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Chapter 1: Geometry of Microbial Adaptation

INTRODUCTION

The Development of the Geometrical Model

In 1930, Fisher proposed that adaptation should occur primarily as a result
of many beneficial mutations of small effect (Fisher 1930). He argued by means
of an analogy: just as the movement of a microscope into perfect focus depends
mainly on the fine-focus knob, so the movement of a population towards an
optimum phenotype requires very small phenotypic changes.

In a formalized version of this argument, Fisher presented a “geometrical
model of adaptation”, as it came to be known. The model was derived from a
primarily phenotypic view of adaptation. In the model, an organism’s phenotype
is partitioned into independent traits, each of which contributes to fitness. The
phenotype of a monomorphic population is represented as a point in the n-
dimensional trait-space defined by the n orthogonal traits. Likewise, the optimum
phenotype (the combination of traits with the highest fitness) is represented by a
single point in the space. The closer a phenotype is to this optimum, the higher
fitness it has. The process of adaptation is then the movement of the population’s
phenotype towards the optimum phenotype, with a concordant increase in mean
fitness.

A population can change in phenotype via the action of mutation and
selection (population size is assumed to be large, and drift is ignored). Each

mutation generates a ‘proposal phenotype’ that may become the new population
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phenotype. A mutation is therefore simply a potential change in phenotype:
beneficial mutations are those that potentially move the phenotype closer to the
optimum, while deleterious mutations move it further away. If its effect is large
enough, a beneficial mutation will become fixed, and the entire population will
move to the point defining the new phenotype.

The geometrical explanation for the prevalence of small mutational effects
during the course of adaptation derives from the fact that very small mutations
have a 50% probability of being beneficial. As a mutation increases in size, its
probability of being beneficial decreases rapidly. This effect is heightened for
trait-spaces with a large number of dimensions, i.e., for complex organisms.

Fisher used this argument to calculate the probability that a mutation of a
given size would be beneficial. As a result of this calculation, it became clear that
the distribution of phenotypic effect sizes for beneficial mutations (or mutational
“factors™) should be very strongly leptokurtic, and that the mode should be very
close to zero. The vast majority of beneficial mutations should have a very small
effect on phenotype.

Later Kimura (Kimura 1983) noted that, regardless of the distribution of
beneficial mutation effects, the effects of beneficial alleles observed in a
population would have a very different distribution. This is because the
probability of fixation for mutations of very small effect is extremely low.
Mutations of miniscule size, while very common, have a fixation probability close

to that of neutral alleles. Larger-effect beneficial mutations, though more rare, fix



with much greater frequency. Kimura derived a distribution of Jixed beneficial
mutational effects, in which the mode is at mutations of intermediate size.

Fisher and Kimura both considered the distribution of beneficial effects
arising in a population at a given distance from its optimum phenotype. In
contrast, recent extensions of the model by Orr (1998; 1999; 2000) followed the
progress of the population as successive beneficial mutations arise and are fixed.
As a population approaches its optimum, large-effect mutations that might have
formerly been beneficial no longer are so. With each step in the progress of
adaptation, the average effect size of fixed mutations decreases. This iterative
process shifts Kimura’s distribution — which emphasized intermediate effect sizes

—back towards zero.

A General Model of Adaptation

After accounting for all of the steps in the adaptive walk, Orr’s conclusion
was that beneficial mutations of small effect are those most commonly fixed
during adaptation. In fact, his result was much more precise: the effect sizes of
fixed beneficial mutations are distributed exponentially. His result was also
extremely robust to changes in the overall distribution of mutation effect sizes.
The precision and robustness of the result have supported Orr’s claim that the
model has value as a general model of adaptation.

The geometrical model of Fisher, Kimura and Orr makes several
important assumptions about the interactions between organism and environment.

The most important of these relate to the shape of the fitness surface: there is a
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single fitness peak towards which the population moves, and its location does not
change over time. The fitness surface is smooth on a scale comparable to that of
mutation effect sizes, and the traits contributing to fitness are all under stabilizing
selection.

Specific properties about the nature of mutational effects are also
assumed. Mutations affect the values of the various orthogonal traits with equal
loading, that is, on average each mutation affects each of the traits equally. For
example, in a two-dimensional phenotype space defined by the traits of color and
size (which itself might be a linear combination of height, weight, mass, erc.), the
color component of a mutation’s effect will be, on average, equal to the size
component of that effect. Mutational phenotypic effects are additive: the effect of
a mutation is independent of the position of the population experiencing that
mutation.

A final assumption relates to the rate of appearance of new mutations.
Fisher, Kimura and Orr imagined a serial process, whereby a single mutation is
either fixed or lost before the next mutation arises. Competition among beneficial
alleles is assumed not to occur, implying that the time between appearances of
mutations that are destined to be fixed must be much less than the fixation time.
In order for the appearance rate of ‘fixing mutations’ to be less than the inverse of
the fixation time, as this implies, the appearance rate of all new mutations must be
very low, the proportion of new mutations that eventually fix must be very low, or

both.



In this chapter I examine the performance of the Fisher-Kimura-Orr model
vwhen some of these assumptions are relaxed. The first result will show that the
exponential distribution of fixed effects is strictly true only when the time
between new beneficial mutations is longer than the time taken for a beneficial
rmutation to fix. The effect of including a modest increase in the rate of beneficial
rnutations is to shift the distribution significantly towards a mode of intermediate
ssize. The distribution of the selection coefficients of mutations fixed during
aadaptation likewise shifts away from the exponential.

The second result demonstrates the effect of introducing a consistent bias
im the degree to which mutations affect different traits. In this case, the
dlistribution of fixed effects remains exponential, but the proportion of mutations
tthat are fixed declines dramatically. Including this complication drastically
imcreases the time it takes for a population to reach the optimum.

Individually, these results imply that the general conclusions of the
geeometrical model might not apply to a large population composed of organisms
writh a high genomic mutation rate. However, taken together the results suggest a
maechanism by which adaptation might proceed in the manner of the Fisher-

KZmura-Orr model, even in such populations.

MIETHODS

Siimulations

The analytical approach developed by Orr (1998, 1999) allows the

desrivation of a distribution of relative mutational effects. These are the same as
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the ‘factors’ described by Fisher, and are the mutational effects scaled to the
distance remaining between the population and its optimal phenotype. That
approach cannot be used to determine the distribution of absolute effect sizes or
mutational fitness effects. Furthermore, Orr’s 1998 derivation assumes that the
population is monomorphic. For these reasons a Monte Carlo approach was
adopted, in which adaptation through a Fisher-like trait space was simulated.

In these simulations each point in trait-space represents a combination of
trait values, or a composite phenotype. For simulations that allow variation within
the population, each of several points represent the individual phenotypes that
comprise the population. In simulations that do not incorporate variation, a single
point represents the phenotype of the monomorphic population. Each point has an
associated fitness, defined by the distance of the point from the origin, which is
assumed to represent the optimum combination of trait values.

The first set of simulations model clonal competition and so allow
multiple phenotypes to exist simultaneously and to compete with each other. Each
phenotype is represented by a separate point, and kept track of individually. In the
second set of experiments, the phenotype of a monomorphic population is
modeled. At each iteration a mutation defines a proposal phenotype which will
fix, becoming the new population phenotype, depending on the strength of the

mutation’s effect.



Clonal Competition

This experiment simulated adaptation in a population with a large number
of new mutants in each generation, that is, with a large value of population size
times mutation rate. Because the time to fixation was assumed to be longer than a
single generation, multiple phenotypes were present in the population throughout
the course of the adaptive walk. This was a substantial departure for the models of
Fisher and Orr, who each assumed that mutations were rare enough that they
could be considered only one at a time and that the population was uniform in
phenotype. In these experiments the frequency, mutational composition and
fitness of each newly arising phenotype in the population thus had to be
accounted for.

In these simulations, each phenotype was represented as a vector in an n-
dimensional phenotype space, where 7 is the number of traits under simultaneous
stabilizing selection. Mutations were potential displacements of the phenotype,
and were likewise n-dimensional vectors. Mutations that moved the phenotype
closer to the optimum were beneficial, and increased the fitness of the phenotype.

Each generation followed these steps:

1. The frequency, p, of each extant phenotype was adjusted

deterministically by the equation Ap = p ZL—I , Where w is the
W.P;

fitness of the phenotype and Zw,. Pp; is the product of frequency and

fitness summed over all extant phenotypes. A phenotype’s fitness was

7



proportional to a gaussian function of its Euclidean distance z from the

optimum: »v:exp{ > }

For each extant phenotype a value was drawn from a binomial(Np, )
distribution (where p is the frequency of the phenotype, N is the
population size and  is the mutation rate). This became the number of
potential new descendant phenotypes. Each of these was given its
parent’s position vector in trait-space and its parent’s complement of
mutations. Each new phenotype was also given an additional mutation
with magnitude drawn randomly from the distribution m(r), and
direction distributed uniformly. This mutation vector was added to the
phenotype’s position vector, and the length of this new position vector
was determined. If this new position was further from the origin than
the parent’s position, the mutation was deleterious, and the new
phenotype was discarded. Beneficial mutations were those that moved
the position closer to the optimum, and either of two fates could befall
the new phenotype with that mutation. With probability e the
phenotype was lost. Otherwise its frequency was instantaneously

adjusted upwards to a ‘threshold of deterministic behavior’. This
threshold was defined as % N (equal to I/s individuals), where the

selection coefficient s =% —1. This method compresses the time taken

to reach the threshold frequency, but does not limit the amount of time

taken for further increases in frequency.



3. Phenotypes of low frequency were subjected to stochastic loss. If the
frequency of a phenotype dropped below the threshold % N the
phenotype was lost with probability e . If not lost, the phenotype’s
frequency was set to the threshold.

Each trial of the simulation started with a single phenotype of frequency

1.0 at a distance of 1.0 from the optimum, and progressed until the average fitness
of the population had increased to 90% of the maximum possible fitness gain. At
that point the frequencies of the mutations present in extant phenotypes was
calculated: those that were present in 70% or more of the population were
considered fixed. (In practice, no high-frequency mutation that was present at the
end of the simulation had a frequency of less than 95%.)

