
Landscape Ecology15: 407–423, 2000.
© 2000Kluwer Academic Publishers. Printed in the Netherlands.

407

Fire-driven dynamic mosaics in the Great Victoria Desert, Australia
II. A spatial and temporal landscape model

Daniel T. Haydon1,∗, John K. Friar2 & Eric R. Pianka
Department of Zoology, University of Texas at Austin, Austin, Texas 78712-1064, USA;1Corresponding author:
Centre for Tropical Veterinary Medicine, Easter Bush, Roslin, Midlothian, Scotland EH25 9RG;2Current address:
‘Widbrook’, Wyatts Green Lane, Brentwood, Essex, UK CM15 0PY
(∗author for correspondence, e-mail: Daniel.Haydon@ed.ac.uk)

Received 25 August 1998; Revised 10 May 1999; Accepted 10 July 1999

Key words:Great Victoria Desert, habitat mosaics, intermediate disturbance, landscape processes, patch dynamics,
singular value decomposition, spatial correlation, succession, time series analysis, wild fires

Abstract

An explicitly spatial, large scale, high resolution model of fire driven landscape dynamics in the Great Victoria
Desert is constructed and parameterized to simulate frequency distributions of fire size and shape obtained from
previous analyses of satellite chronosequences. We conclude that probabilities of fire spread cannot be constant
over time, and that realistic distributions of fire size and plausible rates of fire spread can be obtained by assuming
that fire spread is conditional on observed durations of windy conditions. Landscapes subject to this form of dis-
turbance show large scale correlation structure many times greater than the average dimensions of single fires, and
exhibit low frequency quasi-periodic stochastically driven oscillations in proportions of the landscape at different
successional states over spatial scales exceeding 100,000 km2. Average fire return intervals are∼30 yrs. Analysis
of patch structure suggests that this landscape is composed of few large younger patches, embedded in a mature sea
of surrounding habitat. Intermediate and late successional habitat must exist in more abundant patches somewhat
smaller than young habitat. Numerous small patches of mature habitat are likely to be scattered throughout this
younger habitat. The model predicts that fire size frequency distributions are relatively insensitive to changes of as
much as±50% of observed fire ignition frequency.

Introduction

The intermediate disturbance hypothesis is a central
tenet of ecosystem ecology that predicts that high-
est levels of species diversity will be encountered at
intermediate levels of ecosystem disturbance (Hus-
ton 1996). Many potential agents of disturbance can
act across a wide range of spatial scales in many
different guises (Pickett and White 1985). Wildfires
are an agent of disturbance operating at some of
the largest scales and are responsible for structuring
many vegetated ecosystems. Fire resets successional
cycles and maintains vegetative structural and taxo-
nomic diversity within ecosystems, thereby facilitat-
ing coexistence of diverse fauna composed of species
characteristic of different seral stages (e.g., Taylor
1973; Romme 1982). Temporal and spatial extent of

wildfires in landscapes results from a complicated and
poorly understood interaction of rates of fuel accu-
mulation, frequency of ignition events, and factors
controlling fires spreading across landscapes (Griffin
et al. 1983; Johnson 1991; Iwasa and Kubo 1995;
Boychuk et al. 1997; Li et al. 1997). These factors
combine to determine static and dynamic character-
istics of habitat mosaics that form over landscapes
(Pickett and White 1985; Hansson et al. 1995).

As ecologists come to better understand the role
of space and spatial heterogeneity in determining
species population ecology, it is becoming clear that
the spatial correlation structure of disturbance agents
has important impacts on distribution, abundance and
persistence times of species inhabiting heterogeneous
landscapes (e.g., Paine and Levin 1981; Hansson et al.
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1995; Lindenmayer and Possingham 1995; Moloney
and Levin 1996; Li and Apps 1996). Due to the antiq-
uity of interplay between landscape and fire, species
autecologies have probably evolved in direct response
to such large scale disturbance (Pianka 1996). Devel-
oping an understanding of the evolutionary ecology
of these species assemblages is one reason to study
dynamics of fire driven mosaics. Another, more press-
ing motivation is that an understanding of landscape
dynamics at their largest scales is urgently required to
formulate conservation plans sufficient to effectively
preserve species assemblages in habitat mosaics. An-
thropogenic influences on fire driven ecosystems are
numerous, and include fuel harvesting (timber extrac-
tion, grazing, etc., see for example, Wallin et al. 1996;
Schimmel and Granstrom 1997; Russellsmith et al.
1997), habitat conversion and fragmentation (through
agricultural sequestration or urbanization, see, for ex-
ample Morton et al. 1995; Gill and Williams 1996),
introduction of fire management (through active fire
suppression or increased frequency of ignition, see, for
example, Baker 1993, 1994; Minnich and Chou 1997;
Russellsmith et al. 1997) and consequences of climate
change (e.g., Gardner et al. 1996). All these influences
could have possibly profound effects on characteristics
of dynamic habitat mosaics that have arisen through
the long interaction of fire with the landscape.

To date, detailed, long term, large scale, quanti-
tative models of fire driven landscape dynamics (as
distinct from highly tactical models predicting likely
spread of single fires) have been mostly undertaken
for forested systems (e.g., Green 1989; Baker et al.
1991; Antonovski et al. 1992; Ratz 1995; Li et al.
1997; Boychuk et al. 1997). However, the Florida
everglades (Wu et al. 1996) and Australian and South
African heathland systems (Bradstock et al. 1996)
have also received attention. Methodological scaling
problems with explicit modelling of long term, large
scale spatial processes are well established (Mckenzie
et al. 1996) but only recently have sufficiently power-
ful computers been generally available to run models
at spatial resolutions at which such scale problems can
be reduced. Here we exploit this computational power
to develop a mechanistic, wind driven fire simulation
model run at high resolution (80 m× 80 m) over land-
scapes exceeding a 100,000 km2. Increased availabil-
ity of satellite imagery plus reduced costs of computer
hardware and software required for development and
analysis of these numerically intensive models should
soon render such analyses more common.

