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Profit Maximization and the Extinction
of Animal Species

Colin W. Clark

University of British Columbia

In this paper I construct and analyze a simple mathematical model for
the commercial exploitation of a natural animal population. The model
takes into account the response of the population to harvesting pressure,
the increasing harvesting costs associated with decreasing population
levels, and the preference of the harvesters for present over future
revenues. The principal conclusion of the analysis is that, depending on
certain easily stated biological and economic conditions, extermination
of the entire population may appear as the most attractive policy, even
to an individual resource owner.

I. Introduction

Historical developments in the exploitation of many biological populations
have followed a characteristic pattern. First comes a stage of expanding
harvests, frequently quite rapid and often following some technological
advance. As the exploitation increases, fears are expressed for the survival
of the population and the associated industry. Conservation measures are
considered and sometimes adopted with success. In other cases, action is
taken too late and the industry collapses. In a few cases, species have been
completely exterminated, or reduced to a population level incapable of
surviving.

The study and practice of resource management is generally based on
some form of bioeconomic modeling of the resource in question, the most
extensive literature being devoted to fisheries management. Beginning with
the paper of H. S. Gordon (1954), this literature has been particularly
effective in analyzing the important consequences of ‘“‘common property”’
conditions of exploitation.! The conclusion drawn from this analysis is that

Submitted for publication February 28, 1972. Final version received August 7, 1972.

! See Scott (1955), Zellner (1962), Turvey (1964), Christy and Scott (1965), Bachmura
(1971), and Plourde (1971).
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EXTINCTION OF ANIMAL SPECIES 951

such conditions lead to economic inefficiency, and, in some cases, to over-
exploitation in the biological sense, with yields and population levels
lower than for maximum sustained physical yield. Although the possi-
bility of complete extermination of populations has been recognized, few
analyses have taken it explicitly into consideration (Smith 1969 ; Bachmura
1971; Gould 1972). In the literature on fisheries, for example, it has often
been assumed, usually tacitly, that extermination is either impossible or
unprofitable. This may be valid for many fisheries, but certainly not for
other animal resources.

Analyses of controlled fisheries have often been based on the concept of
rent maximization, that is, maximization of net annual revenues (Scott
1955; Smith 1969). It has been noted that, if harvesting costs rise with
decreasing population levels, a rent-maximizing policy will automatically
lead to biological conservation, with an equilibrium population in excess
of the population corresponding to maximum sustained yield.

It is perhaps more reasonable to suppose, however, that the “sole
owner” of a resource population would in fact choose to maximize the
present value of his harvest sequence, discounting future revenues at some
fixed rate. Several authors have remarked that in this case the corre-
sponding equilibrium population level is lower than the rent-maximization
level and may be either higher or lower than the maximum-yield level
(Zellner 1962; Plourde 1970, 1971; Quirk and Smith 1970). It is even
possible that a zero equilibrium population would be optimal in this sense,
and it is this possibility that I wish to analyze in this article.

The model to be presented here is at the same time a generalization and
a simplification of many existing models. Biologically, it is a seasonal model
based on the usual notion of a reproduction curve; economically, it is a
partial equilibrium model with fixed price and with unit cost assumed to
depend only on population size.

Dynamically, the model utilizes a discrete time scale and is con-
sequently so simple that it can be analyzed rigorously using only tech-
niques of elementary calculus. The case of extinction arises naturally as an
“end-point maximum,” so that conditions giving rise to it are easily
characterized. Roughly stated, the following are shown to be both
necessary and sufficient conditions for extinction under present-value
maximization: (a) the discount (or time preference) rate sufficiently
exceeds the maximum reproductive potential of the population, and
(b) an immediate profit can be made from harvesting the last remaining
animals (or from reducing the population to a level too low for survival).

It must be emphasized that the model used here is not a welfare model,
so that no assertion can be made to the effect that extinction is socially
optimal. To repeat, the conclusion is only that extinction may result from
present-value maximization.

Do the results so described have any practical application? Although it
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is probably impossible to answer this question with any degree of certainty,
I'shall argue later that the Antarctic whale fishery may have been subject
to the phenomenon described in this article. But whether present-value
maximization has in fact played a role in the extinction of species is a
question of imputing motives. My analysis suggests only that it could play
such a role, the more so the higher the private rate of discount utilized.

The case of common-property exploitation, by the way, can be con-
sidered as a special case of present-value maximization, in which an
infinite discount rate applies. Thus our analysis indicates that extinction
would result under common-property conditions if and only if an im-
mediate profit could be made from harvesting the last remaining members
of the population.