Up to 100 trials were run to accumulate data on the distribution of fixed
mutation effects for each of three mutation rates and at three population sizes: 10°,
10° and 10"“. In addition, a simulation similar to that described by Orr (1999) was
included for comparison. This set of experiments was done with each of two
distributions of underlying mutation effect sizes: an exponential with mean 0.1

and a gamma with mean 0.1 and shape parameter 0.5.

Asymmetry in Mutational Effect

I examined the result of asymmetrical trait effects by simulating an
adaptive walk of a population towards an optimum in a trait space of 10
dimensions. In contrast to the simulations described above, and in common with

the simulations of Orr, the entire population was considered to be monomorphic.



Mutations were potential displacements of the population that occurred only if the

mutation was fixed by selection.

The simulation followed the following procedure:

L.

At the start of each adaptive walk, n weighting factors were drawn
from a gamma distribution with mean = 1 and variance depending
on the experiment.

Mutation vectors were drawn from a multivariate gaussian
distribution, and scaled by the gamma-distributed weights such
that the scaled mutation vector was of the same length, but biased
in direction according to the weights;

Adaptive walks were simulated, with the starting phenotype
equally poorly adapted in each trait. Throughout the adaptive walk
the size of the fixed effects was recorded. Additionally, the time
taken to adaptation, in number of mutations evaluated was

recorded.

The effect of changing the scaling of mutation-effect axes is shown in

figure 1, for a simplified phenotype-space of two dimensions. The trait

represented by the x-axis is on average more affected by mutations, while the

mutational effect on that represented by the y-axis is decreased. In this example,

the x-axis is dilated by a factor of 1.5, while the y-axis is contracted by a factor of

0.5.
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In the simulations of (Orr 1998), all axes were equally weighted, and
mutations were therefore uniformly distributed in direction. Since all of the
weighting factors were equal, the variance of the axis weighting factors equaled 0.
For the current experiments, four conditions were examined: axis weighting
factors were taken from four gamma distributions, each with a mean of 1.0, and
with variances of 0.0, 0.1, 1.0 and 10.0.

In each simulation, axis weights were drawn from the appropriate
distribution and the actual sample variance was calculated. The results of the

simulation were correlated with this sample variance of the axis weighting factors.

RESULTS

For populations of size 10°, the exponential distribution of fixed
phenotypic factors disappears completely with a value of [ as small as 10™ (fig. 2
and fig. 4, Nu = 0.01). Increasing the mutation rate to the more reasonable values
of 10° (N1 = 1) or 10° (N = 100) result in a dramatic departure from the
exponential distribution. The distribution of selection coefficients of fixed
mutations change similarly with the increase of Ny (fig. 3 and fig. 5). This result
is observed whether or not the distribution is exponential (figs. 2 and 3) or gamma
(figs. 4 and 5). This departure from the exponential distribution for fixed effect
sizes is not an artifact of the particular population size used in the simulations.
Additional simulations, with populations of size 10° and 10" show a similar effect

(figs. 6-9).
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The distribution of fixed phenotyiwic effects does not change substantially
with the increase in mutational asymmetry, and neither does the distribution of
fitness effects from fixed mutations (not shown). However, there is a large
difference in the variance of the total number of mutations that need to be
sampled before the first mutation is fixed (figure 10), and in the total number of
mutations sampled before adaptation (figure 11). Assuming that NUL remains
constant during the course of the adaptive walk, a very small increase in the
mutational asymmetry dramatically increases the amount of time needed for

adaptation.

DISCUSSION

Competition Among Beneficial Mutations

The results show that even a moderately large value of Ny substantially
changes the distribution of fixed phenotypic effects. This effect is present,
although less pronounced, when the distribution of selection coefficients is
examined. The result is not dependent on the shape of the underlying distribution
of mutational effects.

The reason for this result is simple: when the rate of beneficial mutations
is higher than the rate of fixation, potential fixed mutations are no longer the first
beneficial mutations encountered during an iteration, but rather the winners from
among many beneficial mutations arising during the course of fixation. The

qualitative difference between the model considered by Orr and the model
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described here suggests that there is a limited range of population parameters over
which Orr’s general conclusions should be expected to apply.

This variation may be especially important in considering microbes with
large population sizes and high mutation rates (Drake 1994). An effect of high
mutation rates and large population sizes is that potentially all genotypic variants
that lay one mutational step away from the canonical phenotype may be present in
the population (Swetina and Schuster 1982; Schuster and Swetina 1988: Schuster
and Sigmund 1989). This constant introduction of variation results in a “cloud” of
mutants surrounding the wild-type sequence and competing with themselves and
the wild-type genome.

The effect of a pool of variants on the adaptation of microbial populations
has long been recognized. The concept of viral “quasispecies” in particular was
developed in part as an attempt to understand the unique qualities of microbial
evolution (Eigen and Schuster 1977; Steinhauer and Holland 1987: Domingo et
al. 1996; Domingo et al. 1998; Domingo et al. 1998; Elena et al. 1998). Although
the quasispecies concept is perhaps now used as an extreme case of mutation-
selection balance, it does provide a counter-example to the model of adaptation
assumed by Fisher, in which variation is not considered.

The strength of selection also plays a role in the importance of variation in
the course of adaptation. Under weak selection, the probability that any one
beneficial mutation fixes is small (roughly the inverse of population size, in fact)
(Kimura 1983). In that case, any single beneficial mutation has roughly the same

probability of fixation as any other. This situation corresponds to the assumptions
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of Orr’s model. It is sufficient to sample mutations one at a time, sequentially,
until one is found that successfully fixes. When selection is strong, the difference
in fitness effects among beneficial mutations becomes significant. The best
mutation from among a large number sampled would be expected to have a larger
effect than the first beneficial mutation found to fix. This correlates with the
conclusion drawn by Lande (Lande 1983) that large-effect mutations are more
likely to be seen as a result of artificial selection, rather than in natural
populations, which generally experience weaker selection.

The importance of competition among beneficial mutations has been
discussed previously. Fisher (Fisher 1930), Muller (Muller 1932) and, more
recently, Gerrish and Lenski (Gerrish and Lenski 1998) have examined the effect
of so-called “clonal interference” on the rate of adaptation. In asexual
populations, a beneficial mutation will be fixed only if it escapes the effects of
drift and is also not out-competed by a mutation of larger beneficial effect. Fixed
mutations are thus expected to have larger effects than they would in the absence
of clonal interference.

An upper bound can be calculated for the rate of appearance of mutations
that eventually fix, assuming that the population is behaving according to Orr’s
model. The rate of appearance of new mutations is the product of the population
size N and the genomic mutation rate u. The average fixation time (in units of N

generations) for a mutation with selection coefficient s in a population of size NV is
1 1 (eN:x - 1)(e Ns(l—x) - 1)
Ns-e™ 17 x(1—x)

given by 7 = dx (Kimura, 1969). If there is to be

only one mutant in the population at a time, mutations destined to fix must appear
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at a rate less than the inverse of this value. The proportion of mutations that

ultimately fix must then be less than _Nl, . Assuming that N=10¢°, a mutation
IN"H

with selection coefficient s=0.01 has an average fixation time of almost 3000
generations. For a mutation rate of 10°, the proportion of all mutations that
ultimately fix must be less than about 3x10, otherwise beneficial mutations will
exist simultaneously in the population, and competition among them will begin to
be important.

The departure from the exponential distribution for fixed effects was seen
as well in simulations with a much simpler set of assumptions (results not shown).
In those earlier experiments, newly arising mutations were simply allowed to
compete among themselves for fixation, which occurred immediately. The
absence of a qualitative difference suggests that competition among
simultaneously arising mutants is more significant for these results than is

competition among mutants appearing sequentially.

Asymmetry in Mutational Effect

The analytical tractability of the geometrical model depends on spherical
symmetry in both the fitness function and the distribution of mutational effects.
The first condition is equivalent to assuming that all traits contribute equally, on
average, to fitness. In this case the variance matrix of the fitness function is a
scalar multiple of the identity matrix. The second condition implies that mutations

have equal effects, on average, on all phenotypic traits. Formally, the direction of
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a mutation is equally likely to lie within one area of a hypersphere as in any other
area.

These conditions can be relaxed by assuming that either the mutational
effects or the trait axes (but not both) can be rescaled. However, in so doing, the
problem becomes much more difficult to solve. It seems unlikely that both
simplifying conditions can hold true; certainly there is no reason to think that they
must. In the context of the example given in the introduction, both assumptions
holding true would be equivalent to a unit change in the color trait having equal
fitness effect as a unit change in the size trait. But, more implausibly, mutations
would on average act to change both traits by the same amount. The pleiotropic
effects of mutations would be equally distributed across all traits, proportional to
the trait’s contribution to fitness.

It is therefore reasonable to relax this assumption of uniform or
symmetrical pleiotropy. With such a change the distribution of fixed effects does
not seem to be affected much - it remains approximately exponential. However,
even a modest asymmetry in pleiotropic effects dramatically lengthens the
adaptive process. The reason should be fairly intuitive: for some traits the
mutations’ effects are increased, resulting in fewer beneficial mutations. For the
others, the mutational effects are decreased, leading to beneficial mutations with
smaller fixation probabilities.

For a symmetrical distribution of mutational effects, between 1 and 1000
mutations must be sampled before one that is sufficiently beneficial to be fixed is

found. As many as 10000 mutations must be sampled before enough beneficial
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mutations are fixed to move to within 10% of its original distance to the optimum.
As the mutations are biased towards affecting particular traits more than others,
the number of mutations that must be sampled can increase by up to a factor of
10000.

With some distributions of mutational effect sizes, the time taken to the
first fixation increases with increasing asymmetry, but then decreases with further
asymmetry. This phenomenon was recognized by Chao (pers. comm.), who
considered the most extreme case of asymmetry in mutational pleiotropy, in
which case the mutation’s effects are effectively zero for some of the traits. In this
case, the effective number of dimensions has effectively decreased.

If the number of mutations needing to be sampled is much greater than the
number of possible mutations (given an organism with a small genome size), a
small amount of asymmetry will serve to greatly slow adaptation. This is the
unavoidable consequence of the geometrical model’s treatment of the mutation-
space as continuous. In reality, of course, the number of possible phenotypes, and
the number of points in Fisher’s phenotype space that an organism can occupy is
finite.

