1), and eventually I became an ecologist.

LEVELS OF APPROACH IN BIOLOGY

Recently, a group that consisted of David
Hillis, Michael Ryan, Rafael de S4, and my-
self, jointly taught a course in herpetology at
the University of Texas. This was an illumi-
nating experience for me. What made it sa-
lient was that most courses in the traditional
academic situation specialize in the layers—
and I was really struck with the wide range of
subjects included in our herpetology class. We
covered all the levels of approach, from mol-
ecules through organisms and populations to
communities. The remarkable thing about
meetingslike the First World Congress of Her-
petology is that such a broad spectrum of lev-
els of approach is represented. Herpetology,

BASIC DIVISION
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Morphology ———
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Genetics— |
Ecology — 3 \\'\1
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Entomolegy

FIGURE 1. The disciplines of biology can be represented
as a layered cake, with funetional layers (horizontal)
and taxonomicslices (vertical), Herpetology has agreater
depth than ecology, which has greater taxonomic
breadth.
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like biology, is a vast subject. One of the things
that makes the herpetological approach so
fruitful is that it generates interdisciplinary
research and promotes tolerance and appre-
ciation across the various levels of approach.
Workers at different levels too often look some-
what askance at the next higher level of ap-
proach: molecular biologists are slightly sus-
picious of cell biologists; cell biologists arejust
alittle wary of physiologists; physiologists are
a bit suspicious of behaviorists and other
whole-organism biologists; and on it goes.
Unfortunately, many population ecologists
distrust community ecology. The reason for
this hesitancy to accept the next higher level
may be that one must slur over interesting
detail at one’s own level in order to practice
biology at the next higher level.

Ecologists are not very interested in cap-
tiveanimals. Asfarasecologistsare concerned,
the California condoris already effectively ex-
tinet. Our subjects are wild organismsin natu-
ral settings—a(hopefully) pristine natural en-
vironment towhich that organism hasbecome
adapted and in which it has evolved. Rolston
(1985) made a useful analogy: he likened life
on earth to a book written in a language that
humans can barely read. Biologists are just
now acquiring the skills necessary toread and
decipher this book, but the poor book is tatter-
ed and torn, pages are missing (which repre-
sents extinct species such as passenger
pigeons), and some chapters have been almost
entirely ripped out (like the tall grass prairies
of midwestern North America). There is a
considerable urgency to study wild organisms
In pristine natural habitats now before they
are gone forever.

As we look at different levels of approach,
we encounter vast differences in space and
time scales (Figure 2). Molecular biologists
can do experiments in test tubes or in small
spaces in rooms in a matter of days or weeks.
Sometimes it is actually possible to plan a

critical experiment before lunch, execute it
that afternoon, and analyze the results that
evening or the next day. As one ascends to
higher and higher levels, larger areas are re-
quired and more time is needed (Schoener
1989; Menge and Farrell 1989). Cell and mo-
lecular biologists studyentities that are much
smaller than themselves and they therefore
rely on powerful enlargements to examine
their systems, whereas community ecologists
study systems that are much largerthan them-
selves and hence they require equally power-
fulreductions to perceive their subjects. Thus,
for community ecologists, the analogue of elec-
tron micrographs is macrographs, or satellite
images (see the last section of this chapter).
Community ecology requires thousands of

square kilometers and decades or even centu-
ries, making it an imposing subject. I would
like to take this opportunity to make a pro-
vocative and “idiosyncratic” statement about
the current state of the art of community ecol-
ogy, drawing examples from my own work.

The scientific method has virtually become
equated with the reductionistic approach. As
scientists, we are all trained first to break up
what we are studying intoits component parts
and then to try to understand how those parts
and components interact with one another.
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FIGURE 2. Diagrammaticrepresentation of the time and
space scaling of various biological phenomena. Commu-

nity and ecosystem phenomena occur over longer time

spans and vaster areas than organismal- and sub-
organismal-level processes and entities,
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This very fruitful approach has led to many
important discoveries. For example, at the
lowest level in biology are all the elegant bio-
chemicalfindings, such as the discovery of DNA
and RNA, which are the machinery of genetics,
transcription, translation, and so on. As one
ascends the hierarchy of biology, equivalent
discoveries have been madein cell biology and
physiology. At the level of the whole organ-
ism, we encounter the concept of natural se-
lection and important ideas about adaptive
components of behavior, Even at the popula-
tion level, a discovery of considerable impor-
tance has been made, namely the notion ofkin
selection. At the community level, however,
we remain abysmally ignorant. We cannot
afford to allow community ecology tolanguish
any longer. It has fallen well behind the other
typesof biology and we need to try tocatch up.

Why has community ecology remained so
primitive? Obviously it is not for the impa-
tient or timid. Not only is it not easy, but it
requires a long time and alot of space. Results
do not come in overnight. Community ecology
also demands considerable theoretical prow-
ess because it is very abstract, conceptually
difficult, and multi-dimensional. It is empiri-
cally intractable, too. A lot of devotion and
hard work are necessary to collect any kind of
data on an entire system or even a portion of
one. There are serious empirical problems of
data collection and analysis. Multiple causal-
ity may well be more of a problem in commu-
nity ecology than it is at lower levels because
its time and space scales are so vast., Many
biologists, including population ecologists, find
community ecology repugnant, and they shy
away from it, for understandable reasons.