We use the model to attempt to improve current un-
derstanding of the role of fire on landscape dynamics
of spinifex grasslands in the Great Victoria Desert of
Western Australia. Basic features and previous studies
of this ecosystem are summarized in the introduction
to the preceding paper (Haydon et al. 1999). Average
fire size in the GVD is approximately 28 km2, with
a maximum of 5% of the landscape burning every
year (Haydon et al., 1999). We exploit the descrip-
tion of real fires undertaken in the preceding paper
to construct and fit a large scale simulation model of
landscape dynamics to understand and predict possi-
ble landscape patterns that will arise from existing and
possible alternative fire management practices. Specif-
ically, we are interested in what modelling exercises
suggest about the way fires currently burn and par-
ticularly what limits their spread. Model parameters
are selected that result in simulated landscapes with
attributes closely approximating those deduced from
corresponding satellite imagery of the region (Haydon
et al. 1999). Using these parameter values, model out-
put allows us to predict various structural and dynamic
characteristics of real landscapes that are not measur-
able directly from imagery, these include: pixel age
structure, patch age/size structure and spatial correla-
tion structure. We predict changes in landscape char-
acteristics that would result from adoption of different
fire management strategies.

The model

Our previous study (Haydon et al. 1999) suggested
that 5% is an upper estimate for the average fraction of
hummock grassland that burns each year. Vegetation
recovers quickly following fire, and reburn in similar
substrates in the central ranges has been reported to
be possible within 3–10 years (Kimber 1983) suggest-
ing that at any point in time a large fraction of the
landscape is potentially burnable. Furthermore, fire
disturbance is clearly a highly autocorrelated process,
and it is unlikely that these unburnable fire scars
could be distributed in a manner that does not leave
the remaining landscape largely contiguous. Theoret-
ical studies of wildfire and epidemiological processes
have determined that spread of fire or disease through
largely homogenous ‘substrates’ is governed by a crit-
ical transmission threshold, above this threshold, fire
or disease spreads on a very large scale, below this
threshold the probability of substantial spread is neg-
ligibly small (e.g., Isham 1991; O’Neill et al. 1992).
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Only two general mechanisms permit spatially conta-
gious disturbance over intermediate scales. The first is
to restrict attention to very narrowly defined regions
around the transmission threshold, the second is to
introduce some spatial or temporal heterogeneity to
the transmission process (as suggested by Turner et al.
1994a). Here we argue against this first possibility and
for the second, for the following reasons:

(1) Analytic models of the spread of contagious
disturbance over homogenous substrates at around
critical transmission rates predict that the probability
density function of final disturbance size should be
a reflected ‘J’ shape (Kendall 1956), i.e., one that is
monotonically decreasing. This is not the shape of
density functions for observed fire sizes (Haydon et al.
1999).

(2) Simulation models and percolation theory re-
lating to spread of contagious disturbance over ho-
mogenous substrates at around critical transmission
rates predict that the disturbance is very ‘porous’, that
many small islands and ‘fjords’ are left unburnt within
the surrounding circumference of the fire (e.g., Stauf-
fer and Aharony 1992). But our preceding analysis
of fires in this region reveals that real fires are 97%
‘solid’, with only 3% of the area enclosed by the
external perimeter remaining unburnt (Haydon et al.
1999). Such solidity is consistent with transmission
rates much higher than ‘close to critical’. Put more
intuitively, if transmission rates are high enough that
fires burn over 97% of their enclosed area, then why
would they ever stop burning before spreading over
the remainder of the landscape? Under such circum-
stances, how could over 50% of potentially burnable
landscape escape fire each year? The same arguments
suggest that the reasons fires burn out have more to
do with temporal than with spatial heterogeneity, and
lead us to suggest that wind is the most likely agent
of temporal heterogeneity in rates of spread. This is
supported by two additional lines of evidence:

(3) In experimental burns on similar substrates,
wind speed is clearly related to fire size and speed of
spread (Burrows et al. 1991; Bradstock and Gill 1993,
Griffin and Allan 1984).

(4) The influence of prevailing wind direction is
clearly discernible in shapes of fire scars analyzed in
the preceding paper (Haydon et al. 1999).

We develop a simulation model of fire dynamics
in which fire spread is assumed to be contingent on
wind strength. We do not claim that spatial distribution
of permanently unburnable landscape features does
not influence fire size and shape, only that landscape

dynamics in this system can be reasonably approxi-
mated for large homogenous regions without explicitly
accounting for unburnables.

Analysis of wind data

Information on wind strength and direction was ac-
quired from the Australian Meteorological Bureau in
Perth. These data were collected at Yamarna weather
station located near the center of the imagery. Wind
data collected at 5 m above ground level were available
at two times (0900,1500) each day and spanned 19
years (1977 through 1996). Wind strength was classi-
fied in to one of five categories (<2 m/s,≥ 2< 5 m/s,
≥ 5 < 8 m/s,≥8 < 11 m/s,≥11 m/s). From these
data we calculated (1) the probability that wind would
blow at a particular strength at 1500 on any given day;
and (2) two transition matrices governing the probabil-
ity that it would blow at a particular strength at either
0900/1500 given that it had blown at specified strength
at the last time of recording (1500/0900). These matri-
ces are reported in Appendix 1. There was no marked
seasonality in these probabilities. Wind direction was
classified as blowing in one of eight directions (see
Haydon et al. 1999), and corresponding probabilities
of wind direction calculated. Data indicated that over
the duration of a period during which wind speed ex-
ceeded 5 m/s direction was fairly stable, with less than
a 15% probability of exceeding a 45◦ change from its
last recorded direction. Figure 1A shows the probabil-
ity distribution of duration of wind episodes (defined
as the time interval from when wind speed first ex-
ceeded 5 m/s to when it dropped below 2 m/s) deduced
from real data, and from modelling wind episodes with
the two transition matrices. Agreement is good, dis-
tributions are (not surprisingly) close to exponential,
with means of∼2.7 days.

Description of fire model

The landscape was modelled as a flat two dimensional
n×n (n between 1500 and 4000) rectangular lattice of
pixels with absorbing boundary conditions. To render
simulation results directly comparable with analysis of
satellite imagery, simulations were conducted at the
same spatial resolution as the imagery (1 pixel equiv-
alent to an area 80 m× 80 m). Time (in years) since
fire last burned over a pixel is recorded and referred to
as the pixel’s ‘age’. Pixels either burn or not, and all
pixels recover from fire at the same rate, thus we ig-
nore possible recovery rate heterogeneities that might
arise from variations in fire intensity, overall fire size
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Figure 1. (A) Probability distribution of duration of wind episodes
(defined as the time interval from when wind speed first exceeded
5 m/s to when it dropped below 2 m/s) deduced from wind data
(hatched bars), and from modelling wind episodes with two transi-
tion matrices (unhatched bars). Agreement is good, distributions are
close to exponential, with means of∼2.7 days. (B) Probability of
fire spread via secondary ignition events. Solid circles are empirical
estimates of probability of fire spread obtained from satellite im-
agery data (see Haydon et al. 1999), solid line shows fitted Weibull
function (Aage, truncated to zero for pixels 3 years or less).