Pleiotropic asymmetry greatly increases the number of mutations that need
to be sampled before one that is sufficiently beneficial to become fixed arises.
Another way of saying this is that the proportion of ‘fixing’ beneficial mutations
is greatly decreased. Some amount of asymmetry in pleiotropy may thus serve to
support a major assumption of the Orr model, that is, that multiple beneficial

mutations do not exist simultaneously in the population.
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Orr’s has argued that his extension of Fisher’s geometrical model refutes
the ‘infinitesimal’ model (Orr 1998; 1999), in which phenotypic variation is
assumed to be the result of an infinite number of genes acting with infinitesimal
effect. Orr’s prediction of exponential distribution of fixed phenotypic effects
does not assume infinitesimal effects: nevertheless it still concludes that mutations
with small effects should greatly outnumber those with large effects.

Empirical results from quantitative trait loci (QTL) and other studies
generally find that many significant trait differences are caused by a few genes of
large effect. These studies do not support the infinitesimal model (see for example
(Bradshaw er al. 1995; Keightley 1995; Keightley 1998)), and Orr has indicated
this as implicit support for the exponential distribution of effects. However, the
exponential prediction does not match these data very well either, no matter how
robust it is to changes in the model parameters.

The results of this chapter suggest that a geometrical model might be
roughly supported by QTL and other data, if the competition among beneficial
alleles is taken into account. Even for populations as small as 10° with mutation
rates of 10%, the distribution of fixed effects corresponds more closely to the QTL
data when clonal competition is included. However, there are some caveats to this
conclusion; the assumption of completely monomorphic population is not the only
potentially unrealistic assumption of the geometrical model. Other unrealistic

assumptions include the smooth fitness surface with a single stationary peak and
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the complete lack of epistasis among loci. These features of adaaptation in real
populations are not accounted for by any variation of the model.

More significantly, perhaps, for organisms with limited gemome sizes, the
model assumes that the mutational landscape is continuous. In this, Orr’s
extensions of Fisher’s model do not differ from the original assurmptions of the
model: mutations can be arbitrarily small in effect and there :are an infinite
number of states in the phenotype space. The approximation of a coontinuous state-
space is especially likely to break down in considering the genotypoe space of, for

example, $X174, which has a genome of roughly 5000 nucleotides.

The long-term success of the geometrical model rests on rthe fact that it
captures essential features of adaptation in spite of its conceptual simmplicity. Orr’s
extensions of the model seem to further this success. Orr’s results imply that the
model can capture enough of the phenomenon of adaptation to warrrant extremely
precise predictions.

How accurate are these predictions? It is intrinsically difficullt to determine
how the features of the model relate to measurable features of adaptation in
natural or experimental populations. Although the fixed phenotypics effects might
correspond to effect sizes in QTL studies, the correspondence is not: absolute. The
magnitudes of phenotypic factors in the Fisher-Kimura-Orr model mre over many
orthogonal traits, while QTL studies look at individual traits. Fumthermore, the
results of most QTL studies do not support the theoretical results: given by the

Fisher-Kimura-Orr model, except in the most general and vague termss.
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Testing the predictions of the model in natural populations would be very
difficult. The most likely experimental system for such a test would be a
microbial population, in which the environment and population parameters could
be strictly controlled, and the genotype frequencies could be completely
monitored. However, as the simulations described here have shown, the properties
that make a microbial system attractive (large population size, for example) may
violate the assumptions of the model.

Incorporating clonal competition and pleiotropic asymmetry into the
model leads to substantial changes in its predictions. Further features of
adaptation (such as multiple fitness peaks, epistasis in mutational effects, and the
discrete nature of the genotype space) could in principle be included as well,
perhaps leading to additional changes in the predictions. In that case, however, a
great deal of the conceptual simplicity, generality and elegance of the model
would be lost. For that reason, further attempts at general models of adaptation

should best be developed from different foundations.
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Figure 1: Illustration of the method used for scaling mutational axes. In the first
figure, the direction of mutations is distributed uniformly. The
second figure illustrates a transformation of the axes determining the
direction of the mutation. In this case, the x-axis is dilated by a factor
of 1.5 and the y-axis is contracted by 0.5. In the example, the third
mutation shown would be deleterious — it would move the
population to a point further form the optimum. For this reason, it
would not be fixed. A result of this transformation is that more
mutations need to be sampled to continue the progress of adaptation.

L. L.
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Figure 2: The distribution of phenotypic factors fixed during the course of

Frequency

adaptation. The number of new mutants appearing in the population
was determined by the parameter Ny In these experiments, the
underlying size of mutational effects was distributed exponentially
with mean 0.1. The curve for Nu << 0.01 corresponds to the
conditions described in Orr (1998, 1999). In this case the rate of
beneficial mutations was sufficiently low that only one was present
in the population at any given time. These simulations were done
with a phenotype space of 25 dimensions and a population at a
constant size of 10°.
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Figure 3: The distribution of selection coefficients of mutations fixed during the
course of adaptation. Experimental conditions are as described in

figure 2.
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Figure 4: The distribution of phenotypic factors fixed during the course of
adaptation. The experimental conditions are as described in figure 2,
except the underlying distribution of mutation sizes was gamma,
with a mean of 0.1 and shape parameter of 0.5.
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Figure 5: The distribution of selection coefficients of mutations fixed during the
course of adaptation. Experimental conditions are as described in

figure 4. The plots for Nit <<0.01 and Ny = 0.01 largely overlap.
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Figure 6: Distribution of effect sizes for mutations fixed during adaptation. “The
underlying distribution of mutation effects is an exponential w-ith
mean 0.1, and the population size is 1x10°.
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Figure 7: Distribution of selection coefficients for mutations fixed during

adaptation. The underlying distribution of mutation effects is an
exponential with mean 0.1, and the population size is 1x10°.
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Figure 8: Distribution of effect sizes for mutations fixed during adaptation.
The underlying distribution of mutation effects is an exponential

with mean 0.1, and the population size is 1x10".

Frequency

0.4 T Y T T
Nu
0.35 \ -_ <<0.01 7
eeee  0.01
o3} i
eee 1.0
_ <+ 100
025} .
0.2 "4 L;‘ E
s LY
I3 ‘l
R UK
o.15H &y 4
L] .g
H A
[ ]
.
O1f -
0.05 J
o 1 £
0.15 0.2 025

Size of phenctypic effect

28



Figure 9: Distribution of selection coefficients for mutations fixed during
adaptation. The underlying distribution of mutation effects is an

exponential with mean 0.1, and the population size is 1x10°.
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Figure 10: Time to first fixation as a function of variance in mutational axis
scaling factors.
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Figure 11: Time to last mutation fixed as a function of variance in mutational axis
scaling factors.
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Chapter 2: Recovery from Deleterious Mutations

INTRODUCTION

Because of the stochastic nature of evolution, mutations with deleterious
fitness effects can become fixed in a population. Failure to respond to fixed
deleterious mutations dooms a population to the spiral into extinction of the
“mutational meltdown” (Lynch ez al. 1995; Otto and Whitlock 1997). Populations
are limited in the mechanisms they can use to respond to a fixed mutation. The
negative effects of the mutation can be suppressed by a mutation elsewhere, or the
deleterious mutation itself can be removed by direct reversion.

The most likely of these would seem to be the suppression of the
deleterious effects by a mutation at a second site: there are potentially many such
sites, while there is at most one specific mutation that results in a reversion. For
this reason, second-site suppressors of deleterious effect (or “compensatory
mutations™) are thought to be strongly relevant to the process of adaptation (Burch
and Chao 1999; Bjorkman er al. 2000; Levin er al. 2000; Moore et al. 2000).
Compensatory mutations are beneficial, but must be distinguished from strictly
beneficial mutations, which have a positive effect regardless of genetic
background (Burch and Chao 1999). Compensatory effects are those that accrue
only to specific low-fitness genotypes. They are suppressors of a deleterious
allele, and represent interactive fitness effects between mutations that would be

deleterious or neutral in an optimal-fitness genome.
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Notwithstanding their small relative probability, reversions may offer the
best means of recovering the full fitness lost by the accumulation of deleterious
mutations. In a fitness landscape with a single optimal peak, reversions present a
more straightforward mechanism for mutation to reduce the effects of deleterious
substitutions, as they do not require complex epistatic interactions among genes.
There is the potential for the entire fitness loss to be regained by reversion, while
this is not necessarily the case for compensatory changes.

Here I present a study in which a small viral genome was fixed for several
deleterious mutations and allowed to recover via serial passaging of large
populations. The goal of the study was to evaluate the mechanism (either
reversion or compensatory mutation) by which populations recover fitness from
the fixation of deleterious mutations. Throughout the study, the fitness and

genotype of the recovering populations were assessed.
METHODS

Strains and General Methods
LB broth was used for growth of cells, both infected and uninfected. The
preparation of LB broth was mixed as 10 g/l NaCl, 10 g/l Bacto-tryptone and 5 g/l

yeast extract in water, autoclaved, then supplemented with 2 mM CaCl,. For
plates, 15 g/l Bacto-agar was added to LB broth. For phage overlay plating (top
agar), 7 g/l Bacto-agar was added to LB broth. Phage stocks were stored at 4°C
after an equal volume of Borate-EDTA (BE) was added to the phage suspension
in LB. BE consists of 80 mM sodium borate and 80 mM EDTA, pH adjusted to
9.5 with NaOH. Phage were propagated in Escherichia coli C.
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In order to limit the response of the population to either reversion or
compensatory mutation, all strictly beneficial mutations were excluded. This was
done by starting with a strain of phage that was at a fitness optimum (that is,
maximally fit under the conditions of the experiment). To be certain that I was
starting at the optimum, I began the experiment with a line of bacteriophage (A¢
for “Flask-adapted Ancestor”) that had been grown under the experimental
conditions to a point that further increases in fitness had stopped (Bull ez al.

2000). The final fitness of the A strain was approximately 24 doublings per hour,

under the defined growth conditions at 37°C (Bull et al. 2000).

Evolution of Mutant Phage of Low Fitness

During the constructing mutation-accumulation lines, it is important to
minimize the effects of selection. The best way to do this is to keep population
size small, so that deleterious mutations may be fixed. I adopted a strategy of
chemical mutagenesis coupled with single-plaque bottlenecking and selection for
small plaque size to introduce fixed deleterious mutations into the ancestral stock
(Chao et al. 1992; Stephan et al. 1993). The basic cycle of propagation was to
mutagenize the phage with hydroxylamine, plate, choose a small plaque, and
grow the phage to increase number. This cycle was repeated until fitness was
sufficiently low and the phage had accumulated enough mutations to require
multiple steps in recovery. During this cycle, selection only has the opportunity to
act during the phase of growth that occurs as a single virion grows to a plaque.