Iromnically, population ecologists are some
of the worst foes of community ecology. Com-
munity ecology has toattract population ecolo-
gists who are well versed in natural selection.
Our discipline has become the province of
systems ecologists and ecosystem engineers—

we need more “born-again” population ecolo-
gists to become community ecologists. Com-
munity ecology is undoubtedly one of the most
difficult kinds of biology, but it has obvious
utility as we approach oversaturation of thig
planet. Moreover, itis urgent that data be gath-
ered now because so many systems are van-
ishing. Community ecology is also very prom-
ising. Major new advances and discoveries,
potentially as important as DNA and natural
selection, remain undiscovered because biolo-
gists have shied away from this discipline. So
ifyou want to make your mark, consider work-
ing in community ecology.

COMMUNITY ECOLOGY

Community ecology is still struggling with its
vocabulary. It remains a primitive and em-
bryonic science. We do not yet have an ac-
cepted vocabularyorstandard procedures. We
are looking for macrodescriptors or aggregate
variables that summarize some of the prop-
erties of systems (Orians 1980); this is the
usual reductionistic approach. Examples of
macrodescriptors include relative abundance,
species diversity, trophiclevels, and food webs.
Food webs have been receiving considerable
attention (Cohen 1978; Paine 1980, 1988;
Pimm 1982; Schoener 1989; Winemiller 1989,
1990). Our choice of vocabulary constitutes a
double-edged sword. The macrodescriptors
we select to describe systems enable progress,
but simultaneously constrain the directions
our science can go, so I think it is best not to
gettoolocked inuntil we are confident that we
are going in the most fruitful directions.
Moreover, a diversity of approaches seems
desirable.

Community ecologyis full of pitfalls. Amajor
trap is that it is tempting to view an ecosys-
tem as a sort of a superorganism, designed for
smooth and efficient functioning. People make
this mistake all the time. They lose sight of
the fact that natural selection works at the
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level of individuals and that there is a multi-
tude of antagonistic interactions among the
members of a system, for example prey-preda-
tor interactions. Natural selection operating
on predators may often reduce the stability of
a system, but should usually increase the ef-
ficiency of flow of energy up through the tro-
phiclevels, whereas selection operating on the
prey has exactly the reverse effects. As a cor-
ollary, community-level properties of ecologi-
cal efficiency and community stability may in
fact be inversely related because natural se-
lection operates at the level of antagonism
between individual predators and their prey
(Pianka 1987). More effort needs to be devoted
to relating community-level phenomena to
those at lowerlevels, anchored to sound think-
ing in terms of natural selection.

Perhaps one of the most interesting ques-
tions in community ecology is whether or not
communities really possess some kind of emer-
gent properties that are more than mere sta-
tistical expressions of the component parts.
The latter sorts of phenomena have been
termed “epiphenomena.” One example of a
truly emergent property would be a situation
inwhich patternsofresource utilization among
consumers in a system are co-adjusted with
one another so that species A eats a lot of food-
type X, but species B eats only a little of X and
a lot of food-type Y, which in turn is not eaten
by a. If this sort of complementary pattern
permeates the whole system, then the system
isorganized and has some sort of structure. If
we could remove a species, there would be a
hole in the tapestry that would reflect what
that species does (in fact, such an ecological
vacuum might be quickly filled by shifts in
patterns of resource utilization of the other
species in the system).

Like scientists in general, many commu-
nity ecologists gravitate towards reduction-
ism and so they tend to approach communi-
ties from the bottom up. I would like to make

a case for trying to approach communities ho-
listically from the top down. We need the
microscopic experimental approach but we
should also examine other approaches. As a
plant ecologist, Tilman (1987), recently stated:
“Must plant ecologists manipulate the densi-
ties of every species of plant, every soil bac-
terium, every fungus, every nematode, every
herbivore, etc., and establish the effects of each
manipulation on population densities and/or
growth rates of all other species just to deter-
mine whether plants are actually competing
with each other? Such an approach is so com-
plex as to be ridiculous; yet that is the ap-
proach that a purely phenomenological per-
spective seems to require.” Tilman threw up
his hands at the complexity of entire natural
communities. Many reductionistic microscopic
community ecologists have done just that.

In the symposium on amphibian commun-
ity ecology at the First World Congress of
Herpetology, we learned about the biclogy of
small groups or sets of species. An example is
the work of Hairston (1987) on salamander
guilds. In a book review entitled “Putting the
Species Back into Community Ecology,” Pimm
(1987) put it this way: “Community ecology is
becoming the ecology of guilds ratherthan the
ecology of communities.” Small pieces of a com-
plex system may well lack important proper-
tiesinherent in the intact system. I propose to
consider something in between the ecosystem
systems approach and the guild ecology of
microscopic community ecologists, and that is
community ecology of entire assemblages,
subsets of the whole community, but larger
than just guilds.

Recently Schoener(1986) argued thatin the
future, community ecology will consist of a
collection of theories, each with its power of
prediction for a limited subset of species un-
der specific environmental conditions. This
kind of sentiment emerges from the micro-
scopic perspective on communities, In my
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opinion, we cannot afford to neglect diverse,
complex systems just because they areintrac-
table. We must make some attempt to deal
with these phenomena holistically, even
though theyare very complicated. A great deal
remains to belearned about community strue-
ture, evenin the best-studied systems(Menge
and Farrell 1989).