(factors that have been shown to be important in other
systems, e.g., Turner et al. 1994b, 1997) and rainfall
(Griffin et al. 1988).

The fire process is modelled with two types of ig-
nition events (IEs). Fires start from a primary ignition
event (1◦ IE), assumed to be a lightning strike, that
results in the start of a fire involving a single pixel,
chosen at random within the lattice. 1◦ IEs result in
a fire over the selected pixel, regardless of pixel age.
Fire spread to other pixels is determined by a sequence
of secondary ignition events (2◦ IEs) described in de-
tail in Appendix 2. The algorithm burns a number of
fires each year specified by a random variable drawn
from a Poisson distribution with mean equal to the ob-

served mean intensity of fires obtained from the data
(see Haydon et al. 1999), after which various structural
attributes of the landscape are computed, and age of all
pixels in the landscape incremented by 1 year.

The algorithm governing occurrence of fire spread
through 2◦ IEs contains two crucial assumptions. First
is that probability of fire spread to adjacent pixels
is greater the longer the time interval since fire last
burned over a pixel (this interval is referred to as pixel
age). The exact relationship is shown in Figure 1B, and
its computation fully described in Appendix 2. Fire
probability increases rapidly with pixel age for pix-
els of age 3–8, after which the probability rises much
more slowly. This is consistent with observed shortest
fire return times (Kimber 1983) and the assumption
that fuel loading is not strongly related to rates of fire
spread (Burrows et al. 1991, but see Griffin and Al-
lan 1984). The second assumption is that fire spread
depends strongly on wind speed and does not occur at
wind strengths below 2 m/s.

The computer program was written in Pascal using
Borland Delphi, and run on 200 Mhz PCs with 128
megabytes of RAM. Landscapes of∼4 million pixels
can be simulated for 200–400 years in about 12 hours.
The program is available from DTH in various forms,
on request.

Selection of model parameters

The landscape was initialized with random pixel ages
selected uniformly between 1 and 255 years old, and
the model iterated for 150 years prior to any data col-
lection to allow transients to pass. At which point
simulations were run for however long was required
to burn a further 817 fires (the number of real fire
scars recovered from imagery. – see Haydon et al.
1999). Area (A), perimeter (P), edge simplicity (ES)
and ratio of major to minor axes (MM) are computed
for each fire at the end of every year (fires that run
together are treated as only a single fire). Frequency
distributions for these geometric quantities for 817
simulated and the observed fires are then compared
with a chi-squared statistic and an overall fit statistic
(χ2

0) calculated as:χ2
0 = (χ2

A+χ2
P +χ2

ES+χ2
MM)

1/2.
Given the two major assumptions, the process of

fire spread is essentially determined by 4 key parame-
ters (see Appendix 2 for full details): (1) the number of
trials available to each burning pixel prior to burning
out, N; (2) the time interval represented by each of
these trials,t; (3) the sensitivity of directional spread
probabilities to wind strength,kb; and (4) an overall
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Table 1. Descriptive statistics of simulated fires for five variables
(817 fires).

Statistic Mean SD Min. Max.

Area (km2) 27.53 67.38 0.07 1098

Perimeter (km) 53.07 85.12 1.28 1266

Perimeter/Area 8.29 8.19 0.40 50.00

Major/minor 2.04 1.02 1.00 11.54

Edge simplicity index 0.108 0.07 0.006 0.589

tuning parameter that scales probability of any 2◦ IE,
F. With these 4 parameters, a substantial degree of con-
trol was obtained over fire size, rate of spread, solidity,
edge simplicity and shape.

Fitting models of this dimension and complexity
and performing appropriate sensitivity analyses posed
severe problems. We deliberately built some redun-
dancy in to parameterization of this model, and by so
doing have contained a large degree of the model’s
potential behavior within the parameter volume de-
fined by 4 key parameters. The model was fitted to
observed characteristics of real fires by tuning these 4
parameters. When data were unavailable for guiding
estimation of other parameters, arbitrary values were
used, but in these cases, the inbuilt redundancy per-
mits this arbitrariness to be offset by having fitted a
key parameter with which the unknown parameter was
correlated (these points are discussed further in Ap-
pendix 2). We performed dozens of simulations using
variously estimated combinations of these 4 parame-
ters and arrived at a combination of parameter values
that burned realistic populations of fires, which consis-
tently yielded low values ofχ2

0 . We then examined all
81 sets of parameter combinations formed by perturb-
ing each of these 4 parameters by+30%, 0% or−30%
of its optimum value in all possible combinations, to
confirm that the estimated best overall fit represented
at least a local minimum forχ2

0 .
Vital statistics of simulated fires are shown in Ta-

ble 1, which should be compared with Table I in
Haydon et al. (1999). Sensitivity analysis indicated
that equally low values ofχ2

0 could be obtained by
slightly different combinations of the 4 parameters
(see Appendix 3). The estimated best overall fit to the
four distributions yielded aχ2

0 value of 523 (this set
of parameters is henceforth called the ‘control para-
meters’). Better fits could be obtained by fitting each
distribution singly (lowestχ2

A = 105, lowestχ2
P =

131 lowestχ2
ES = 344, and lowestχ2

MM = 105).

The model does not generate quite as many of the
largest fires as observed in the imagery, and is deficient
in some respect that results in simulated fires having
greater average edge complexity than real fires. When
the model is fitted only to the 3 observed distribu-
tions of area, perimeter and ratio of major:minor axes,
χ2

0 can be reduced to 230. Analysis of results from
sensitivity analyses indicated that most individualχ2

scores were either positively correlated or uncorrelated
howeverχ2

ES andχ2
MM were negatively correlated, in-

dicating that parameter combinations consistent with
a good fit for one of these properties yielded a poorer
fit with respect to the other.

Simulated fires were of approximately the same av-
erage area as observed fire scars and tended to contain
within their perimeter a similar average percentage of
unburned area to real fires (∼3%). Selected control pa-
rameters limit the shortest time for fire to spread from
one pixel to a neighboring pixel tot = 9 min, thus this
parameter choice places an upper limit on the spread
of a fire front of∼0.5 km/h. This rate is quite low
compared to observed rates of head fire advance in ex-
perimental fires (Burrows et al. (1991) report a range
of 0–5.5 km/h, (av. 1.12 km/h) for spinifex grasslands;
while Cheney and Gould (1995) report 0.1–7.4 km/h
in a different grassland fuel). However these empirical
rates are averages measured over shorter durations and
smaller fire fronts and may not be directly applicable
to the lower spatial resolution and longer time frames
addressed by our model.