The mutagenesis protocol followed that described in (Tessman 1968).

Phage were incubated 90 min. in 250 mM hydroxylamine, in 1 mM EDTA pH 7
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at 37°C, followed by dilution with LB and immediate plating on LB with agar.
This procedure resulted in a survival ratio of 1%.

Starting with Ay two lines were subjected to repeated cycles of
mutagenesis and single-plaque propagation. Plaques were observed at each stage
to be progressively smaller. At the end of five such cycles, plaques were tiny, and
no further size decrease was attainable. This most likely indicates that a lower
limit of fitness had been reached, at which further fitness loss would have resulted

in an inability to recognize and recover plaques.

Recovery Conditions

Phage recovery was selected by serial passage of phage at large population
size. The conditions of each passage of recovery consisted of growth in rich
medium at 37°C, in cells that had been taken to the logarithmic phase of growth.
Bacteria were grown from a frozen stock for 1 hr. to a density of 2-4x108 cells/ml
in 10 ml LB contained in 125 ml flasks, aerated at 200 rpm in an orbital water
bath. Between 105 and 106 phage were added and grown for 60 min., before
treatment with chloroform. (In the earliest stages of recovery, low titers limited
the amount of phage available to add. At these stages no fewer than 103 phage
were used). Growth was limited to one hour or less, in order to avoid the
transition to the stationary phase of bacterial growth, and to keep the multiplicity
of infection (MOI) relatively low. Free phage density was not allowed to exceed
109 phage/ml, to ensure that the ratio of infected to uninfected cells remained less
than unity. (The burst size of wild-type ¢X174 is approximately 100 phage per

infected cell).
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Fitness Assay

Fitnesses were calculated from phage growth rate over 40 min. and under

the conditions used for recovery. These were the same conditions used to adapt

the starting phage (Ag) prior to its subjection to mutagenesis (Bull ez al. 2000).

The measure of fitness used is doublings/hour: w =ilog, phage den51fy ar 40 .
2 77| phage density at 0"

This fitness assay is less precise than the competition-based assays used

by, for example, Burch and Chao (2000), but it has the advantage of being an
absolute measure of fitness, not scaled to the fitness of any standard competitor.
For the large changes in fitness observed here, our measure is more than adequate.
Furthermore, it has been shown (Paquin and Adams 1983) that competition-
derived fitnesses are not necessarily transitive among subsequent isolates from a

microbial lineage because of interaction between the strains.

Sequence Analysis

For mutagenesis and recovery passages, sequencing was generally done
from whole cultures; the resulting sequence thus represents the majority
consensus. Site-directed mutants were sequenced individually, as were occasional
isolates from whole cultures.

Phage cultures and isolates were sequenced from PCR products using
cycle sequencing with fluorescent-labeled (BigDye) dideoxynucleotides to
terminate the extension. Terminated PCR products were visualized on an ABI 377
automated sequencer.

Sequencing primers were positioned across the genome at approximately

500 base intervals. Sequencing was generally done from the minus-strand
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template, supplemented with sequences from the other strand when needed to
resolve ambiguities.

Sequences were aligned to the known ancestral sequence, and differences
between them were noted. When PCR products of phage lysates were sequenced,
peaks from the sequence of a population of viruses could occasionally be resolved
into major and minor components, suggestive of polymorphism within a
population. For some genotypes, the presence of multiple peaks was used to
confirm suspected polymorphisms, but, in general, the presence of multiple peaks
was not by itself taken as an indication of polymorphism. Genotyping of phage

isolates by oligo hybridization followed the protocol of Crill et al. (2000).

Site-Directed Mutagenesis

Specific mutations were introduced into specific phage genotypes using a
DNA Polymerase I extension reaction from a mutagenic primer. These primers,
extending 250-600 nt, were constructed by PCR amplification from strains
carrying the desired genotype within the amplified region. Each fragment was
purified using a Promega PCR prep purification column and resin. The
concentration of mutagenic primer was quantified by absorbance at 260nm. Table
1 lists the primers used, their genotypes, the template genomes and the PCR
primers used to construct them.

DNA from the phage genome to be mutated was purified by extraction
with phenol and phenol/chloroform, followed by isopropanol precipitation. After
preparation, the effective amount of DNA recovered was estimated by

transformation into electrocompetent E. coli cells. The number of plaque-forming
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units per unit volume was used to calculate the minimum amount of mutagenic
primer to use. A minimum of 100-fold molar excess primer to template was used
for the mutagenesis.

When the concentrations of the mutagenic primer and template were
determined, I annealed the two in Poll buffer (New England Biolabs). Annealing
consisted of heating a mixture of the template and primer to 80°C, then cooling in
small increments to room temperature, then to ice. DNA Polymerase I and
deoxynucleotides were added to the ice-cold solution, which was then elevated to
37°C. After allowing the extension reaction to proceed for 1 hr, the product was
re-extracted with phenol, ethanol precipitated and washed.

The products of the extension reaction were transformed into E. coli C
using electroporation, and the transformation mixture was plated onto LB/agar
plates in top agar containing additional E. coli C. The results of this plating gave
an indication of a titer for the transformation mixture, which was then plated onto
large LB/agar plates at a density of approximately 1000 plaques per plate.

Transformants were screened by oligonucleotide hybridization. Instead of
transferring plaques into microtiter plate wells (as in Crill et al. 2000),
nitrocellulose lifts were made using the method of Maniatis et al. (1982). Plate

lifts were otherwise treated as described by Crill ez al. (2000).

Using a mutD Host to Enhance Mutation Rate

To examine the possibility that mutation rate limits the rate of adaptation,
I passaged isolates from the recovery line in a mutator strain E. coli C mutD. The

mutation in this strain is in the 3’ exonuclease editing function of DNA
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polymerase, and results in an increase in mutation rate of approximately 1000-
fold. Isolates chosen for additional recovery through muzD were from recovery
passages 1, 29 and 41 from the mutated lineage A3.

After growing phage for 1-hour in muuD, each isolate was passaged up to
seven one-hour cycles in non-mutagenic E. coli C to enable the ascent of the
highest fitness clones. These descendant strains were sequenced, and their

fitnesses evaluated.

Recombination of Mutant Lines

In order to get an idea about how many reversions might be sufficient to
allow fitness recovery, I recombined the two mutant lineages and selected for the
highest-fitness recombinant. Recombination was achieved by coinfection of the
two mutant lineages in E. coli C at high MOI, and subsequent passage of the

resulting culture by the protocol described for fitness recovery.

RESULTS

Mutation Accumulation

Of the three lines mutagenized by HA and single-plaque bottlenecking,
two dropped significantly in fitness (as estimated by plaque size) over five
passages. Further passages did not decrease plaque size: this was probably due to
the fact that there is a lower limit to the fitness needed to form a visible plaque.
For the two lines that decreased significantly (Al and A3), I took the fifth
mutagenic passage as the starting point for the beginning of the recovery
experiments. These end-points, and the intermediates (Al-1, Al-2, Al-3, Al-4,

Al-5 and A3-1, A3-2, A3-3, A3-4, A3-5) were sequenced, and the fitnesses were
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determined by the standard liquid-culture fitness assay described above. The
decrease in plaque size for the third line (A2) was much less than for Al and A3,
and the line was not investigated further.

In the two retained accumulation lines (Al and A3), 13 and 16 mutations
were fixed, respectively. With one exception (nucleotide 4494, resulting in a
silent substitution in gene A), the mutations were unique to each lineage. Each
step of the mutation accumulation carried more mutations than its ancestors
(tables 2 and 3). All of the mutations that accumulated during the five mutagenic
cycles in each line were single nucleotide substitutions of C->T. This is consistent
with the use of hydroxylamine, which deaminates cytosine residues to uracil (Pol
and Arkel 1965; Tessman 1968). Tables 2 and 3 describe the location and timing
of the mutations, the genes in which they occurred, and the amino acid
substitution, if any, that resulted. To determine if these mutations were randomly
distributed across the genome, I performed a chi-square test, partitioning the
genome into seven segments by gene, so that untranslated sequences were
assigned to the gene immediately downstream, and overlapping genes were
ignored. The results of the chi-square test (not shown) indicated that the
distribution of mutations is not significantly different from random for each of the
mutation-accurnulation lines.
Fitnesses of the mutation accumulation lines declined with each step, except that
A3-5 was slightly higher than its immediate ancestor A3-4 (table 3). Most of the

fitness drop occurred during the first 2-3 passages in both lines.
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Recovery from Mutagenesis

Mutant lineages Al-5 and A3-5 were allowed to recover in fitness via
repeated passage in flasks. For each lineage a duplicate line of recovery passages
was done, under similar conditions, although for a shorter number of recovery
passages. The recovery lineages were A1-5R and A1-5S, and A3-5R and A3-5S.
Al-5R was recovered for 29 passages, A3-5R were recovered for 40 passages,
while A1-5S and A3-5S were recovered to the 17" passage.

The entire genome of each recovery lineage, taken from whole culture,
was sequenced at various points throughout the recovery. Whole-culture
sequences were compared at the end-points, and at passage 17 with the
sequencing of two single isolates. In all cases, the sequences of the isolates
matched that of the whole culture.

At the end of the recovery passages, A1-5R40 and its replicate A1-5517
each had the same single nucleotide substitution (a reversion), and had both
increased in fitness. A3-5R40 had two substitutions (both reversions) and a large
increase in fitness. Its replicate, A3-5S17, had no changes from the unrecovered
mutant, and did not have a substantial increase in fitness from its starting point.

Because it had the most substitutions and largest fitness gain during
recovery, lineage A3-5R was examined in greater detail than the other lineages.
Sequences and fitnesses for A3-5R are shown in detail in table 4. The results for
the other three lineages are summarized below.

In contrast to lineage A3-5R, the replicate (A3-5S) had no new mutations

or reversions. After 6 passages, the fitness was 9.6+0.5 and after 11 passages was
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10.3+0.3. These fitness values are not substantially different from that of the
unrecovered mutant with the same genotype.