An example of these phenomena is a food
webthatinvolves 11lizard speciesin the Aus-
tralian desert that I put together from part of
myown research (Figure 3), Aquatic food webs
that Winemiller (1987) deduced for a fish as-
semblage in Venezuela are shown in Figure 4.
In complex networks of interacting species,
the numbers of indirect interactions (Kerfoot
and Sih 1987), that is, interactions that re-
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quire path lengths of more than one, go up
exponentially with species diversity (Patten
1983). Of course, direct interactions potentially
increase faster and faster with more species.
Whereas directinteractions are readily under-
stood, indirectinteractionscanlead to counter-
intuitive situations that have been called, for
example, “apparent competition” (Figure 5b;
Holt 1977). When a single predator has two
prey species and a removal experiment is per-
formed on one of the prey, the predator loses
food, decreasesin density, and hence decreases
its predation on the other species. A naive
experimental ecologist might interpret such a
response as competition when it is not compe-
tition at all! Other indirect interactions in-
volve morethanjust two links (Figure 5). One

> Varanus eremius

—/\

Ctenophorus  Ctenophorus Menetia Delma  Ctenotus  Ctenotus  Ctenotus  Ctenotus Gemmatophora Morethia
isolepis inermis greyi butleri  grandis  pantherinus  calurus  quattuor- longirostris butleri
decimlineatus
A A : A
A
Spiders Wasps
Ants Other Insects Termites Lepidoptera Larvae Bugs Grasshoppers
Plants ————

FIGURE 3. Part of the food webin an Australian sandy desert. The top predator, Varanus eremius,is a pygmy monitor
lizard, which eats ten other species of lizards and grasshoppers. Each of the latter in turn have diets dominated by
various sorts of arthropods or plants. (After Pianka 1988.)
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Wet Season

FIGURE 4. Food webs during three seasons in a neotropical
aquatic system-at Cano Maracain the lowland Llanos of
Venezuela. (After Winemiller 1987.) Species are repre-
sented withnumbersat nodes(not all species are present
during all seasons).

such interaction, which I find most interest-
ing, isillustratedin Figure 5d; two consumers
are not competing or interacting directly in
any way, but because their prey are compet-
ing at the next trophic level down, a positive
apparent mutualism emerges between the two
consumers that has been called facilitation or
indirect mutualism (Vandermeer 1980).
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Still other kinds of indirect mutualism can
occur horizontally and vertically, such as com-
petitive mutualism (Pianka 1981; Figure 5¢)
and food-web or food-chain mutualism (Fig-
ure 5e). Ecologists have only recently become
aware of indirect interactions; for too long we
have been overly simplistic and classified all
interactions between species just into simple
pairwise interactions (Bender et al. 1984;
Brown et al. 1986; Pianka 1987).

Indirect Interactions
a. b.
c c C

1 4\ /’ 2 /P 1 ‘\

o Py o’ Py N P,
Exploitative "Apparent
Competition Competition

C 1
c d. e, <a>
C, c, H,
o™, o
Pino P2 AL Q? ) (,)
~ o
Pia P, P,
Competitive Indirect Food Chain
Mutualism Mutualism Mutualism

FIGURE 5. Indirect interactions in communities. (a) Two
consumers sharing a common prey may compete indi-
rectly via classical exploitation competition (resource
depression). (b) Two prey species may only appear to
compete, because if either increases, a shared predator
also increases, which operates to the detriment of the
other prey population (Holt 1977). (c) Three species’s
populations at the same trophic level, arranged so that
onespecies, P, is sandwiched between two others. Popu-
lations P, and P, are indirect mutualists because each
inhibits the other’s competitor—P, (Pianka 1981).(d) A
more complex four-species system that results in an
indirect “mutualism,” or “facilitation” (Vandermeer
1980). In this case, populations C, and C,, which do not
interact directly, but consume different prey species,
interact indirectly because their prey compete: if con-
sumer C, increases, its prey P, decreases, which inturn
reduces competition with P,, allowing an increase in
thissecond prey population( ,) and providing more food
for consumer species C,.(e) Three species’s populations
at three trophic levels: the plant P, andthe carnivore C,
areindirect mutualists because they share an herbivore
Hl. Numerous other sorts of indirect interactions are
also possible, (Modified from Pianka 1988.)
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We need a way to take an entire multi-
dimensional system, or a complex network,
and reduce it to some kind of a graphical state
in which we can begin to appreciate the struc-
ture and organization of the entire system.
Loehle (1987) said that “the mere attempt to
define phenomena operationally can dramati-
callyincrease theory maturity.” Iwill explain,
very concisely, a promising hybrid approach
that Kirk Winemiller and I have developed to
compare his aquatic systems with my desert
systems (Winemiller and Pianka 1990).

Winemiller (1987) worked on neotropical

fishin South and Central America. (Iwillcon-
sider some of his fish systems briefly below.)
He recently returned from Zambia, where he

studied similar but independently-evolved

ichthyofaunas. The resulting intercontinen-
tal comparisons are most instructive (Wine-
miller 1991). Here I can only skim over our
approach and show a few results; for a full
treatment, see Winemiller and Pianka (1990).
This approach adopts a holistic perspective
on a complex assemblage of interacting spe-
cies and endeavors to represent the entire

assemblage graphically to detect patterns of

organization in that system.

METHODOLOGY

Our raw data are called resource-utilization
matrices. Although some people reject the
whole approach of resource partitioning, we
maintain that a resource matrix contains a
great deal of vital information about a system.
It identifies quantitatively which species eat
which other species, as well as which species
are potential competitors because they share
common foods. A resource matrix thus de-
scribes the food-web structure of the system.

Considerable tedious work is required to
put together a satisfactory resource matrix,
Statistical samples of all the species in the
system must be collected; if the system is

changingin time, thisneeds tobe done quickly;
to follow changes in the community through
time, adequate samples at different times are
necessary. Entries in the resource matrix are
used to estimate probabilities. These vary be-
tween zero and one, reflecting the probability
that a given consumer species, called 1, will
use a particular resource state, called 2. A
portion of these utilization probabilities, or
u.'s, in the matrix will obviously be zeros be-
cause some consumers will not be using par-
ticular resources. Without going into all the
detail of the various sorts of probabilistic ele-
ments that one can compute toenter into such
resource matrices, I will briefly discuss the
concept of electivity.