II. The Bioeconomic Model

Since the work of Lotka and Volterra it has been standard in theoretical
biology to consider population models in which the growth rate of the
population is determined by the population itself, as expressed by a
differential equation dx/dt = F(x). In this article I shall use instead a
recursion formula

Xery = (%), (1)
with the interpretation that x, represents the breeding population at the
beginning of the kth breeding season. The function f(x) is called the
“reproduction function”; for simplicity, it will be assumed increasing,

concave, and differentiable on an interval 0 < x < ¥ = f(¥) (fig. 1).
Clearly % represents the natural equilibrium population level.

I —~45° line

f(x) x Population x
Fic. 1
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Equation (1) describes the “natural’” behavior of the population being
modeled. Suppose now that a seasonal harvest 4, is removed from the
population x;, the remaining population being left to breed. Then we have

Ko = S — k). (2)

The harvests #;, must satisfy
0 < h < x,. (3)

Given the initial population x, and a known harvest sequence {#,} satis-
fying (3), the subsequent population levels are thus determined via (2).

Notice that any given breeding population x can be maintained by
means of the harvest sequence

hi=x —x  h=f) —x (k> 1) 4)

Next we need an economic component to our model. It will be supposed
that (a) the revenue obtained from a harvest £ is proportional to & through
a fixed price p > 0, (b) the cost of obtaining a harvest 4 is determined by
means of a marginal cost function g(x) that represents the cost of harvesting
one unit from a population of size x + 1. Therefore the cost of harvesting
h units from a population of size x + 1 is given by

k=x—-h+1

> g(k)zf () dt. (5)

The marginal cost function g(x) is assumed continuous and nonincreasing
(fig. 2). A typical example often used in fishery economics (Bradley 1970)
is g(x) = ¢/(x + 1). Further discussion of the marginal cost function is
given in Section IV of this paper.

Cost

Xo Population x

Fic. 2
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It follows from (5) that the net revenue derived from a harvest 4 from
an initial population x + 1 is given by

R(h; x) = ph — [G(x) — G(x — h)], (6)

where

Let us consider first the problem of rent maximization, that is, maxi-
mization of R(k; x) for a sustained yield 4 = f(&) — & [sothatx = f(&)].
Differentiating R[ (&) — &; f(&)] with respect to the decision variable ¢,
we obtain the necessary condition (unless ¢ = 0 or x):

M)

O = e

()

where
M(x) = px — G(x),

and (8)
M'(x) = p — gx),

and this represents the marginal revenue—the revenue derived from
harvesting the (x + 1)st member of the population. The economic
significance of equation (7) will be discussed later in a more general setting
(see eq. [15]).

There are three cost-price situations to consider (fig. 2).

Case 1: p < g(x) for all x. Since no profit is possible, the optimal policy
isgiven by A = 0, ¢ = &

Case 2: p = g(xo) for some x, > 0; thus x, is the “zero profit”
population level. From the assumptions on f(x) and g(x) it follows that

M)
M'[f(9)]

Consequently, since f'(0) > 1 and f'(¥) < 1, equation (7) has a solution
¢ between x4 and % (see fig. 3a). If £ is unique (as we shall suppose for
simplicity), it represents the optimal breeding population. Since f'(x) is
decreasing, we see that

<1 forxy < & < & 9)

E>x (10)

where x__ is the breeding population corresponding to maximum sus-
tained yield: f'(x__) = 1.

Case 3: p > g(0). In this case, we set x, = 0. Then (9) is again valid,
and in addition [unless p = g(0)],

lim Q) _
o M'[f(£)]

max’

(11)
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3 e ——————

1, S S

ax X

(a) Intermediate price (b) High price
Fic. 3

Equation (7) again has a solution ¢ satisfying (10), so we reach the same
conclusion as in case 2 (see fig. 3b). In particular, rent maximization never
leads to extinction.

III. Maximization of Present Value

We now consider the problem of determining a harvest sequence 4 =
{h,} that maximizes the present value:

P(h) = i R(h; x) o*~ 1. (12)

Here (0 < a < 1) is the discount factor and the x, is given by equation
(2). Also the &, must satisfy (3).

In order to simplify the analysis, we make the following assumption.
Suppose that an optimal stock level x (to be determined) is chosen, and
that the stock is reduced to this level by the first harvest and retained at
the same level by all future harvests. (It will be proved in the Appendix
that the policy £ that maximizes the net present value P (k) does behave
in this manner.)