After 6 recovery passages of mutant lineage Al-5, a single reversion was
observed, which persisted alone across all remaining passages (until the 29™). The
reversion, at site 1061, restored the identity of residue 21 of gpF from the mutant
phenylalanine to the wild-type leucine. The fitness of the single-reversion
genotype was 13.3+0.25, and the fitness of the lineage never got above 14.4+0.06.
The replicate recovery lineage had the same reversion, and the fitness of the last

passage was 12.9+0.1.

Identification of Mutant Genotypes

For lineage A3-5R the frequencies of mutant genotypes were evaluated at
recovery passages 3, 6, 9, 12 and 15. These frequencies are shown along with the
population fitnesses in figure 12. The plot of mutant genotypes shows a transient
polymorphism of the new mutation at site 1628, coincident with a transient
polymorphism of the reversion at site 2252. These polymorphisms are swept from
the population by the double revertant at sites 632 and 2252. No further changes

in genotype frequency were observed for the remainder of the recovery.
g ry

Recombination Between Mutant Lines

The fitness of the recombined A3-5 and Al-5 lineages increased after 9
passages to near wild-type (22.7+£0.72). An isolate of this last passage (called
PRI) was sequenced, and found to contain six of the 25 mutations present in
mutant isolates AI-5 and A3-5. These mutations (those at 1393, 3331, 3485,

3550, 4493 and 4629) imply a recombination event with crossover points
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occurring between 1297 and 1393, and 4474 and 4540. Of the six mutations
present in the recombinant, three are silent, and two of the remaining three
missense mutations arose late in the course of mutatgenesis, when fitness
decreases were small. Not surprisingly, this recombination event yielded much

higher fitness than that of any recovery line.

Targeted Mutagenesis

The six genotypes of A3-5 constructed by site-directed mutagenesis were
sequenced in their entirety to confirm identity, and assayed for fitness. They are
shown, with their fitnesses, in table 5. All mutants exhibited an increase in fitness.

Thus all were beneficial, though to different degrees.
DISCUSSION

Pattern of Accumulation of Fixed Deleterious Alleles

During the mutagenic passages, both lineages accumulated fixed
mutations, and decreased substantially in fitness. It is evident that not all of the
mutations contributed to the fitness decline, but rather that some are
compensatory for others. (This is almost certainly true of the mutation C4015T in
A3-5, which has a fitness that is slightly higher than that of A3-4). The fact that
most of the fitness decline occurred in the early passages may reflect either (1) a
bias in selection of mutant plaques or (2) a pattern of diminishing returns of

deleterious fitness effects (e.g. Bull, et al. 2000).
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Recovery from Deleterious Mutations

In three of four lineages, nucleotide substitutions occurred during the
recovery passages, with a coincident increése in fitness. All substitutions observed
were reversions of mutations fixed during the mutagenic passaging. Two replicate
recovery lineages (Al-SR and A1-5S) had identical reversions and nearly
identical increases in fitness.

In a third lineage (A3-5R), a compensatory change was present in early
passages, but was quickly lost when a reversion swept through the population.
Genotypically, isolates from the final passage differed from the initial mutant only
at two sites that had reverted to the ancestral state. The site-directed mutants
demonstrate that the compensatory change at site 1628 had a larger fitness effect
than either of the reversions at sites 632 and 2252. However, a virus with both
reversions had significantly higher fitness, and rapidly out-competed the mutant
with the single compensatory change.

None of the lineages approached the fitness of the ancestral strain. This
may be due to either of two possibilities. First, the population might be at a
genuine fitness plateau, having reached an alternate peak from that of the
ancestral strain. That is unlikely: further reversions introduced by site-directed
mutagenesis (e.g. the single reversion of site 3154) increase the fitness
substantially.

More likely, further progress is mutation-limited. Presumably, an
additional reversion such as that at 3154 would enter the population and fix, given

either enough time, or an increased mutation rate. Recovery in a mutagenic host
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shows that with an increase in the rate of mutation, further fitness gains are in fact
possible, by the reversion of one of the mutations.

The reversion seen in the mutagenic host was accompanied by a silent
substitution in gene F, at site 1702. These substitutions arose from passaging of
cultures A3-5R29 and A3-5R41, each predominantly composed of phage with the
same genotype. That the substitution at site 1702 arose twice independently may
reflect a strong interaction with site 4474. The reversion at 4474 was expected to
have a large fitness effect: the mutagenic passage at which the mutation fixed had
a large fitness drop. However, reversion of the site (along with that of a
neighboring site, 4329) had a negligible effect on fitness. The silent change at
1702 may increase the fitness gain of a reversion at 4474. If this is the case, the
mutations found in the mutagenic recovery passages might represent an alternate
fitness peak.

Another, more prosaic, explanation for the simultaneous occurrence of
these sites in the mutagenic host might simply be a bias in the mutational

distribution of muzD.

Microbial Adaptation and Fisher’s Model

Fisher’s geometrical model (Fisher 1930) has been presented as the
possible basis for a general model of adaptation (Orr 1998; Orr 1999), and as a
framework for understanding the distribution of beneficial mutational effects.
There are aspects of the model and its derivatives that make it appealing for
asexual microbial populations in particular. It has important implications for

mutation load and for the long-term health of populations, particularly those that
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are asexual. The application of the model to microbial populations is also helped
by the easy testing afforded by microbial systems.

The model assumes that a population adapts towards an optimum by a
number of steps in a continuous p-dimensional phenotype space. Because the
phenotype (and mutational) space is continuous, it also assumes that there are an
infinite number of routes by which adaptation can occur. Specifically, if a
population is displaced from an optimum by the fixation of even one deleterious
mutation, it should be able to return by any of an infinite number of sequences of
mutations. The adaptation of the population is extremely unlikely to take place by
reversion of the mutations that took it to the sub-optimal point. Mutations that
return a population to its optimum by alternate pathways are by definition
compensatory: they increase the fitness of a genotype, but conditionally. A
consequence of Fisher’s model is therefore that compensatory changes are the

exclusive mode of fitness recovery from the fixation of deleterious mutations.

Factors Affecting Compensatory Adaptation

At some point in the continuum of genome sizes and genetic complexity,
one might expect that the number and effect of potential compensatory changes
becomes less than the number and effect of reversions. As pointed out by Levin er
al. (2000), and discussed at some length by Burch and Chao (2000), the relative
importance of compensatory change depends upon several population genetics
parameters. Strength of selection should be critical to the relative abundance of
compensatory changes and reversions: under weak selection, the fitness difference

between points on the surface is decreased, so there are more near-optimal points,
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and more accessible paths to the optimum. To the extent that it affects the strength
of selection, effective population size should thus be critical to the relative
importance of compensatory change (Novella et al. 1995; Novella et al. 1995;
Elena et al. 1998).

If the population is considered as a collection of genotypes (rather than as
a point in phenotype-space), the mutation rate should also affect the prevalence of
compensatory adaptation. In a large population with a high mutation rate, there is
a significant probability that all possible neighboring genotypes, including that of
the revertant, can be sampled.

The genome architecture also dictates in part whether recovery can occur
via reversion or compensatory change. If mutational effects are exclusively
additive, compensatory change is impossible. Similarly, the type of fixed
deleterious mutations that are responsible for a fitness drop determine whether
reversion can occur. For example, deletions and insertions will probably be much

less likely to spontaneously revert than will a deleterious point mutation.

Is Microbial Adaptation Primarily Accomplished by Compensatory
Mechanisms?

In most recent studies (including all of those cited above), compensatory
changes have been found to be the predominant factors responsible for adaptation.
The picture emerging from this apparent prevalence of CA is one of a fitness
surface with a multitude of potential paths between points. This suggests that the
problem of sub-optimal fitness has many solutions — that microbial organisms

generally have a high degree of genomic versatility.
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In contrast to the studies cited above, experimental evolutionary studies
using ¢$X 174 suggest a more constrained adaptive landscape. For example, Crill ez
al. (2000) found a set of residues that responded in a near switch-like fashion to
transfers between hosts. (In chapter 3, I describe the response of ¢X to strong
selection for escape from autoinhibitory sequences).

Since the relative contributions to adaptation of reversion and
compensatory change in adaptation turns on specific environmental, genomic and
population parameters, there may be no general set of conditions, there may be no
sense in which compensatory change is consistently “more relevant” to adaptation
than is reversion. However, there are certain extreme conditions that are
interesting for biomedical reasons and that are accessible to laboratory
manipulation. Strong selection, in particular, is a condition faced in
epidemiological contexts. Likewise, large values of Nu — the product of mutation
rate and population size — is relevant to considerations of microbial evolution,
particularly in pathogens.

This study differs from those discussed above in that all of the following
properties hold true:

1. Selection is directional, uniform over time and strong;

2. The displacement from the optimum is large: more than a single
mutation away;

3. The displacement from the optimum is in principle reversible: all
mutations contributing to the displacement are single nucleotide

transversions of C2>T;
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4. Population size is large: although the mutation rate is smaller than
for RNA viruses, more potentially beneficial mutations may be
sampled;

5. The population started at a defined optimum: adaptation consisted

entirely of recovery to that optimum.

I found that, in contrast to most recent studies, adaptation occurred
primarily by reversion of the original deleterious point mutations. Compensatory
changes, when they occurred, were transitory and replaced by higher-fitness

revertant genotypes.

Reversion as the Primary Mode of Fitness Recovery in $X174

This study demonstrates that under strong selection, reversions are the
main mechanism of adaptation in ¢X174. That this conclusion differs both from
those suggested by Fisher’s model and from empirical studies, can be attributed to
several factors.

First, the fixed deleterious mutations were single nucleotide substitutions.
Reversions were in principle much easier than if the mutations had been insertions
or deletions, as were seen in Escarmis et al. (1996; 1999).

Second, also contra Escarmis et al., the ancestor was fully adapted to the
passage conditions. The foot-and-mouth disease virus that Escarmis er al. (1996)
used in their mutation accumulation experiments was not fully adapted to the

passaging conditions. The recovery line described in Escarmis er al (1999)

49



achieved a fitness much higher than the ancestral strain, indicating that strictly
beneficial mutations were included in the recovery.