Simple dietary proportions, or p/s, weight
uncommon or very abundant resources dis-
proportionately. Ivlev (1961) suggested re-
source utilization should somehow be stan-
dardized in terms of relative availabilities. As
it turns out, resource availability is a very
difficult problem, not easily measured in the
field. Insects can be sampled with sweep nets,
DeVac vacuum cleaners, tanglefoot sticky
traps, pit traps, or Berlese funnels; each tech-
nique yields very different results. Some in-
sects are simply more easily pit trapped than
others, whereas others are captured by Berlese
funnels more efficiently than are others, and
soon. Péfaur and Duellman (1980; Duellman,
pers. comm.) studied Andean amphibians and
reptiles from Colombia south to Argentina.
They fenced study plots and collected all frogs
and squamates (lizards and snakes) inside
these plots; all the conspicuous insects were
also collected, and saved with the intention of
using these as standards to compare with the
stomach contents. They actually collected only
a very few of the insect species that were eat-
enby the amphibians and reptiles—only about
10%, in fact (Duellman, pers. comm.). Incred-
ibly, 90% of the insect species that were in
stomachs were, in fact, not even collected by
diligenthumans!Itis a gross and dangerously
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misleading oversimplification to accept the
idea that there exists a single resource vector
that describes a system. Each species experi-
ences its own resource availabilities, which
depend to some extent on how that species
uses space and time, and its sensory capaci-
ties, as well as its behavior and foraging mode.

Various operational “solutions” to this prob-
lem have been proposed, although all have
their limitations and shortcomings. Colwell
and Futuyma (1971) suggested a technique
that weights resources in proportion to their
use in the overall system. Weuse aconvenient
and simple variant proposed by Lawlor (1980a)
that exploits the resource totals in the resource
matrix as our measure of resource availabil-
ity. This constitutes a sort of bicassay. In a
system of a hundred species, the diet summed
over all the component species represents an
estimated resource availability vector, This is
used to compute probabilistic analogues of
electivity and an analysis can proceed that is
unbiased by resource availability (Winemiller
and Pianka 1990).

One ofthe classic papersin community ecol-
ogy was published in 1977 by Robert Inger
and Robert Colwell on Thailand amphibians
and reptiles. In that paper they pointed out
that there is no consensus as to how to ap-
proach community ecology. Inger and Colwell
(1977)said that there is “nostandard protocol
forcommunity ecology.” That statementisstill
true today, more than a dozen years later.

Even so, Inger and Colwell (1977) made a
giant step. They suggested a nearest-neigh-
bor approach forlooking at communities;each
species’ overlap with every other species is
ranked from the closest neighborin niche space
tothose increasingly more distant. These gen-
erate monotonically declining curves for all
the species in the system (for an analogous
graph of Botswanalizards, see Figure 6). Some
species have high overlap well out into niche
space, whereas overlap in others falls off rap-

idly(such consumersare very distinct and have
low overlap with most of the other members of
the system).

The hybrid approach that Winemiller and I
developed uses simply the mean overlap at a
given rank across all species in the system. A
system in the Kalahari desert involving 15
species of lizards is depicted in Figure 6. This
system is also represented in Figure 14, al-
though with a single curve, and that one curve
is simply the arithmetic average over all 15
species at each rank in niche space.

NULL MODELS

Now we must get a bit more abstract. Another
promising technique involves what are called
null models (Colwell and Winkler 1984). One
of the big challenges is to find something with
which to compare a given community. It is
extremely difficult to compare a system with
someone else’s system; that is, in fact, what
provoked us to devise these techniques, so we
could compare the fish with the lizards. Sale
(1974) suggested scrambling the elements of
a resource matrix according to rules that cre-
ate what I have since come to call pseudo-
communities (Pianka 1986). These are then
compared with the prototype so that we can
look for differences in how the original system
isorganized. Sale’s algorithm involved scram-
bling all the utilization coefficients, whatever
their values are for each consumer in the sys-
tem (zeros or positive). So one simply takes
the first consumer and randomly rearranges
all its elements. Rearranged utilization prob-
ability u,, could fall with equal probability
into any slot in the utilization vector of that
species and so would u,,. The nice thing is
that, with a computer, one can easily perform
thisrearrangement a hundred times and with
the use of the bootstrap approach and Monte
Carlo statistics, can generate a distribution
against which the observed data can be com-
pared (Felsenstein 1985). The beauty of such
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an approach is that non-independence can be
handled statistically—unlike the familiar
parametric statistics, independence is not as-
sumed orrequired (Pimm 1983). Thus one can
actually do statistical analyses and say
whether ornot any differences are significant.

About six years after Sale’s work, Lawlor
(19800) suggested a slightly different algo-
rithm, which turned out to be equally instruec-
tive: Lawlor’s algorithm leaves the zero struc-
ture of the resource matrix intact. So, if
consumer 1 does not eat resource state 3, a
zero must remain in cell u, ; it is frozen and
not allowed to change. Elements in the re-
source matrix are scrambled, but only among

theresourcesthat are actually used by a given
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species. (We call Lawlor’s method the “con-
served-zero” approach and Sale’s method the
“scrambled-zero” algorithm because it destroys
the zero structure.)