If x, denotes the initial stock level, we therefore have A, = x; — «x,

h, = hy = -+ = f(x) — x. The present value of this harvest sequence is
given by
P = plx; — x] — [G(x)) — G()]
+ i o (pLf(x) — 2] = {GLf(x)] — G(x)}) (13)
p)
1

(pf () = GLF@ — [px — G(0)]) + [px1 — G(xy)).

1 —«
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Therefore the optimal stock level x = # for sustainable yield is deter-
mined by the condition

# maximizes a{pf (x) — G[f(x)]} — [px — G(x)] = aM[f(x)] — M(x).

(14)
By differentiation we obtain the necessary condition
' M’ (%
() = L (15)
M'[f(#)]

unless £ = 0 or £ = x. This equation generalizes (7). It can be written
in the equivalent form

L M) - M) = M) x =
1 — o dx

which has the following interpretation. The right side is simply the mar-
ginal increase in current rent produced by a unit harvest at the population
level x 4+ 1. The left side, on the other hand, is the discounted present
value of the marginal increase in sustained future rent resulting from a
unit increase in population at the level x + 1. Maximization of the total
present value P (at an interior value x = £) requires equality of these
marginal values.

As before, there are three cases in the analysis of equation (15).

Case 1: p < g(x) for all x. Again, obviously &, = 0 for all .

Case 2: p = g(xy), xo > 0. As in figure 3a [but with af”(x) in place
of f'(x)], we see that equation (15) has a solution # satisfying x, < £ < .
Since there is no relation between x, and x__ , we cannot conclude that
£>x__;asa — 0wehave £ > x,.

It can be argued? that common-property exploitation corresponds to
the case a = 0 of total discounting, in which case £ = x,,.

Case 3: p > ¢(0). An additional phenomenon arises in this case. First
if o is near 1, then equation (15) has a positive solution £ as before. But if
o is sufficiently small, equation (15) will have no solution, and conse-
quently £ = 0.

This is the principal new result of our analysis. To repeat: If price
always exceeds unit cost, and if the discount rate (1/a) is sufficiently large,
then maximization of present value results in extermination of the re-
source. Conversely if either of these conditions is lacking, then exter-
mination does not result from present-value maximization.

The question of how large the discount rate must be for this phenom-
enon to occur will be taken up in the next section.

2In a nutshell the argument is this: as long as additional profit can be made, new
harvesters will be attracted. But once the population reaches the zero profit level, har-
vesting (for that season) will cease.
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IV. The Marginal Cost Function g(x)

We have assumed that the unit, or marginal, harvesting cost g (x) increases
as the population level x decreases. Some authors have expressed this more
explicitly by supposing that a given “effort,” E (taken to be proportional
to cost ('), produces a harvest proportional to EN from a population of
size N. In our notation this means simply that

const

g(x)=x+l~

(16)

The latter formula can be derived, as an approximation, from simple
probabilistic considerations. Suppose there is a probability p > 0 of
catching a particular animal in a given unit of time. If there are x animals,
then the probability of catching at least one of them in the given unit of
time equals 1 — (I — p)* = P_. The probability of making the first
catch during the nth times interval is Q,""'P,, where @, =1 — P_.
Hence the expected waiting time for the first catch is

0

d e ¢]
Ex = an"_IPx = Px— Qx" = —* = = - .
Zl: dx; (1-Q)* P, 1—(1-p)

If we suppose that the cost of catching one animal is proportional to the
time taken to catch it, then

g(x) = —5> ¢ = constant. (17)
I — (1 - p)*!

The function (17) applies also to the case in which the animals form
into x groups (herds, schools, etc.), and these groups are randomly dis-
persed. In case p « 1 the function (17) is approximately the same as (16).

Both functions (16) and (17) satisfy the hypothesis of the following
theorem, in which 1/a = 1 + 4.

Theorem: Suppose that g'(x) is an increasing (negative) function, and
J'(x) a decreasing function. Then maximization of present value (a) does
not lead to extinction if either p < g(0) or

1 + ¢ < f(0); (18)
(b) does lead to extinction if p > g(0) and
1 +14> [f(0)]> (19)

Proof: First, if p < g(0) we know that £ > x, > 0. Also if p > g(0),
then since (18) means that af”(0) > 1, we see from figure 3b that £ > 0.
Conversely, suppose (19) holds, and p > g(0).
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Since [M'(x)]/M'[f(x)] = [# — gx)][{p — g[f(x)]} is an increasing
function of p for p > g(0), it is sufficient to treat the case p = g(0). In
this case we have, by the generalized mean value theorem,

M) _ 80 —glx) _. g
M'[f(x)]  glfO] — e/ &L ()
> L > 1 0 < & < x).