Analysis of model landscapes

Model landscapes simulated using control parameters
(referred to as control landscapes) were subjected to
various analyses.

Pixel age distribution over the landscape

Figure 2 shows estimated cumulative probability den-
sity functions for pixel age determined at 10 year
intervals for a century over a control landscape. The
average age of a pixel is∼30 years. Between 4–12%
of the landscape is between 0–4 years old, 14–31%
is less than 12 years old, and between 34–47% up
to 25 years old. Between 53–66% of the landscape
is 26 years old or more. Pixel age distributions ex-
hibit some temporal fluctuations indicating variation
in exact landscape composition over time.
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Figure 2. Cumulative age distribution of pixels in the landscape.
Each line corresponds to the cumulative distribution of pixel ages in
a control landscape of 4 million pixels (160 km on a side), recorded
at 10 year intervals over 100 years. Note logarithmicx-axis (age
classification is arbitrary, and purely for descriptive purposes).

Perimeter area relationship

Perimeter and area of simulated fire scars was not quite
as tightly correlated as observed fire scars (r = 0.901,
compared to 0.986, Haydon et al. 1999) but was well
described by the functionP = kAg. The constantg
was higher than for observed fires (0.906, SD= 0.005,
compared to 0.718, SD= 0.011). This difference was
statistically significant, indicating that edge geometry
of simulated fires was significantly more complex than
those of real fires extracted from satellite imagery.

Correlation structure of the landscape

Two-dimensional spatial correlation of pixel ages de-
termined at different scales within the landscape can
be calculated using Moran’sI statistic (see Davis
1993). Figure 3 shows a series of correlograms cal-
culated for control landscape recorded at 10 year
intervals over a period of 100 years. At distances of
less than 200 pixels (∼20 km) landscapes are strongly
positively correlated, at greater distances of up to 800–
1000 pixels (∼75 km) there is some very weak positive
correlation. However landscapes become more pos-
itively correlated at distances of 1200–1400 pixels
(100–120 km). There is almost no evidence for sub-
stantial negative correlations within landscapes and
no great temporal variation in correlation structure of
landscapes.

Landscape mosaics arise from a combination of
stochastic and deterministic processes. Location of
1◦ IEs and precise spatial sequence of 2◦ IEs are
clearly partly stochastic processes. However, the ag-
ing process of vegetation and its increasing capacity

Figure 3. Spatial correlograms of pixel ages in control landscapes.
Each line corresponds to the spatial correlogram of pixel ages in a
control landscape of 4 million pixels (160 km on a side), recorded at
10 year intervals over 100 years. At each distance Moran’sI statistic
is calculated using 10,000 pairs of pixels. Dashed lines indicate
two standard errors each side of the expected value ofI in a fully
uncorrelated landscape.

to support 2◦ IEs through time are deterministic. The
state of a single pixel over time is essentially purely
stochastic and largely uninformative. For a sufficiently
large area of landscape, a simple statistical average
state over time is more deterministic and also un-
informative of system dynamics. However, at some
particular intermediate scale, the ratio of determinis-
tic information to stochastic fluctuation is maximized.
Methods have been developed that allow determi-
nation of this intermediate scale (Rand and Wilson
1995), but have yet to be applied to realistic landscape
processes.

Define a sequence of square windows of di-
mension L pixels containing L2 pixels (L =
20,40,60. . .4000). Categorize pixels to be in one of
3 different classes: early successional (ages 0–4), mid-
successional (ages 5–12) and late successional (age
13+). Record number of pixels,Xj,L(T ), in the jth
(j = 1 . . .3) category in eachL-window after each
year (T) of fire activity over the landscape. Time series
for L-windows of two different sizes illustrating pro-
portions of each window in different successional cat-
egories are shown in Figure 4. Letσ 2

j,L be the variance
associated withXj,L(T ). According to theory devel-
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Figure 4. Time series of proportions of pixels inL-windows in different successional categories for control landscapes. (A) Habitat over 13
years old,L = 3300. (B) Habitat of different ages,L = 1000.

oped by Rand and Wilson (1995), peaks or asymptotes
in plots ofσ 2

j,L/L
2 againstL should indicate the scale

at which the ratio of deterministic information to sto-
chastic fluctuation is maximized1. In essence this scale
is a measure of the spatial ‘size’ of the dynamical
process determining landscape structure.

Figure 5 plotsσ 2
j,L/L

2 againstL. This plot sug-
gests that dynamics of early and mid-successional
habitat are most informatively viewed inL-windows of
between 1000–2000 pixels (80–160 km) in dimension.
Dynamics of late successional habitat appear to extend
to even larger spatial scales, possibly approaching as
much as 100,000 km2.

Time series analysis

Temporal variation in occurrence of different habi-
tat types in windows of various sizes (see Figure 4)
was subjected to spectral analysis (see Figure 6).

1Another way of thinking about this theory is to imagine twoL-
windows immediately adjacent to each other, and record the number
of pixels in each window over time. Clearly ifL is small, then the
same processes will likely affect the dynamics in both windows and
a covariance will exist between the dynamics within each window.
However asL is increased, a scale at which dynamics within each
L window are independent of each other will be encountered. We
are interested in determining the smallest value ofL for which such
independence exists.

All spectra suggested that habitat quantities experi-
enced long wave length fluctuations. Mature habitat
viewed at very large spatial scales (∼11 million pixels,
70,000 km2) showed a clear tendency of low ampli-
tude cycling with periods of 200 and 30–50 years
(Figure 6A). Computational constraints governing col-
lection of long time series at this high spatial scale
at these resolutions restricted further investigation of
these cycles. At lower spatial scales (1 million pixels,
6400 km2) habitat appeared to have cyclic components
corresponding to frequency ranges that increased in
breadth as age of habitat decreased. Mature habitat
at these scales had cyclic components corresponding
to periods of 200 and 25 years (Figure 6B), mid-
successional habitat also exhibited a frequency peak
corresponding to a 15 year cycle (Figure 6C) while
early successional habitat cycled over a wider range of
frequencies, including one with a pronounced 10 year
period (Figure 6D).