BENCH TESTS

To intelligently exploit these techniques on
our real fish and lizard systems (Winemiller
and Pianka 1990), we first constructed a test
set of hypothetical model systems that had an
understandable, known structure. We built
model systems both with and without guilds
and “bench tested” our methodology on these.
The three systems of two guilds of equal size
that are depicted in Figure 7—five species in
each—are simple littlemodel systems that we

1.0

46 prey categories

0.8 1

0.6 1

0.4 1

Dietary Overlap

0.2 1

Tsabong, Kalahari

Agama hispida
Chendrodactylus angulifer
Colopus wahfbergi
Eremias lineo-oceliata
Eremias lugubris
Eremias namaquensis
Ichnotropis squamulosa
Mabuya variegata
Mabuya occidentalis
Mabuya punctatissimus
Nucras intertexta
Pachydactylus bibroni
Pachydactyius capensis
Ptencpus garrulus
* Typhlosaurus lineatus

0.0 T

10 15

Rank of Neighbor in Niche Space

FIGURE 6.Plots of dietary overlap with niche neighbors ranked for eachlizard species at Tsabong, Botswana.Dietary
overlap declines at more distant ranks, but average slopes exhibit large interspecific variation. Overlap at distant
ranksis variableinthislizard system. Steepnegative slopes indicaterelativelyunique diets and ecological similarity
with very few other species, whereas shallow slopes indicate high or intermediate ecological similarity with many

species. (From Winemiller and Pianka 1990.)
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used in order to see the effect of randomiza-
tion algorithms. At the top, there are two guilds
with very high, almost total, overlap. At the
bottom, there are two guilds with low overlap.
In the middle, overlap is intermediate. When
the zeros are scrambled, of course, guild struc-
ture is destroyed and the scrambled-zero al-
gorithm results in increased overlap at dis-
tant ranks in the niche space. If a significant
proportion of pseudo-communities lie above
the original system (the prototype), in effect
they “float,” indicating that niche segregation
was reduced or destroyed when the resource
matrix elements were scrambled. At close-in
ranks, pseudo-communities “sink” because
guild structure is diminished by scrambling
utilization coefficients.

We assembled another set of three systems
with guilds of different sizes; these behaved

FIGURE 7. Plots of average niche overlap against rank of
niche neighbor for three model assemblages with guild
structure and the same plots using means from 100 ran-
domizations based on two algorithms (resource matri-
ces for each model system are given in Winemiller and
Pianka 1990). Set-theory representations of the systems
are depicted above each Colwellian nearest-neighbor
plot. For systems with high overlap, scrambled-zero
pseudo-communities fall below observed systems within
guilds, but lie above ohserved systems at more distant
between-guild ranks. The Trial 1 (two guilds, high over-
lap) plot shows the observed system exceeding both
pseudo-community overlaps at the first 4 out of 9 ranks.
The Trial 2 (two guilds, moderate overlap) plot shows 4
of 9 observed overlaps exceeding pseudo-community
overlaps based on the scrambled-zercs randomization
algorithm. Trial 2 conserved-zero pseudo-communities
fall above the observed system for 3 of 9 ranks, indicat-
ing marginal resource segregation. Scrambled-zero
pseudo-communities sink atclose-inranks, but floatsig-
nificantly at distant ranks in niche space as a result of
destroying guild structure. In Trial 3 (two guilds, low
overlap), conserved-zero pseudo-eommunities float sig-
nificantly at thefirst four ranks inniche space reflecting
segregation, whereas no other differences are signifi-
cant. Conserved-zero probabilities are based onthe frac-
tion of randomized means exceeding observed-rank
means. Scrambled-zero probabilities are based on the
fraction of randomized means below observed-rank
means. (From Winemiller and Pianka 1990.)
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somewhat the same (Figure 8). We also put
together systems like these without any guild
structure, but with resource partitioning
(Figure 9). It became harder to get pseudo-
communities to float, although some con-
served-zero pseudo-communities did float,
which we interpreted as evidence of niche
segregation.

We were alsointerested in the phenomenon
of “core”resources. Both Winemiller's fish and
my lizards exploit certain core resources ex-
tensively. Among the lizards, these are ter-
mites and ants—especially termites. Among
the fish, mayflies constitute a core food re-
source. So we created some systems with ex-
tensive or total overlap on certain core re-
sources and some systems with unique
resources that were used by each species and
that were partitioned (Figure 10).

To sum up the bottom line on these algo-
rithms: when consumers piled up on a certain
resource state (core resources or guilds in
which everything within a guild ate the same
things), the scrambled-zero algorithms tended
to sink and fall below observed levels. When
resources are partitioned, however, conserved-
zero pseudo-communities tended to be above
the observed system (i.e., they “floated”).

FIGURE 8. Plots of average niche overlap against rank of
niche neighbor for three model assemblages with two

- guilds of different sizes and the same plots using means

from 100 randomizations based on two algorithms (re-
source matrices for each model system are given in
Winemiller and Pianka 1990). Again, for systems with
high overlap, scrambled-zero pseudo-communities fall
below observed systems within guilds, but lie above ob-
served systems at more distant between-guild ranks.
The Trial 4 (two distinct guilds of different sizes, inter-
mediate overlap) plot shows the observed system above
both types of pseudo-communities at close-in ranks.
Scrambled-zero pseudo-communities tend tosink close-
inbut fleat significantly at distant ranks in niche space,
a result of destroying the guild structure. Neither set of
pseudo-communities differs from the observed system
in Trial 6 (unequal-sized guilds with low overlap). (From
Winemiller and Pianka 1990.)
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FIGURE 9. Plots of average niche overlap against rank of
niche neighbor for three model assemblages with no
guild structure and the same plots using means from
100 randomizations based on two algorithms (resource
matrices for each model system are given in Winemiller
and Pianka 1990). Pseudo-community overlaps at most
ranks do not differ significantly from the observed sys-
tem when overlap is high, but do tend to float at close-
in ranks when resources are partitioned and observed
overlap is low (Trial 9). (From Winemiller and Pianka
1990.)