S [0
Since f”'(x) is decreasing, (19) now implies that equation (15) has no non-
zero solution (see fig. 3b). This completes the proof.

We remark that (19) is the best possible result in case p = g(0), but
grows progressively less precise as the price rises above this level.

For the case of the Antarctic blue whale population, the Committee
of Three Scientists appointed by the International Whaling Commission
(1964) estimated a maximum reproductive potential of 10 percent per
annum. Consequently an annual discount rate i > (1.1)> — 1 = 21 per-
cent would suffice to cause the whalers to prefer extinction to conservation
of the whales.

It is certainly true, on the other hand, that the whale stocks were com-
mon property. The fact remains that the International Whaling Com-
mission was unable, for whatever reason, to adopt regulations necessary
to prevent near complete extermination of the blue whale. Unfortunately,
the intransigence of just one nation would be sufficient to thwart any efforts
to reach an effective agreement. The degree of official interest in con-
serving the whales may perhaps be indicated by noting that each member
nation contributed just £150, and later £250, per annum to the com-
mission, which was charged with regulating an industry which could have
produced an estimated annual revenue of from $20 million to $65 million
on a sustained basis. (This refers to the blue whales alone.)?

Appendix
Derivation of the Optimal Policy

In order to characterize the optimal harvesting policy 4, it is necessary to assume
that the equation (15) for # has, at most, one solution. Thus £ will denote this
solution if it exists, and we will define £ = 0 otherwise.

It follows that for all x we have

> M'(x)/M'[f(x)] for x < £
< M'(x)[M’[f(x)] for x > %.
In this Appendix we show that under this condition the optimal policy k= {i;k}

af’(%) (20)

3 Estimated maximum sustainable catch of blue whales: 6,000 (International Whaling
Commission, 1964); estimated average market value per whale: $3,600 (Europe),
$11,250 (Japan) (Small 1971, p. 42).
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is just that sequence of harvests that leads as rapidly as possible to the equilibrium
stock level £. If x; (the original stock size) is > £, this means that b, = x; — £,
whereas if x; < £, then A, = 0. Thus, in general

hy = max (x, — %, 0). 1)

Conversely, if (21) has been proved, then the entire sequence £ is completely
determined, since once #, is known we have x, = f(x, — £,), so that, since the
sequence {f,} must be optimal for k > 2, /;2 = max (x, — £, 0), and so on.
Consequently we merely need to prove (21).

We give an indirect proof of (21). First, by a weak-compactness argument we
show that there must exist a sequence £, satisfying the necessary “admissibility’’
conditions (3), and maximizing the net present value P(k). (Readers not familiar
with functional analysis can simply skip this short proof and take the existence
of / for granted.) Then we show that if £ 1 does not satisfy (21), a modified sequence
# can be found for which P(k') > P(k). Since this is a contradiction, the proof is
complete. ) )

Lemma 1: There exists a sequence 4 such that P(k) = sup, P(h), where the
supremum is taken with respect to all sequences # satisfying condition (3).

Proof: Let [, denote the Banach space consisting of all real, bounded sequences
h = {k}, with the norm |[|&|| = sup |k,|. It is easy to verify from the assumed
continuity of the function f that the set H of sequences satisfying (3) is a closed,
bounded subset of /,,, and hence H is weak*-compact.

The functional P(k), even though it is nonlinear, is easily seen to be weak*-
continuous on bounded sets in /. Therefore P (k) must assume a maximum value
on H. QED. )

Henceforth let 4 = {f4} denote an optimal harvest policy, and {£,} the corre-
sponding sequence of stock levels as determined by (2). (We will not know that £
is uniquely determined until the proof of (21) is complete).

We next derive two lemmas leading to the proof of (21). For the proof of each
lemma, we will suppose that an optimal sequence /£ does not satisfy some desired
condition, and in each case a “modified” sequence &’ = {k,’} will be constructed
from £ by altering only the value of £,,s0 that x,” = £, (k # 2). Therefore we will
have k/ = k for i > 3, so that

P(k) = P(h) = phy’ — [Glx1) — Glxry — hy")]
+ “{{7’12, = [G(xy") — G(xy’ - hy")1}
= (phy — [G(x) — Glxy — hy)]
+ afph; — [G() — G(£, — h))]}) (22)
{p(xy — ’;1) = Glxy — hy) — [p(xy — 1))
= G(xy — b1} — a{pf, — G(£,)
— [y = G,
= M(xy — hy) — A{(xl - hy’)

—a[Mo f(x; — hy) — Mo f(x; — k)],
where M o f(x) = M[f(x)]. In each case, the latter expression will be seen to be
positive, a contradiction implying the desired property for 4.