Third, the large population size reduces the effect of drift and increases the
relative importance of selection. Recoveries that go through population
bottlenecks (as in Burch and Chao, 2000) have reduced effective population sizes,
and the fixed mutations are more likely to be the result of sampling error. If the
deleterious mutations are of large effect, reversions may be of larger effect than
any possible compensatory change. In regimes of strong selection, these would be
more likely to become fixed. The observed plateau in fitness may be due to the
fact that most of the large-effect mutations had at that point reverted. For further
progress, it might be that small-effect compensatory changes can compete with
reversions of the remaining small-effect mutations. If that were true, one might
expect to see a prevalence of reversions early in the recovery, and a prevalence of
compensatory changes later.

Finally, the genetics of the phage may be such that there are not many
mutations available to ameliorate the effects of the fixed deleterious mutations. In
the recovery, one compensatory change was observed. However, the main
argument for an expected prevalence of compensatory change is that
compensatory sites are much more abundant than the single reversion. If the
geometrical model were to describe microbial adaptation, an infinite number of
pathways between low-fitness and high-fitness populations would be possible,
and the fitness steps available to the recovering population would be distributed

continuously. In contrast to the abundance of potentially compensating sites in E.
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coli, for example, the $X genome may be so constrained that this prediction does

not hold.
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Table 1: Mutagenic primers, listed according to position in the $X genome. The
PCR primers used for synthesis (“PCR1” and “PCR2”) are from the
pool used for sequencing. Labels for these primers refer to the
approximate location in the genome. PCR1 primers are parallel to
the positive strand, and PCR2 primers are parallel to the negative
strand. PCR primers are between 12 and 17 bases long.

Primer Template Genotype PCR!I PCR2 Approx. Min.
Size Tm

w2 FANC 632C 521 939 418 63.1°C
us A3-5R6 1628C 1440 2000 560 49.1°C
us FANC 2252C 1923 2500 577 46.9°C
w2 FANC 3042C 2900 3150 250 56.7°C
nl4 FANC 3042C 3154C 3365C 3381 3849 481 56.7°C
u27 A3-5R29 4329C 4474C 4240 4753 513
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Table 2: Mutation accumulation in line Al.

Mutagenic Passage

Site Gene Change
491 sl D S-=>L

722 2| D/E Silent

771 D/E R->C/Silent
852 J S>F

1061 F L->F
1297 F Silent
1538 F L->F
3331 H AV
3485 = H Silent
3550 H T->1

4493 sl A Silent
4540 A/A* AV
5319 A/A*/B | P2S/T>1
w
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Table 3: Mutation accumulation in line A3.

Mutagenic Passage

Site | 1 2 3 4 5 Gene Change
632 i #5355 D/E S->L
1393 H F Silent
2252 o F P->S
2769 5= G Silent
2788 G L>F
3042 | H L->F
3154 H AV
3365 2t H Silent
3553 H AV
3896 H Silent
3922 H-A (intergenic)
4015 A AV
4329 A R->C
4474 A S>F
4493 | - A/A* Silent
4629 |ir sragi S W TR AJAK P>S
W 234 155 86 7.6 8.9
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Fitness profile for recovery of A3-5, showing frequency of early

Figure 12
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Chapter 3: Adaptation of Bacteriophage to Escape from
Autoinhibition

INTRODUCTION

The Evolution of Microbial Drug Resistance

With the development of antibiotics, and sanitation and vaccination
programs, twentieth century humans faced for the first time the possibility of a
triumph over microbial infection (Lederberg 2000). However, the stunning
medical successes are proving to be ephemeral. Because of recent microbial
adaptation, human medicine and agriculture are on the verge of revisiting the
dangerous realm of pre-twentieth century medicine. The success of antibiotics in
treating bacterial infection has led to their overuse, and this, combined with
agricultural and domestic applications, have changed the environment in which
bacteria live. The ubiquity of antibiotics provides a constant challenge to bacterial
populations: we are just now learning about the effectiveness of the bacterial
response to this challenge. Largely through misapplication of technology, the
effectiveness of antibiotics is diminishing dramatically (Anderson and May 1992;
Anderson 1998; Anderson 1999; Austin et al. 1999).

Although our ability to control viral populations has been extraordinarily
successful in certain domains (i.e., in vaccination against polio, smallpox and an
array of childhood diseases), other viruses, most notably HIV, show little sign of

vulnerability to conventional anti-viral approaches (Lederberg 1998). Particularly
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troubling is the rapidity with which viruses adapt to treatment conditions,
developing resistance to anti-viral drugs.

The crisis faced by biomedicine and public health, then, is evolutionary.
No antibiotic or anti-viral strategy is 100% effective against a given population.
Because of the high mutation rate, high replication rate and large population sizes
of microbial populations, the very strong selection of an anti-microbial treatment
virtually ensures the evolution of resistance, whenever such resistance is possible.
In many cases, an anti-microbial treatment that is less than 100% effective will
shortly decline in effectiveness.
Designing New Drugs

In the past few decades some hope has come from the field of rational
drug design. With the explosion of computing power and the development of new
algorithms to predict molecular interactions came the expectation that new drugs
could be developed de novo and as needed. Despite its original promises, the
“rational design” of new antibiotics and antiviral drugs has turned out to be
extremely difficult, and largely a process of trial and error. Furthermore, the
potential for adaptation to drug resistance in microbes can quickly render these
drugs obsolete.

The evolution of resistance to antisense molecules provides a case in point
(Bull er al. 1998). Antisense RNA molecules designed to bind precisely to targets
in the viral genorﬁe are rapidly rendered ineffective by evolution of the viral
sequences. Antisense technology affords an easy design of new molecules against

the resistant viruses, but the diversity of resistant viruses then precludes control
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by any small set of inhibitors. The antisense strategy does not seem to be capable

of suppressing the adaptation of viral populations to avoid inhibition.

Evolving Old Drugs

This study was designed to evaluate the feasibility of evolving drugs
against an evolving pathogen. It was also hoped that, should the evolution of a
drug against a resistant pathogen be possible, that this model would address
important questions about the behavior of the evolutionary arms race of the drug-
pathogen pair, such as possible treatment strategies that might arise from an
evolving anti-pathogen drug.

The ability of a drug to evolve new effectiveness depends first on its
having the analog to a genome. Additionally, of course, there must exist a
mechanism for translating the genome into the molecule responsible for the anti-
microbial action. The drug itself should be simple in structure, action and
synthetic pathway. It might be possible to code in a genome the biosynthetic
pathway of an antibiotic, but the ability of such a complex pathway to rapidly
evolve new variants might be limited. Candidates for evolvable drugs will more
likely be those that act on the level of nucleic acid binding (as exemplified by
antisense molecules).

Several questions arise from consideration of this strategy:

1. Can nucleic-acid based inhibitors of a pathogen be developed that

sufficiently block infection or growth of the pathogen?
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2. Can these inhibitors be developed to allow sufficient range in action
such that their effectiveness covers a wide range of pathogen
response?

3. Does the “adaptability” of a pathogen to an inhibitor diminish over
time, that is, can evolving inhibitors be used to direct pathogen
evolution into a region of genotype space from which further

adaptation is limited?
A Drug-Pathogen Arms Race: E. coli versus $X174

The system chosen here used the bacteriophage $X174 as a model virus.
This virus has recently been used in several studies of adaptation (Bull et al.
1997; Wichman et al. 1999; Bull ez al. 2000; Crill et al. 2000) and based on prior
biochemical and structural work is very well studied (Pol and Arkel 1965;
Hayashi and Hayashi 1968; Siegel et al. 1968; Linney et al. 1972; Jazwinski and
Komberg 1975; Jazwinski et al. 1975; Jazwinski er al. 1975; Jazwinski et al.
1975; Borrias et al. 1979; Hayashi et al. 1983; Hayashi and Hayashi 1985;
Hayashi et al. 1989; Fane et al. 1993; Ekechukwu et al. 1995). Furthermore, its
genome is easily sequenced to observe evolution.

DNA-based inhibitors of ¢$X174 have been discovered as well. Van der
Avoort identified a small portion of the ¢$X174 genome that, when cloned in a
plasmid, stopped infection by the virus (van der Avoort et al. 1982; Van der
Avoort et al. 1983; van der Avoort et al. 1984). Likewise, Holzmayer et al.
(1992) described a method to clone inhibitors of bacteriophage lambda using

random libraries expressed by the host. Together, these two studies suggested that
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DNA based inhibitors against $X 174 could be discovered and implemented. Thus
a model system for an evolutionary arms race between drug and pathogen seemed
feasible.

I approached the problem of designing an evolvable anti-microbial drug in
the context of the bacteriophage $X174. In this system the bacterial host, E. coli
C, was transformed with a library of plasmids containing potential anti-
bacteriophage sequences. Selection for bacterial growth in the presence of phage
allowed me to recover sequences on the plasmid responsible for inhibition. To
empirically model the evolution of pathogen resistance I selected phage that could
grow on the inhibitory host, thereby “escaping” the action of the inhibitory
plasmid. Table 6 shows the elements of the ¢X174 model system and how they

relate to those of a more general drug-pathogen arms race.

Table 6: Correspondence between elements of pathogen/drug evolution and a
bacteriophage model system.

E. coli strain C

Bacteriophage ¢$X174

Inhibitory plasmid

Phage “escape™ from inhibition

Mutagenesis and selection of new inhibitory plasmid

Human or animal host
Pathogen
Anti-pathogen drug
Resistance to drug
Evolution of drug

ORORSOROR)

METHODS

Strains and General Methods

Unless otherwise specified, the bacterial strain used throughout these

experiments was the prototroph Escherichia coli C. The strain of ¢$X174

62



bacteriophage used was called $XB, and was identical in sequence to the phage A
used by Bull ez al. (1997). S13 and G4 bacteriophage were the wild-type strains.
Methods of host and virus propagation and storage are otherwise described in
chapter 2.

PCR amplifications used Taqg DNA polymerase and followed standard
protocols. The annealing step took place at S0°C for 1 minute. The denaturation
step was at 94°C, also for | minute, and the elongation step was at 72°C for 2
minutes. Before the amplification cycles were started, the reactions were heated to
94°C for 4 minutes. Amplification occurred over 35 cycles of denaturation-
annealing-elongation, and was followed by an extra extension step at 72°C for 7

minutes.