RESULTS FROM REAL SYSTEMS

My colleague, Kirk Winemiller, studied
ichthyofaunas of aquatic systems in Vene-
zuela and in Costa Rica. One of his study sites
has more than 80 species of fish in it over the
course of an entire annual cycle. Winemiller
discovered how to collect virtually an entire
freshwater aquatic assemblage. In one seine
haul through Cafio Maraca during the dry sea-
son, he and I captured over a thousand fish of
dozens of species—plus a “bonus” of a couple
of large caimans! His sample sizes are on the
orderof 300-500specimens. Winemiller could
not examine the stomachs of all these fish, but
went through statistical subsamples and sepa-
rated his data into wet- versus dry-season
resource matrices. Prey content—usually in-
sect orders—was estimated by volume to the
narrowest discriminatory abilities possible,
given our own expertise.

We examined 18 different resource matri-
ces, with two or three from each of eight sites:
a wet and dry season for each of four fish sites
and microhabitats plus diet matrices for each
of fourlizard sites. Numbers of fish species on
these sites varied from 19 to 59 and numbers
of lizard species varied from 15 to 39. We had
between 40 and 217 resource states among
the sites analyzed.

One Australian desertsite, an L-shaped area
near Laverton, Western Australia, has 35
species of lizards. My favorite study area is
Red Sands, near Yamarna Homestead in
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Western Australia. Thave collected 47 species
of lizards there so far and expect to find sey-
eral more. The hummock-grass tussock-plant
growth form (spinifex) is very Important in
the Australian desert. These tussocks, aslarge
as 1 min diameter, house certain lizards that
virtually never leave them. Some lizards are
highly adapted tospinifex and virtually “swim”
through it with ease. Each lizard collected,
some 3000in Australia and another 2000 from
the Kalahari, was weighed and measured in
the field, individually tagged, and then per-
manently preserved by injection with formal-
dehyde. (These specimens are all safely en-
sconced in major museums where they are
available forsystematics research. Many have
been dissected by specialists interested in
functional anatomy.) When the lizards are
eventually taken to the laboratory, each is
measured—ten different body measurements
are taken for anatomical analyses—and then
the lizard is dissected, its reproductive state
isnoted, andrelative clutch massisestimated
(testicular cycles can be deduced from serial
samples like this). The most important thing,
for present purposes, however,isthat the stom-
achs are removed for examination. A compe-
tent entomologist, Thomas Schultz, went
through the stomach contents of the Austra-

FIGURE 10. Plots of average niche overlap against rank
of niche neighbor for three model assemblages with no
guilds and with consumers segregated on different core
resource states, plus the same plots based on means of
100 randomizations using two algorithms (resource
matrices for each model system are given in Winemiller
and Pianka 1990). Intrial 10 (core resources, high over-
lap), conserved-zero pseudo-communities float signifi-
cantly whereas scrambled-zero pseudo-communities
sink. In Trial 11 (core resource, intermediate overlap),
conserved-zero pseudo-communities float whereas
scrambled-zero pseudo-communities do not differ sig-
nificantly from observed. Trial 12 (core resource, inter-
mediate overlap, 100 resource states) shows a pattern
similar to Trial 11, except that conserved-zero overlaps
sink in relation to observed values at rank one (nearest
neighbor), indicating that expandedresource categories
are less likely to result in significant patterns of re-
source segregation.(From Winemiller and Pianka 1990.)
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lian lizards, identifying 100,000 or more prey
items to the narrowest categories possible
(Pianka 1986).

Neotropical Fishes

Costa Rican fish assemblages, shown in Fig-
ure 11, were collected during the wet and dry
seasons and are based on twodifferent resource
matrices (some fish species present in the wet
season are not there during the dry season).
Mean overlap in the observed system is indi-
cated by the solid circles in the upper panel of
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pseudo-communities and the observed system.
At close ranks in niche space, conserved-zero
systems donot float, but farther out theyclear-
ly differ from observed systems and to some
extent (except for the lower right panel in the
figure), the scrambled-zero pseudo-communi-
ties almost invariably sink at most ranks.

Venezuelan fish float and sink even better,
so to speak (Figure 12). Realize that an enor-
mous amount of infermationisrepresented in
one graph. In one case, at Maraca (top panel),
data from 29,000 fish went into production of

each graph. Overlap at
each rank in niche space is
plotted, with the average
similarity between con-
sumers at the first, second,
and third rank and so on.
Pseudo-communities are
shown with the open sym-
bols; the conserved-zero
pseudo-communities are
represented by open circles
and the scrambled-zero
pseudo-communities by
opentriangles.Inthelower
panels of each figure, the
percentage of pseudo-com-
“munities thateither “float”
or “sink” is plotted. In this
case, sinking of the
scrambled-zero pseudo-
communitiesisinteresting,
as is floating of conserved-
zero pseudo-communities,
which reflects niche segre-
gation, The dashed linesin
the bottom panelsareat5%
and 95% confidence levels,
so when a pseudo-commu-
nity lies above the upper
dashed line or below the
lower daghed line, there is
a statistically significant
difference between the
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FIGURE 11. Average observed dietary overlap plotted against rank of niche
neighbors for two Costa Rican fish assemblages during wet and dry seasons.
Pseudo-community data are based on 100 computer randomizations of the
observed prototype. The lower portion of each plot shows the percentage of
pseudo-community means greater than the observed mean at each rank in
niche space. Conserved-zero pseudo-community plots lie above observed levels,
indicating a high degree of resource segregation. For all assemblages except
Quebrada-dry, scrambled-zero pseudo-community plots fall below observed
plots, indicating core resources and guild structure. (From Winemiller and
Pianka 1990.)
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the figure. Winemiller lived in Venezuela for
a full year, collected many thousands of fish,
brought them back, and spent an entire year
going through the stomachs of vast numbers
of these specimens. All this information can
be represented on a single page with a simple
graph thatone can examine andinterpret with
a little bit of training.