Since f'(x) is an increasing function, it is clear that no harvest that reduces the
stock to a level below the zero profit level x,, can be optimal. Therefore

%, — hy > min (x;, x,), (23)

and in particular, £, = 0 in case x; < x,.
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In the remaining lemmas we use the following inequality:
a[Mo f(b) — Mo f(a)] > M) — M(a)ifa < b < £and f(a) = x5. (24)

This is easily verified by noting that M’[f(x)] > 0 if f(x) > x, so that (20)
implies

b
a[Mo f(b) — Mo f(a)] = df (M o f)'(x) dx

a
b
> j M’ (x) dx = M(b) — M(a).
a
In the same way, we also obtain

a[Mo f(b) — Mo f(a)] < M(b) — M(a)if4 < a < bandf(a) = x.  (25)

Lemma 2: x; — k; > min (x, £).

Proof: Suppose instead that x;, — ; < £ < x,. We determine our modified
sequence /’ in this case by setting x,” = f(£). Then (22) yields

P(k) — P(h) = M(x; — hy) — M(£) — a[M o f(x; = hy) = Mo f(2)]
= a[Mo f(£) — Mo f(x; — k)] — [M(£) — M(x; — 4))],
and this is positive, according to (24), since x; — h 1 < A

Ifx, — h; < %, < £, wesimply take x,” = f(x,), and proceed as before. QED.
It follows from lemma 2 that

hy =0 ifx, < £ (26)

Lemma 3: x, — A, < 4.

Proof: This result is slightly more difficult to prove. As in the preceding lemma,
the modified sequence 4’ will be obtained from % by altering a single value £, but
not necessarily £,. )

Suppose now that x;, — h; > £, thatis#, > f(#). Now either £, < f(£,), or
%3 = f(#,). In the former case we can choose ¢ > 0 such that if x,” = £, — ¢,
then x,” > f(£) and f(x,”) > £;. It follows that the corresponding sequence 4’ is
admissible, and from (25), that P(k’) > P(£).

This construction will not work if £3 = f(#,), but in this case either £, < f(£3)
or #, = f(%£3). In the former case we can choose x;’ = £; — ¢such that x;" >

f (%) and f(x3") > #,. Letting x,” = £, for k # 3, we obtain an admissible sequence
K satisfying P(h') > P(h).

This process can be continued inductively as far as necessary. However, it is
impossible that £,,, = f(#) for all £ > 2, since the sequence {/21, 0,0,...}1is
certainly not optimal in case l;l < x; — %£. Hence the above process eventually
leads to a contradiction. QED.

Now, if x, < %, then £, = 0 by (26), and if x, > £, then x;, — h; = £ by
lemmas 2 and 3. This proves (21) completely, and also shows that the optimal
policy £ is uniquely determined.

To conclude, let me describe briefly three interesting variations of the basic
model which can be easily analyzed by essentially identical arguments.

A. Finite Time Horizon

Instead of an infinite sequence {#;} of future harvests, suppose we consider only
sequences of fixed length N. Then the solution to the optimization problem is
identical with the solution described here, except for the final harvest ky, which
must obviously be given by Ay = x5y — x, (assuming this is positive).
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B. Limited Market

Suppose there is a fixed limit M to the market for the animal resource. Then
condition (3) is supplemented by the inequalities, &, < M for all k. If x; > £ we
will then simply have ’;1 = min (x; — £, M), and of course A, = 0 in case
x; < #.% Thus the entire sequence 4 is again determined. As before, it is just the
sequence that reaches the optimal stock level x in the shortest possible time, with
the exception that if M < f(£) — £ then the optimal level will not be reached at
all (Clark 1972).

C. An Absolute Conservation Standard

Suppose that no harvest is permitted to reduce the stock below some fixed lower
limit x = L. If we assume that equation (15) has at most one solution £ > L,
and define £ = L in case it has no solution, then the foregoing theory remains
valid. Any solutions of (15) less than L are simply ruled out by the lower limitation
on the stock level.
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