We applied singular value decomposition (SVD)
analysis to investigate dynamical properties of these
time series Details of these methods are given by
Broomhead and King (1986) and Abarbanel et al.
(1993), and an example application is given by Rand
and Wilson (1995). Briefly, the normalized time se-
ries is used to construct a sequence of row vec-
tors Xj,L(T ) = Xj,L(T − d + 1),Xj,L(T − d +
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Figure 5. Scaling behavior of the modified varianceσ2
j,L
/L2 of time series inL-windows of different sizes for 3 different successional

categories. Note peaks atL ∼ 1000 pixels, and the larger scale peak atL ∼ 3300. Arrows indicate spatial scales at which time series
shown in figure 4 were sampled. Time series spanning 200 years were collected on control landscapes 4000 pixels on a side.

2), . . . , Xj,L(T ), T = d . . . Tmax, whereTmax is the
length of the time series. Parameterd is chosen to be
large relative to dimensionality of underlying deter-
ministic processes. EachXj,L(T ) vector is then used
to form a row of a rectangular matrixY termed the
trajectory matrix. The SVD of this trajectory matrix is
given byY = S6C′, whereS andC′ are orthogonal
matrices and6 is a d × d diagonal matrix contain-
ing the singular (eigen)values. Interpretation of SVD
is somewhat akin to principle components analysis,
the idea is that some subset ofd available dimen-
sions will be occupied by any deterministic signal
from the underlying process, (and indicated by singu-
lar values proportional in magnitude to the variation
accounted for by those dimensions), and that remain-
ing dimensions will be filled in some uniform manner
by stochastic noise associated with the time series (and
indicated by lower singular values). Thus inspection
of singular spectra reveals both presence or absence

of deterministic signal, and if present, its anticipated
dimensionality.

Figure 7 shows singular spectra for 3 successional
categories of habitat viewed within windows of 1000
pixels on a side. Dynamics of all age categories re-
quires∼50 dimensions to capture the first 90% of
variation in their time series. No single dimension ac-
counts for more than 8% of the total variance in any
of the time series. Overall SVD analysis suggests no
evidence for any low dimensional deterministic signal
in these dynamics, and that most likely they simply
reflect fairly low frequency stochastic processes.

Patch size structure

Defining early, mid, late and mature successional habi-
tat as pixels aged 0–4 yr, 5–12 yr, 13–25 yr and 26+
yr old, contiguous patches of landscape in the same
successional state were identified. In a typical con-
trol landscape of 25,600 km2 (160 km× 160 km),
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Figure 6. Results of spectral analysis applied to time series in Figure 4. Time series exhibited no identifiable trend, and were analyzed without
any prior smoothing devices by applying a direct Fast Fourier Transform to raw data and smoothing coefficients. Very similar results were
obtained by transforming the autocorrelation function (see Chatfield 1996). Time series are 406 years long (except A which is 200 years) with
landscape composition sampled at the end of every year.

approximately 2/3 of land area is occupied by a sin-
gle vast background patch of mature habitat. 80% of
the remaining one third is accounted for by about 50
patches of various ages, the rest is fragmented into
over 4000 much smaller patches. Average size of early
and mid successional patches is∼15 km2. Average
size of late successional patches is about 6 km2, ma-
ture patches are much smaller with an average size
(omitting the dominant background patch) of 0.02 km2

(see Table 3, row 3). While∼65% of the landscape
is successionally mature by area, about 80% of land-
scape patches are mature∼20% of the landscape is
late-successional by area,∼10% is mid-successional
by area and∼5% early successional. Characteristic
size frequency distributions of these patches are shown
in Figure 8.

The overall picture is one of a largely mature land-
scape, into which are embedded relatively small num-
bers of younger successional patches. Nested with in
these younger patches are numerous very tiny islands
of mature habitat. Early and mid-succession patches
are rare and quite large. Late successional patches are
smaller and more numerous.

Interpatch distance analysis

Coordinates of the centroid of each patch in the land-
scape were calculated as the average coordinates of
each pixel within that patch. Average distances be-
tween centroids of small to moderate sized patches
represent patch connectivity. The same is not true of
very large patches as distance between centroids and
perimeters of very large patches may be large rela-
tive to the closest regions of the perimeters of two
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Figure 7. Singular spectra for times series shown in Figures 4B–D.
L = 1000 pixels,d = 80, Tmax = 406. The relatively even spread
of variance over so many dimensions is consistent with the notion
that time series are dominated by stochastic processes, and that low
dimensionality determinism is absent. Time series were normalized
to zero mean and unit standard deviation prior to analysis.

patches. Figure 9 shows average numbers of simi-
larly aged patches found within circles of increasing
radius centered on an average patch. Mid and late-
successional patches are more densely scattered over
the landscape relative to early successional patches.
It is normally only necessary to travel about 0.5 km
from one mid or late successional patch before en-
countering another, interpatch distance between early
successional patches is approximately 12 km. Over-
all density of late successional patches is greater than
mid- successional patches, but at distances of less than
a kilometer from mid-successional patches one actu-
ally encounters more mid-successional patches than
late-successional patches encountered within a kilo-
meter of late-successional patches, indicating that at
these scales, mid-successional patches are clumped.
These findings may have important implications for
patch specialized inhabitants.

Alternative ignition frequencies

We studied landscapes that arose from models in
which rates of 1◦ IEs were decreased by up to 50%,
and increased by as much as 150% over those of con-
trol landscapes. This tests sensitivity of our results to
assumptions made about rates of 1◦ IEs, and it may in-
dicate consequences of fire management strategies that
result in fire suppression or proliferation. Average fire

Table 2. Average fire size (with 1 standard error) and average pixel
age in landscapes simulated with different rates of 1◦ IEs.

Fire regime Average fire size (km2) Average pixel

(standard error) age (yr)

1◦ IEs down 50% 33(2.9) 83

1◦ IEs down 25% 31(3.0) 53

Control 28(2.6) 50

1◦ IEs up 25% 32(2.7) 41

1◦ IEs up 50% 29(2.7) 35

1◦ IEs up 75% 26(2.4) 31

1◦ IEs up 100% 25(4.1) 30

1◦ IEs up 125% 24(3.0) 28

1◦ IEs up 150% 21(1.6) 25

size is largely insensitive to changes of up to±50%
in frequency of 1◦ IEs, but does significantly decrease
as this frequency is increased over 100% of control
values (see Table 2). As a consequence of this behavior
the average landscape age is proportional to the inverse
of 1◦ IE frequency (Table 2). Cumulative frequency
distributions of pixel age for landscapes simulated
under these alternative fire regimes are indicated in
Figure 10.