Construction of Cloning Vector pUCUT

The expression vector pUC18 was modified in a series of PCR steps to
create the cloning vector used in this study (pUCUT):
1. The region containing the o fragment of [-galactosidase was
removed;
2. A strong transcriptional terminator was added downstream of the
insertion site;
3. Three stop codons were added, one in each reading frame,
downstream of the insertion site;
4. A new polylinker was iﬁserted.
pUCUT thus retains the inducible promoter of pUC18 but lacks the o

fragment of LacZ and so should not produce a fusion protein. Figure 13 diagrams
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these steps, and gives a map of the final plasmid. The resulting cloning vector had
the following properties:
1. high copy number;
2. ampicillin and tetracycline resistance;
3. astrong IPTG-regulated promoter upstream of the cloning site;
4. a strong terminator and stop codons in all three reading frames
downstream of the cloning site;
5. a polylinker with EcoRI, BamHI, HindIll and EcoRV cloning
sites;
6. PCR/sequencing primer binding sites flanking the polylinker.
For cloning, plasmid pUCUT was digested with the EcoRV restriction
enzyme, and treated with calf intestinal alkaline phosphatase to remove terminal
phosphates and decrease the incidence of intramolecular ligation. These

treatments followed standard protocols, as described in Sambrook et al. (1989).

Cloning of $X174 Sequences into pUCUT

A PCR product (extending from base 2605 to 50) from the circular $X174
genome and digested with DNasel provided a pool of genome fragments for
cloning. To approximately 5 pg DNA was mixed 10 pL digestion buffer (500 mM
Tris- HCI, pH 7.6; 100 mM CaCl,; 1 mg/ml BSA, fraction V) and water to 100 pL
final volume. 10 pL of this solution was transferred to a tube containing 5 pL 50
mM EDTA, pH 8, on ice. This tube became the “0 minute” time point.

The remainder of the reaction was combined with 1.5 ul DNase I (1 mg/ml

in 0.01 N HCI), and incubated at 15°C. At predetermined time points (1, 2, 5, 10
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and 30 minutes) 15 pL of the reaction was removed to a labeled tube containing 5
uL EDTA, pHS, and kept on ice. After the 30-minute time point was collected, 2
uL of each fraction was visualized on an agarose/TEA gel (0.8%) to assess the
digest. Fractions that were sufficiently digested (the main band running between
100 and 500 nt) were combined, brought to 360 pL with water, extracted with
phenol and phenol/chloroform and precipitated using sodium acetate (0.3 M) and
cold ethanol (2.5 volumes).

The pellet containing the DNA from the combined digested fractions was
dissolved in 25 pL. and treated to fill in any overhangs present from the digestion,
as follows. To the pellet was added 3 uL of a mixture containing 0.5 mM of each
of the four deoxyribonucleotides, 3 pL 50 mM MgClL, and 2 pL of a 5 unit/plL
solution of the klenow fragment of DNA polymerase I. The reaction was
incubated for 15 minutes at room temperature, then extracted and precipitated as
described above. The final pellet was dissolved in 20 uL of water. Figure 14

illustrates the steps used in cloning.

Screening of Library for Inhibitory Activity
The library was selected for inhibition of $X174. This procedure consisted
of the following steps:
1. Transformation into susceptible host (E. coli C);
2. Plating of transformant pool onto plate containing ¢X174 and
growth at 37°C overnight;
3. Scraping of resulting resistant colonies;

4. Isolation of plasmid DNA and transformation into new cells.
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Electroporation was followed by 1 hr growth at 37°C in 1 ml LB broth.
The growing culture of transformants was pelleted and resuspended
approximately every 20 min. in LB with 2mM EDTA to reduce the incidence of
infection by phage DNA that might have been carried along during the DNA prep
procedure. Possible infection at this stage was a potential problem since it would
have increased the selection for cellular-based resistance to phage. Step 4 was
necessary to eliminate cellular-based resistance to the bacteriophage at each round
of selection.

The screening process was repeated several times and at different
concentrations of phage and cells. The initial steps in the selection and screening
were done with the addition of 0.1 mM IPTG to the antibiotic-containing plates,
in order to de-repress the Lac operator and increase expression of the insert. IPTG
induction was later determined to be unnecessary for the inhibitor isolated.

Plasmids conferring phage resistance were obtained, and the inserts were
sequenced. The nomenclature for resistance-conferring plasmids was a
combination of the origin of the library and the number of the isolate. The ith
isolate from a library derived from ¢X174 was called pFi, while the ith isolate
from S13 was called pSi.

Sequencing of Plasmid and Bacteriophage DNA

PCR primers were designed to flank the cloning site in the vector pUCUT,
described below. A standard PCR cycle with a 50°C annealing temperature was
used to amplify the insert. Sequencing of the insert was done from this PCR-

amplified template, using either of the two PCR primers.
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The phage storage solution (BE) contains EDTA and inhibits Taq
polymerase activity. Phage whose genomes were to be amplified were first plated
onto E. coli C, and 20 plaques were combined into 100 L. LB broth. After
vortexing, this suspension sat at 4°C for at least six hours, and was centrifuged to
remove debris. The supernatant was kept as a “plaque prep” and used as a source
of template phage DNA for PCR amplification.

Double-stranded $X174 DNA was prepared by PCR amplification of
phage genomic DNA in two overlapping segments, defined by the genome
nucleotide positions 0-2953 and 2605-50. The PCR cycles for ¢X incorporated a 7
minute extension step to account for the length of the product. Sequencing of the
¢X genome was done using two sets of 12 primers each, spaced at approximately
even intervals and with binding sites on opposite strands of the genome. In
general, only one of these sets was used, unless the reaction resulted in sequence
ambiguities, in which case the opposite strand was sequenced as well. Using the
sequence analysis package DNAStar™, phage sequence data were aligned to the
ancestral (¢XB) sequence for comparison, and changes relative to that sequence

were noted.

Fitness Assay

Three methods were used to assess levels of bacterial resistance to $X174.
All three methods were conducted on plates and thus differ from assays used in
chapter 2. These assays were (1) a quantitative estimate of phage growth rate on
plates, (2) ability of a culture streak to grow on plates across a line of phage, and

(3) plaque size.
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In the plate fitness assay, approximately 100 plaque-forming units (pfu)
were plated on log-phase host cells. This plate was grown at 37°C for exactly
three hours, while another control plate, containing the same quantity of phage on
a permissive host, was incubated until plaques were clearly visible.

After three hours of growth, the assay plate was soaked in approximately 5
ml borate-EDTA, and the top agar was scraped from the plate. This suspension
was vortexed and allowed to stand at room temperature for 1 hour, then
centrifuged to remove cells, agar and debris. The resulting solution was titered to
determine the phage concentration and total phage numbers recovered from the
plate.

For the three hours growth on plates, the total number of phage doublings
was calculated as the base 2 logarithm of the number of phage obtained from the
assay plate divided by the number of plaques on the control plate. The value for
one hour of growth was one-third of the three-hour value. This method assumes
that all of the phage present on the plate were extracted into solution, so it will
underestimate fitness to the extent that phage are trapped in the top agar.
However, any proportional loss of phage in the top agar will not affect between-
phage comparisons.

This procedure gives the doubling time on plates for a bacteriophage strain
grown on a particular bacterial host strain. The hosts are clearly not identical from
trial to trial, which may in turn introduce variation into the fitness estimates. To
control for these differences, reference strains of bacteriophage were assayed

along with the strain of interest.
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I also used a more rapid and qualitative assay of inhibition. This simple
assay merely determined if a streak of the host cells would grow across a line of
phage, on a plate of LB/agar. For this assay, a streak of a suspension of phage in
LB was dried on a plate and then cross-streaked with a suspension of cells. The
plate was incubated at 37+C for 8-12 hours, until cell growth in the streak was
visible. In this manner, up to ten host suspensions could be assayed per plate.
Three categories of susceptibility were noted. Streaks of the host cell suspension
either grew unhindered across the phage streak, showed a gap in growth at the
phage streak, or showed no growth from the phage streak onward. Continual
growth across the cell streak indicates complete resistance, while gapped or
shortened streaks show different levels of susceptibility to the phage. Figure 16
shows a schematic diagram of these outcomes.

Finally, plaque size was taken as a general qualitative index of fitness. The
very low-fitness isolates had plaques that were nearly invisible, as compared to
the high-fitness wild-type phage, which had plaques several millimeters in

diameter.

Selection of Escape Mutants

The second step in the evolutionary arms race required a bacteriophage
variant capable of growth on cells containing an inhibitory plasmid. This selection
was done as a simple screen for plaques on lawns of inhibitory cells. Putative
resistant phage were replated on inhibitory cells, both to purify the clone and to

select further increases in resistance (as evident from plaque size).
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The first resistant phage, ¢1, was isolated by me; another 6 were found by

Mara Lawniczak.

Construction of Randomly Mutagenized Library

A major goal of this study was to evolve new inhibitors, just as the virus
evolved to avoid inhibition. One potential problem in evolving new inhibitory
plasmids from the old one derives from the relatively low mutation rate of the E.
coli replication machinery (Drake 1991). The variation present in a pool of 109-
1010 inhibitory plasmids will simply be too small to adequately explore sequence
space for new inhibitors, unless only a single base substitution is required. Most
methods of in vitro random mutagenesis also result in a small proportion of
mutated residues. I therefore constructed a library of synthesized inserts based on
the pFl sequence, in which each nucleotide of the insert remained unchanged
with a probability of 97%, and had a 1% chance of mutating to each of the other
nucleotide residues. The insert for this library was synthesized as two 100
nucleotide (nt) oligonucleotide segments. Given this pool, with 200nt each
randomized with a probability of 3%, the frequency of the original wild-type
sequence should equal about 0.0023. The average number of mutations among
randomly selected clones should be about 6.

The strategy for synthesizing the randomized inhibitor library is
diagrammed in figure 15, and primer sequences are given in table 7. Two PCR
primers (v1 and v2) were used to amplify the vector sequences, along with a small
region of the inhibitory sequence. The randomized oligonucleotides rfl and rf2

were then used as PCR primers to fill in the remainder of the randomized pF1
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sequence. Products from this step were purified (although not size-selected),
blunt-end ligated and transformed into E. coli C. The transformation resulted in

approximately 104 colonies.