These aquaticsystems are highly organized,
with guild structure, core resources, and niche
segregation. Consumers are piled up on cer-
tain core resources, which is reflected in the

ERIC R. PIANKA

sinkingof the scrambled-zero pseudo-commu-
nities. Those same consumers, however, are
also segregated out on those core resources
that they do use, with different species using
the same core resources, but with different
probabilities. ‘

Desert Lizards

Australian lizards are depicted in Figure 13.
The top two panels represent microhabitats
and the middle two show “standard” dietary
resource matrices (19 prey categories, which

. os arelargelyinsect orders).
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interpretations emerge
from these plots. Scram-
bled-zeropseudo-commu-
nities tend to sink in all
cases, which indicates
piling up on certain core

resources and is indica-
tive of guild structure.
Conserved-zero pseudo-
communities float fairly
well in microhabitats,
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FIGURE 12. Plots of average observed dietary overlap against rank of niche neigh-
bors for two Venezuelan fish assemblages during wet and dry seasons. Again,
pseudo-community data are based on 100 computer randomizations of the ob-
served prototype. Conserved-zeropseudo-community plots lie above observed plots,
indicating a high degree of resource segregation. Serambled-zero pseudo-commu-
nity plots lie below observed plots, indicating core resources and guild structure.
The lower panel in each plot shows the percentage of pseudo-community means
greater than the observed mean at each rank in niche space. (From Winemiller

and Pianka 1990.)
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though, pseudo-commu-
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nities do not show very much floating because
food resource states are too crudely differen-
tiated, which results in a piling up of consum-
ers on some resource states. Data for the same
saurofaunas are shown in the bottom panels,
but with considerably finer discrimination of
prey resource states; note that conserved-zero
pseudo-communities float as they did in the
fishpopulations,indicating

thereis some hint of floating in the conserved-
zero pseudo-communities at Tsabong,
Botswana, on the right (Figure 14), but not at
Bloukrans, South Africa, on the left (Figure
14). Examining diet (bottom panel) shows
there is not much niche segregation. There is
not any niche segregation at all at Tsabong,
but there seems to be a little, at least at more

segregation. 10

Kalahari desert sys-
tems are more loosely or-
ganized than those in the
Australian desert (Figure
14). There are fewer lizard

Redsands, Austratia, 15 Microhabitats

0.8 3 —a— Observed |
" —O0— Psaudo. (Conserved Zaro)
—~&— Pseudo, (Scrambled Zero)

Lavarton, Austraiia, 15 Microhabliats

~—%-— QObserved
—CO— Pgaudo. (Consarysd Zero)
—d— Psetdo. {(Scrambled Zero)

Average Microhahitat. Overlap:

speciesin the Kal aharl apd 100-L R, oy
prey could not be distin- 751 %

guished to categories as 501
fineasthosein Australia—

only 46 different prey re-

Percent

source states were recog-
nized. For microhabitats,

FIGURE 13. Plots of average ob-
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states) and detailed prey cate-
gories (bottom panels) against
rank of niche neighbors for two
Australian lizard assemblages.
Again, pseudo-community data
are based on 100 computer ran-
domizations of the observed 1.0
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prototype, and the lower portion
of each plot shows the percent-
age of pseudo-community means
greater than the observed mean
at each rank in niche space. Ex-
cept for condensed-prey re-
sources, conserved-zero pseudo-
community plots float above
observed levels at some but not
all ranks, indicating significant
resource segregation at these
ranks. In each case, scrambled-
zeropseudo-community plots fall
below obhserved plots, indicating
significant guild structure. (From
Winemiller and Pianka 1990.)
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distant ranks, at Bloukrans. Allin all, the Sys-
tems we examined tended to be fairly highly
organized. This technique should facilitate
analyses of other systems and allow compari-
sons with our own.

Laurie Vitt(pers. comm.) hascollected com-
parable data for the diets of lizards in a semi-
arid habitat in Brazil known locally as the
“caatingas.” Sixteen species of lizards, all in
different genera, occur there (three species are
very rare). Recognition of 136 prey categories
(insect families for the most part) allowed the
construction of a resource matrix describing
the 13 dominant species in this system. A
preview of this study (Vitt, in prep.) shows
that overlap is very low or non-existent be-
tween almost all pairs of species. Both con-
served-zero and scrambled-zero pseudo-com-
munities float at all ranks in niche space. The

caatingas saurofauna system is extremely
highly organized in terms of niche segrega-
tion, but lacks any guild structure.

FIRE SUCCESSION IN
INLAND WESTERN AUSTRALIA

The importance of spatial scale has been ne-
glected in traditional ecology, although not in
the emerging field of landscape ecology. While
the implications of the landscape on ecology
have longbeen appreciated, onlyrecently have
quantitative methods of study been exploited.
In the past, ecologists, including myself, have
focused on local-level processes. Larger scale
regional factors also control local phenomena.
Local species richness may often be a conse-
quence of regional processes (Shmida and Wil-
son 1985). Relatively little empirical atten-
tion hasbeen givento the interaction between

these two levels. Unfortu-
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served, reflecting core resources
and guildstructure. (From Wine-
miller and Pianka 1990.)
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ties, in which regional and local phenomena
can be studied simultaneously. I am under-
taking such a study in the uninhabited Great
Victoria Desert of Western Australia, an area
with an extremely high diversity of lizards.