As expected, landscape patch structure shifts to-
ward a younger, patchier, more fragmented composi-
tion as fire frequency increases (see Table 3). Numbers
of early, mid and late successional patches goes up
(in contrast to the fraction of landscape that is ma-
ture), and their size goes down, but overall, percentage
of landscape in younger successional stages increases
markedly with 1◦ IE rates.

Discussion and conclusions

Development and analysis of this landscape model
is instructive in several ways. First, combining in-
formation about average fire size, fire ‘solidity’, fire
frequency and vegetation recovery time suggests that
probabilities of fire spread from pixel to pixel (2◦ IE’s)
must ultimately decrease over time, particularly late in
the life-time of the fire. In developing our simulation
model we could not come close to realistic fire size
distributions without imposing some form of temporal
heterogeneity in probabilities of fire spread. We hy-
pothesize that this heterogeneity is induced by variable
wind conditions.

Rates of fire spread and the observed distribution
of periods of windy conditions combine in a plausible
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Figure 8. Size frequency distributions of patches of different successional stage deduced from one representative control landscape 160 km on
a side. All proportions of patches of one successional stage sum to 1. One very large mature patch covering∼65% of the landscape is indicated
in bottom right corner.

Figure 9. Average number of patches in same successional state
(y-axis) within a specified radius (x-axis) of a given patch’s centroid.

way to produce reasonable looking fire size frequency
distributions. Studies of experimental fire spread in
this and other fuel types support this hypothesis (Bur-
rows et al. 1991; Cheney et al. 1993; Cheney and
Gould 1995). Our choice of a constant wind threshold
independent of time since last fire and below which
fire spread ceases is almost certainly unrealistic. This
threshold is probably reduced or even eliminated in
continuously distributed fuels (Gill et al. 1995). How-
ever while our choice of threshold (2 m/s∼ 7 km/h)

Figure 10. Cumulative age distribution of pixels in landscapes sim-
ulated according to varying rates of primary ignition events. Each
line corresponds to the cumulative distribution of pixel ages in a
landscape of 4 million pixels (160 km on a side) simulated with
a different rate of primary ignition events, chosen to vary in 25%
increments of the chosen control valve (0.00061 events per km2/yr)
from 50% less to 150% more. Note logarithmicx-axis.

is low compared to published suggestions (McArthur
1972; Burrows et al. 1991) it is close to that of Grif-
fin and Allan (1984). It is best viewed as an average
over different stand ages. Nonetheless, the critical
role of wind variability in determining fire cessation
remains only a hypothesis, and presence and spatial
configuration of permanently unburnable elements in
landscapes could play a fundamental role in deter-
mining fire size frequency distributions, particularly
in landscapes in which fuel recovery times are longer.
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Table 3. Patch statistics for landscapes simulated with different rates of 1◦ IEs.

0–4 yr 5–12 yr 13–15 yr 26+ yr

Early Mid Late Mature

Fire regime %a #/km2b areac % #/km2 area % km2 area %d %e km2f areag

(km2) (km2) (km2) (km2)

1◦ IEs down 50% 2.6 0.002 16.64 7.2 0.003 20.3 16.5 0.0197 8.38 74.6 0.12 0.087 0.01

1◦ IEs down 25% 2.8 0.002 12.87 14.6 0.008 17.4 20.3 0.0403 5.03 62.9 1.15 0.155 0.07

Control 4.2 0.003 15.12 10.6 0.008 14.0 20.1 0.0319 6.36 65.1 0.03 0.168 0.02

1◦ IEs up 25% 4.7 0.004 13.18 12.8 0.012 10.4 30.4 0.0646 5.19 52.1 30.8 0.257 1.20

1◦ IEs up 50% 12.1 0.003 34.50 16.8 0.036 4.6 24.9 0.1145 2.18 48.1 21.6 0.283 0.76

1◦ IEs up 75% 8.1 0.007 12.35 25.5 0.012 21.5 23.2 0.1786 1.30 44.3 10.1 0.277 1.59

1◦ IEs up 100% 13.6 0.006 22.02 14.3 0.038 3.8 30.6 0.1436 2.12 43.1 7.9 0.277 0.25

1◦ IEs up 125% 12.9 0.007 19.71 14.9 0.029 5.0 34.8 0.1436 2.43 40.8 40.8 0.336 1.21

1◦ IEs up 150% 13.1 0.008 17.47 20.8 0.046 4.6 30.8 0.1977 1.56 36.8 36.8 0.355 1.04

aPercentage of the landscape of specified age, based on landscapes of 4 million pixels (25,600 km2).
bAverage number of patches of a specified age per km2.
cAverage area of patches of specified ages.
dPercentage of landscape 26 years and older, all patches.
ePercentage of landscape 26 years and older, excluding patches constituting>20% of total landscape. This renders the figures highly
variable depending on the size of the dominant background patch and wether it is above or below the (arbitrary) 20% threshold.

fAverage number of patches of a specified age per km2, excluding patches constituting>20% of total landscape.
gAverage area of patches of specified ages, excluding patches constituting>20% of total landscape.

The importance of unburnable elements in landscapes
is hinted at by the fact that our simulation model re-
sulted in fire scars with greater edge complexity than
real fires. Addition of large simply shaped unburn-
able elements might result in simulated fire scars with
simpler geometry closer to those recovered from the
imagery.

We proceed by acknowledging that while our pro-
posed model of fire spread is plausible, it is undoubt-
edly overly simplistic, but note that even if seriously in
error, would not necessarily render our predictions re-
garding large scale dynamics and correlation structure
of the landscape seriously flawed, given the reasonable
fits of observed and simulated fire geometry statistics.
The same is not true of predictions resulting from al-
ternative fire burning regimes, which are clearly more
sensitive to inaccuracies in the underlying process of
fire occurrence and spread.

Simple analytic fire disturbance models predict
that the cumulative distribution of elements in land-
scapes unburnt forT years,C(T), will follow a Weibull
distribution (Van Wagner 1978; Johnson and Wagner
1984, but see Reed et al. (1998) for more sophisticated
models):

C(T ) = exp(−(T /b)c). (1)

Parameterc determines propensity of elements of dif-
ferent ages to burn, whenc = 1, probability of burning
is independent of age and Equation (1) reduces to a
simpler exponential form. Withc > 1, probability
of burning increases with age. Parameterb has been
termed fire recurrence time (Johnson 1979), and is
the fire interval exceeded 37% of the time. Parame-
tersb andc are easily recovered from data (Figure 2)
using non-linear regression, and provide estimates of
b ∼ 52 yr (se: 0.12), andc ∼ 1.1 (se 0.004).

Given rapid recovery time of vegetation follow-
ing fire, and an average fire size of∼30 km2, it is
somewhat surprising to find evidence of correlation
structure in the landscape at scales of hundreds of
kilometers (see Figures 3 and 5): total areal extent
of landscape dynamics appears to far exceed the size
of their basic ‘footprint’. Of course, to average out
stochastic oscillations in these processes it would be
prudent to maintain landscape units several times the
dimensions of their correlation lengths. A lower esti-
mate of the correlation length of the GVD landscape
would be about 150 km, while evidence in Figure 5
suggests it may be twice this distance.

Temporal dynamics of habitat type at these correla-
tion lengths indicates presence of vague low frequency
cycles, which span larger (and higher) frequency
ranges as younger habitat is considered. Spectral den-
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sity analysis suggests that periods of these cycles may
be as long as 200 years for older habitat, and as lit-
tle as 10 for younger habitat. Given that these cycles
emerge from models with stationary parameters (fire
ignition is modelled as a Poisson process with constant
mean), caution should be exercised in attributing ap-
parent medium term trends to environmental change,
even when observed on timescales of decades. On
a similar note, natural variability in fire occurrence
over time is considerable. The proportion of landscape
composed of early successional habitat (0–4 years old)
in a landscape window of over 6000 km2, varied en-
tirely naturally between 0.4% and 27.5%, suggesting
that once again identifying real underlying change will
be difficult. This result supports earlier work in dif-
ferent systems (e.g., Baker et al. 1991) in suggesting
that landscapes have not yet been modelled at large
enough spatial scales that fluctuations in these sort of
large scale disturbance processes are ‘averaged out’.
Methods for determining appropriate spatial scale at
which to study these processes remain embryonic (see
Johnson and Gutsell (1991) for discussion).

Inspection of singular spectra of these time se-
ries suggests that this dynamical behavior emerges as
a result of a largely stochastic process. Even when
dynamics are viewed at spatial scales carefully cho-
sen to maximize deterministic signal, such signal is
largely undetectable or of very high dimensionality.
No emergent low dimensional deterministic landscape
dynamic appears to arise from this successionally
driven fire cycle. Use of SVD for estimation of de-
terministic dimensionality has been questioned (see
Palus and Dvorak 1992; Mees et al. 1987; Broomhead
et al. 1988), like all forms of time series analysis, con-
siderable caution should be exercised in its application
and interpretation.

We have some confidence regarding predictions of
large scale patch structure in this landscape, as they
necessarily follow from accumulation of fire scars.
However, small scale patch structure may be sensi-
tive to exaggerated edge complexity of simulated fires.
The conclusion that this landscape is composed of
few large young patches, embedded in an essentially
mature sea of surrounding habitat is unavoidable. In-
termediate and late successional habitat must exist in
more numerous patches somewhat smaller than the
young habitat. Small patches of mature habitat are
likely to be scattered throughout younger habitat. This
patch structure is likely to impose somewhat differ-
ent selection pressures on dispersal habits of species
indigenous to each of these various patch types.

An important consequence of the assumptions of
our simulations is that fire size frequency distributions
are relatively insensitive to changes in fire frequency.
Because vegetation recovers to a burnable state so
fast following fire, and because fire duration is deter-
mined by meteorological conditions, changes in fire
frequency have little impact on average fire size. Our
simulations do predict that fires will spread faster in
more mature habitat, but insensitivity of average fire
size to changes in fire frequency is reflected by results
suggesting that changing fire frequency by±50% does
not significantly modify average fire size.

Our model has prompted, sharpened and answered
many questions regarding the temporal and spatial dy-
namics of fire driven habitat mosaics as they might
occur in the Great Victoria Desert. None-the-less,
we must emphasize that we have only analyzed out-
put from a model, and what it tells us about these
processes rests fully on the assumptions underlying
the model’s structure. Perhaps the most questionable
of these assumptions is that the entire landscape is
potentially burnable. We know that this is incorrect,
but remain uncertain as to whether this renders the
model’s predictions seriously erroneous. Inclusion of
unburnable elements could simply soften the rela-
tionship between fire spread and wind strength, and
modify predicted fine scale patch structure. Alter-
natively, if might completely eliminate the need for
temporal heterogeneity in fire spread probability, and
totally transform our predictions regarding insensitiv-
ity of fire size to fire frequency. The study of the role
of extent and configuration of unburnable elements in
the landscape requires further study.
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Appendix 1

Wind strength probabilities (1500 h) – cumulative (conditional
on strength greater than 5 m/s):

Wind Strength (m/s) (WS) ≥ 5< 8 ≥ 8< 11 ≥ 11

Probability 0.93 0.98 1.00

Wind direction probabilities (1500 h) – cumulative :

Wind Probability Wind Probability

direction (WD) direction (WD)

NE 0.053 SW 0.74

E 0.16 W 0.86

SE 0.39 NW 0.97

S 0.67 N 1.00

Wind change transition matrix, at 1500 h – cumulative (units meters per
second):

From/To WS WS WS WS WS

< 2 ≥ 2< 5 ≥ 5< 8 ≥ 8< 11 ≥ 11

WS< 2 0.40 0.89 0.97 0.99 1.00

WS≥ 2< 5 0.23 0.81 0.93 0.98 1.00

WS≥ 5< 8 0.15 0.60 0.87 0.97 1.00

WS≥ 8< 11 0.11 0.53 0.77 0.94 1.00

WS≥ 11 0.15 0.57 0.70 0.83 1.00

WS= wind strength.

Wind change transition matrix, from 0900 h – cumulative (units meters
per second):

From/To WS WS WS WS WS

< 2 ≥ 2< 5 ≥ 5< 8 ≥ 8< 11 ≥ 11

WS< 2 0.57 0.93 0.98 0.99 1.00

WS≥ 2< 5 0.30 0.87 0.95 0.98 1.00

WS≥ 5< 8 0.14 0.62 0.88 0.97 1.00

WS≥ 8< 11 0.07 0.45 0.73 0.92 1.00

WS≥ 11 0.08 0.32 0.49 0.75 1.00

WS= wind strength.