Fires were once a major agent of distur-
bance in all grassland and semidesert biomes,
including the North American tall grass prai-
ries. Most of these ecosystems have now been
reduced tomere vestiges, and controlled burn-
ing, fire control, or both are practiced by hu-
mans almost everywhere. The inland Austra-
lian desert is one of the last remaining areas
where wildfires remain a regular and domi-
nant feature of an extensive natural area
largely undisturbed by humans. Animportant
fire-succession cycle, which generates spatial
and temporal heterogeneity in microhabitats
and habitats, is evident in this region. Habi-
tat-specialized species can become extinct
within a given habitat patch (a fire scar), but
metapopulations persist in the overall system
by periodic reinvasions from adjacent or
nearby patches of suitable habitat of different
age. An ecological and evolutionarily stable
equilibrium is reached between “source” and
“sink” habitats (Pulliam 1988). Such regional

~ processes promote local diversity.

Precipitation is the driving variable in this
system, which is being studied, both at the
local level in the field in Australia and at the
regional level, using aerial photographs of fire
scars and multispectral satellite imagery by
Melba Crawford at the Laboratory for Remote
Sensing at the University of Texas. High-
resolution satellite imagery of these areas,
which has been collected since 1972, offers a
powerful way, heretofore underutilized, to
acquire regional-level data on the frequency
and phenomenology of wild fires, and thus the
system-wide spatial-temporal pattern of
disturbance.

Many of the digital satellite data have been
acquired by LANDSAT, but they remain

archived on magnetic tape and unprocessed,
and are thus exceedingly expensive and there-
fore essentially unavailable without substan-
tial financial resources. A complete analysis
of wild fires of the Great Victoria Desert re-
gion will require atleast 100 images. Imagery
is being purchased and will be analyzed to
detect burned areas. Spectral and spatial sta-
tistics will be computed for hundreds of fires
through time, and the probability that a given
area will be burned will be estimated. Other
data to be collated for each fire include date,
location, area, perimeter, compass direction
(of burn and prevailing wind), ground-cover
characteristics, extent of reticulation, and vari-
ous fractal dimensions. Age and size distribu-
tions of burn patches will be estimated. Sup-
porting imagery from other grassland areas,
particularly the Kalahari semidesert of south-
ern Africa, will be acquired and used for com-
parative purposes (fires in the Kalahari do
not appear to reticulate to as great an extent
as they do in Western Australia).

Chronosequences of remote imagery will be
correlated with historical weather data. Both
past climate (cumulative precipitation since
the last fire) and the present state of the vege-
tation and fauna of unstudied sites will then
be inferred from multispectral reflectance
properties. Although a great deal more re-
mains to be learned, it may ultimately prove
feasible to monitor habitats and biotic diver-
sity in this arid region from satellites in space.

Field work is currently underway on the
ground to document rates of closure of spini-
fex, tomap vegetation structure, and to deter-
mine which animal species are present and in
what abundance at various stages following
burns. Low-level aerial photography is being
acquired and will be digitized, georeferenced,
and analyzed to make detailed maps of vege-
tation structure for use in computer simula-
tions of fire dynamics. Vertebrate faunas,
arachnids, and insects—in particular, foods
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eaten by lizards—will be compared at recently
burned sites with those at various stages of
post-fire recovery to collect preliminary data
for modeling aspects of the dynamics of the
fire-succession cycle. Mature spinifex sites
have been selected for long-term monitoring.
After their faunas have been sampled and low-
level aerial photography of the spatial distri-
bution of combustibles has been acquired,
these study sites will be burned under vary-
ing wind conditions. Fire scars will be photo-
graphed and “burns” will be simulated on the
computer to mimic observed fire geometry.
Precipitation, rates of accumulation of com-
bustibles, and the insect and vertebrate fau-
nas of these study sites will be monitored
roughly every other year for the next decade
to collect more precise data on the fire-succes-
sion cycle.

A major goal of this study is to obtain
baseline data on temporal patterns, spatial
structure, and distribution of disturbances.
These data will form the backdrop for a more
detailed study of the population dynamics and
dispersal abilities of species. Such data on the
component species will be fitted into the over-
all spatial-temporal mosaic in an effort to
explain the persistence of this diverse desert
fauna. Ultimately, I plan to model the entire
Great Victoria Desert region as a dynamic
habitat mosaic so as to understand mecha-
nisms of coexistence of its component species
and the effects of fire disturbance in main-
taining lizard diversity in this region. Faunas
of unstudied sites will be predicted by extrapo-
lation, allowing direct tests of models. Con-
trolled burns may also prove to be useful.

CONCLUSIONS

Community ecology has for too long been per-
ceived as repugnant and intractably complex
by reductionistic population ecologists. As a
result, the discipline has been neglected and
now lags far behind the rest of ecology. As we

approach oversaturation of this planet, we will
soon be needing all the ecological understand-
ing and wisdom that we can muster, Ng longer
can we afford to remain ignorant of the prin-
ciples and factors governing the structure and
function of entire systems of interacting spe-
cies. Community ecology is not for the timid,
butits serious students may well be rewarded
with major new advances and discoveries ev-
ery bit as exciting and important as bNA and
natural selection.

I would like to close with a plea for toler-
ance of community ecology. Allow the disci-
pline to try to catch up with the rest of biology,
which has enjoyed such a head start. I would
particularly like to ask those community ecol-
ogists who adopt the microscopic approach,
that is, “experimental” community ecologists,
to be tolerant of community ecologists trying
tostudy entire assemblages and who are adopt-
ingamore holisticand “descriptive” approach
to communities. We must seek and maintain
dialogue and mutual respect as we work to-
wards integrating our divergent but comple-
mentary approaches.
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