Appendix 2. Algorithm for fire ignition and spread

The algorithm starts with a single burning pixel re-
sulting from a 1◦ IE. The annual number of fires that
spread over more than 4 pixels (G) is modelled as
a Poisson variable with meanγ n2 (whereγ is den-
sity of observed fires>4 pixels in size per pixel per
year, andn2 is the number of pixels in the lattice).
γ was estimated to be 3.9× 10−6 per pixel per year
(Haydon et al. 1999). Primary ignition events are ini-
tiated sequentially untilG fires (all>4 pixels) result.
Time within a year and seasonality are not explicitly
recorded. Because most wildfires in this region are ig-
nited by lightning, we assumed that 1◦ IEs occurred
at a designated start time selected with uniform prob-
ability from between 1500 and 0100 (reflective of the
timing of 1◦ IEs reported by Nash and Johnson (1996)
– albeit for a different location), at which point wind
direction and strength are assigned from one of 8 and
5 categories respectively based on probability distri-
butions derived from observed frequencies of wind
direction and strength, (conditional on strength of at
least 5 m/s). Wind direction is assumed to remain
constant throughout the burn.

2◦ IEs are initiated immediately subsequent to a
primary ignition event. Each ignited pixel is permitted
N opportunities (trials) to ignite each of its 8 neigh-
boring non-burning neighbors after which the pixel is
deemed to have burned out. Each trial is assumed to
represent a fixed length of timet (hours), each pixel
therefore burns for a fixed time interval given by the
productNt (in our model parameters were selected that
allowed this product to vary between 4 and 13 h). Both
N andt are independent of pixel age.

Probability that fire spreads to any of its neigh-
boring non-burning pixels at each trial is independent
of age of the burning pixel, but increases with age of
the non-burning pixel, current wind strength, a tuning
parameter (F) and direction of the neighboring non-
burning pixel from the burning pixel relative to current
wind direction. Degree of bias introduced by wind di-
rection is determined by parameterkb. The probability
that any one of these trials is successful, and that fire
spreads to a previously non-burning pixel is given by
the product:

P [2◦IE] = Swind_strength× A′age× Bwind_bias× F

(see below for definition of terms). Realization of the
occurrence of 2◦IEs is determined using these proba-
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Figure A1 Bias factors, (A) no wind, (B) wind blowing as indicated.

bilities and a random number generator. Pixels either
burn or not, and ignite only once.

The subscript wind_strength refers to which of the
5 categories of current wind strength currently as-
sumed, theSvector was assumed to be= [0, 0.5, 0.75,
1.0, 1.0]. Thus when wind dropped below 2 m/s 2◦
IEs cease, but 2◦ IEs became progressively more likely
with increasing wind strength.

Probability of fires spreading to pixels of differing
age classes was investigated in the preceding paper
(Haydon et al. 1999). We fitted a Weibull distribu-
tion to these data, obtaining the following predictive
equation:

P [fire spread to pixel of agex] = 1− exp(−0.76x)0.23

Aagewas set equal toP[fire spread to pixel of age
x] for x > 3, A[1], A[2] and A[3] were set equal
to zero, thereby eliminating any probability that fire
could spread to pixels that had burned in the last
3 years. However these empirical probabilities are
clearly the final result of a series ofN 2◦ IEs, and
what is required is theper trial probability of spread
A′age. If there are to beN such trials, the probability
of spread at each trial can be shown to beA′age =
1− exp

(
ln(1− Aage)/N

)
.Aage, P[fire spread to pixel

of agex] and empirical data are shown in Figure 1B.
The B vector corresponds to wind bias. Thebias

subscript refers to one of 5 different directions that
the non-burning pixel might lie in relative to the burn-
ing pixel and current wind direction. Whenbias= 0
the alignment corresponds to the situation in which
the non-burning pixel lies directly downwind from the
burning pixel,bias= 4 to when the non-burning pixel
lies directly upwind from the burning pixel, and so on,
as shown in Figure A1.

B4=0.125· q,
B3=[0.125+ 0.125· 0.5 · (1− q)]q,
B2=[0.125+ [0.125+ 0.125· 0.5
· (1− q)](1− q)]q,

B1=[0.125+ [0.125+ [0.125+ 0.125· 0.5
· (1− q)](1− q)](1− q)]q,

B0=0.125+ 2[0.125+ [0.125+ [0.125+ 0.125· 0.5
· (1− q)](1− q)](1− q)](1− q)

and

q = exp(−kb ·Wwind_strength).

Wwind_strengthis a vector containing a measure of wind
speed (in m/s) for each of the 5 wind speed cate-
gories.W = [1,4,7,10,13]. This is simply a way of
re-distributing probability in different directions (note
thatB4 + 2B3 + 2B2 + 2B1 + B0 = 1), according to
current wind strengths and directions. The parameter
kb determines sensitivity of bias in fire spread direc-
tion to wind strength (large values ofkb correspond to
high levels of bias for a given wind strength.

ParameterF can be used to vary probability of 2◦
IEs without introducing differential spread with regard
to wind patterns or pixel age.

Fires spread by effectively performing simultane-
ous mass trials testing for the occurrence of 2◦ IEs
between all neighboring burning and non-burning pix-
els. After each round of trials, time is updated byt, and
pixels that have undergoneN trials are ‘extinguished’.
If time passes over 0900 or 1500 wind strength is
re-determined from the appropriate wind strength tran-
sition matrix. Fires burn out when all burning pixels
associated with a single 1◦ IE have been extinguished.
Fires burn one at a time on the landscape, no other
1◦ IEs are initiated until the probability of further 2◦
IEs associated with the previous 1◦ IE is zero. After
G fires have been burned, various structural attributes
of the landscape are computed, and age of all pixels in
the landscape incremented by 1 year.

Appendix 3.

Parameters in bold on the first row represented the
‘center’ of the sensitivity analysis, and the goodness-
of fit was not bettered by any other combination of
parameter choices so were selected in simulation of
‘control’ landscapes.
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Best 10 parameter combinations from the 82 combinations that
constituted the sensitivity analysis.

N kb t F χ2
A χ2

P χ2
ES χ2

MM χ2
0 χ2

0
omitting

χ2
ES

50 0.4 0.15 2.6 155 182 396 244 523 341

65 0.52 0.195 2.6 105 214 439 155 523 284

50 0.4 0.195 1.82 154 187 400 233 523 336

65 0.4 0.15 1.82 125 175 387 297 533 366

65 0.52 0.15 2.6 188 250 428 171 557 356

65 0.4 0.195 1.82 208 195 402 271 563 393

50 0.4 0.195 2.6 126 187 408 327 570 397

65 0.4 0.105 1.82 109 147 524 140 573 230

35 0.4 0.195 3.38 190 286 443 181 589 388

50 0.52 0.195 3.38 114 287 461 216 596 376
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