Table 7: Primers used for construction of randomly mutagenized library.
Lowercase nucleotides are degenerate positions, as described in the
text.

vl 5-GAG AAG AGC CAT ACC GCT GAT TCT G -3

v2 5-AAA TCA AGC TTG GAT CCG AAT TCC A -3'

rfl 5'-tcc aag tat cgg caa cag ctt tat caa tac cat gaa aaa tat caa
cca cac cag aag cag cat cag tga cga cat tag aaa tat cct ttg
cag tag cgc caa tat GAG AAG AGC CAT ACC GCT GAT TCT G -3

if2 5-aca att tct gga aag acg gta aag ctg atg gta ttg gct cta att
tgt cta gga aat aac cgt cag gat tga cac cct ccc aat tgt atg
Lttt tca tgc ctc caa AAA TCA AGC TTG GAT CCG AAT TCC A -3
After transforming the library into E. coli, I picked three clones at random,

grew them in a 2 ml culture and extracted the plasmid DNA for sequencing. The

remainder of the transformants were then scraped, titrated to determine the

density of bacteria, and plated at a density of 2.5x107, 2.5x109 and 2.5x10!1

colony-forming units (cfu) on LB/Ampicillin plates with approximately 5x105

plaque-forming units (pfu) of either ¢X or ¢1 on the surface.
As with the original isolation of the resistant sequences, the

scraping/DNA-isolation/transformation procedure was repeated twice more, to

result in a pool of clones highly enriched for resistance to the phage on which

they were initially plated. These clones were colony-purified and resistance was

assayed by plating the appropriate phage onto a log-phase culture of the
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transformant and scoring for the presence or absence of plaques, or by streaking

the cultures across a lire of the appropriate phage.

Challenge by Related Viral Inhibitory Sequences

One rationale for using $X 174 as a model for evolving new drugs was that
the existence of several well-characterized bacteriophage of various degrees of
relatedness should allow the easy isolation of homologous sequences that may be
inhibitory to new escape mutants. In essence, these related phages have possibly
already evolved new inhibitory sequences, obviating the need to evolve them
from the ¢X library sequences.

The related bacteriophages I examined were S13 and G4. These differ in
varying degrees from each other and from ¢$X174: the differences (expressed as
pairwise percent nucleotide difference) are shown in the lower diagonal of table 8.
Of particular interest is the percent pairwise difference between these phages in
the region that inhibits phage growth, that is, the region spanning the 3’ end of
gene H and the H/A intergenic region. These differences are shown in the upper

diagonal of table 8.

Table 8: Pair wise sequence differences between entire genomes (below diagonal)
and between the autoinhibitory region (above diagonal) for the
related bacteriophages $X174, S13 and G4.

| X174 S13 G4
6X174 - 3.4% 46.4%
S13 2.1% - 49.8%
G4 33.9% 33.6% -
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I attempted to clone the regions in S13 and G4 that are homologous to the
H/A intergenic region of ¢X using the same DNase I strategy used for cloning the
¢X inhibitory sequences. These clones were screened for resistance to the parent
phage, to $X174 and to the pF1 escape mutants of $X174. They were also used to

select escape mutants from the stocks of the parent phage.

RESULTS

Selection and Analysis of Resistance-Conferring Sequences

I obtained four apparent resistance-conferring clones from the initial $X
library. These plasmids were named pF1, pF2, pF6 and pF7. pF1 and pF2 inserts
were identical (the multiple rounds of selection allows each original clone to
become represented by multiple copies). Not all overlapped the H-A intergenic
region; the genomic boundaries of the inserts and their orientation relative to the

direction of plasmid LacZ transcription are listed in table 9.

Table 9: Boundaries and orientation of resistance-conferring inserts. pCB102A is
identical in sequence to the plasmid isolated by Van der Avoort.

Nucleotide
boundaries
Plasmid start end genes Orientation
pFl,pF2 | 3701 3964 HH-A Antisense
pCB102A | 3708 4201 HH-AA Sense
pS4 5056 58 A A*B Antisense
pS5 5176 39 A, A* B Antisense

Cells with plasmid pFl were always resistant, and the insert of pFl

corresponded closely to the “incompatibility” or “reduction” region described by
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Van der Avoort et al. Inhibition by pF6 and PF7 was not repeatable, so only pF1
was chosen for closer study. The location and orientation of the insert in plasmid
pF1l is shown in figure 17. The insert from Van der Avoort’s plasmid has almost
exactly the same boundaries, but with the opposite orientation relative to van der

Avoort et al. (1982).

Selection of Viral Escape Mutants

Evolution of viral resistance was sudden and complete: when plated at
high titer on bacteria carrying the resistance plasmid pF1, $X174 cultures gave
rise to mutants that could plaque. After four selection passages on pFIl-
transformed E. coli, the population of phage produced numerous large plaques. A
single isolate (¢1) was plaque-purified from this culture, and became the basis of
further experiments.

The ¢! genome contained two substitutions: 3387 (G>A) and 3786
(G>T). Both occur within the coding region of gene H and result in a
glutamate->lysine change at residue 153 and a valine->phenylalanine at residue
286, respectively. The changes do not lie within the segment of the inhibitory
region.

Fitness Effect of Escape from Inhibition

Plate fitness assays were conducted for ¢X and ¢1 on hosts with the wild-
type plasmid pUCUT and on hosts with pF1. $XB had a fitness of 8.0 on cells
bearing the vector pUCUT but only 3.8 when grown on cells bearing pF1l. In

contrast, ¢1 had a fitness that was not substantially different between pUCUT and
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PF1 (7.3 doublings/hr, sd=0.7 vs. 7.9 doublings/hr, sd=0.5). The recovery by this

resistant virus is essentially complete (a 17-fold higher yield per plaque per hour).

Challenge by Related Viral Inhibitory Sequences

Two ¢X174-selected clones (pS4 and pS5) were obtained from the S13
genomic library, and viral resistance was confirmed for them by a plate streak
test. These plasmids also conferred resistance to S13, but not to the pF1-resistant
$1 (as determined by plate streak tests). In contrast to the findings of Van der
Avoort (1984), no ¢X or ¢1 resistance-conferring clones were obtained from the

G4-derived library, despite several attempts using different methods of cloning.

Selection of Resistant Sequences from the Randomly Mutagenized Library

The three random clones picked from the mutagenized inhibitory library
were sequenced and assayed for resistance to both ¢X and ¢l. Ncne were
completely resistant to either ¢X or ¢1. However, the ¢X plaques on two clones
(isolates 2 and 3) were smaller than those on isolate 1, as well as being smaller
than the plaques on the control plating of E. coli C containing the vector alone.
Plaques of ¢1 were normal in size and number on all three clones, indicating no
inhibition to this phage.

Twelve clones were randomly chosen from the pool of ¢X-selected
transformants, and all were confirmed as being resistant to ¢$X. The differences
between these sequences and the starting sequence are shown in table 10. Ten
clones were similarly chosen from a pool of ¢1-selected transformants, but none

were confirmed as being resistant to ¢1. These isolates were not sequenced.
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Table 10: Mutations in ¢X resistant clones from randomly mutagenized library.

Clone
random $X 174 resistant

mutation | 1 2 311 2 3 4 5 6 7 8 9 10 1I 12

A3754 T T
G3759 A
G3760 A
G3762 C

C3763 T

A3765
T3767
G3782
G3789
G3798
G3807
T3827
A3835
G3876
G3888
G3925
T3927
G3929
C3937
C3938
C3939
A3941 T
T3945 C

G3948
T3949 A C
T3952
A3954
T3955
G3956 C

C3957 T
C3958 T

T3959
C3961
A3962
A3963 T

H >0
> >

o T T TR

Q
an

Q
> H

i R e B
|
= Q

T T
1 1

Wi

#mutations | 14 0 5 1 3 11
Mean, ail mutations = 3.58 (3.62)

Mean, excluding 3963 = 1.83 (2.98)
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DISCUSSION

Evolutionary Significance of Autoinhibitory Sequences

The most successful autoinhibitory sequence from the ¢X library (pFl)
corresponded closely to that described by Van der Avoort et al. It completely
suppressed plaque formation by wild-type phage (¢XB), though fitness estimates
showed some phage replication. The 263-base inhibitory insert spans 27 residues
of the C-terminal portion of gene H (which codes for the so-called “pilot protein”
described by Jazwinski et al. (1975)), and nearly all of the intergenic region
between genes H and A. The H/A intercistronic region is known to contain the
promoter for gene A, the terminator for gene H and a gene H transcript-stabilizing
element (Hayashi et al. 1989). It is also suspected to be the site where the
genomic DNA binds to localized cellular elements during replication (van der
Avoort er al. 1982).

The inhibitory sequences of Van der Avoort et al. were cloned in the sense
orientation relative to the vector promoter, whereas the insert on pF1 was present
in the anti-sense orientation. In pF1 inhibition of phage infection was not
dependent on transcriptional activation by IPTG. Together, these data suggest that
transcription of the insert is not important. Rather, the mere presence of the
sequences on the plasmid is sufficient to inhibit infection. This interpretation is
consistent with the mechanism proposed by Van der Avoort, in which genome-
binding factors necessary for replication are sequestefed or improperly localized

by the plasmid DNA itself, rather than by any product of these sequences.
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There are many other examples of inhibition caused by cloned viral
genome sequences, including those of bacteriophage lambda (Holzmayer et al.
1992), HIV (Dunn er al. 1999) and carcinogenic retroviruses (Delaporte er al.
1999). The existence of a viral genomic sequence that reduces infectivity is
suggestive of a mechanism to block superinfection. The product of gene H is
known to bind phage genomic DNA, both at multiple sites in the capsid, and at
unknown sites during replication. The protein is minimally necessary for the first
two stages of replication (Jazwinski er al. 1975), and may be a means of
localizing the phage genome to a specific intracellular domain. If the gene H
product binds to the segment of the genome represented by the inhibition
sequence, an excess of the sequences (either on a replicating phage genome or
borne on a plasmid) would likely titrate the entering gene H protein from super-
infecting genomes. (However, $X DNA can be successfully transfected, so an

accompanying H protein is not essential under those conditions.)

Autoinhibition and Evolutionary Versatility in $X174

Notwithstanding the original motivation of the study (host-pathogen arms-
races), the evolution of escape from autoinhibition can reveal something about the
evolutionary versatility of the bacteriophage in a new selective environment.

$X174 has been used as a model organism in many studies on adaptation
to novel environments. Bull et al. (1997) examined the molecular changes in
several independent lineages resulting from adaptation to growth at elevated
temperatures and on novel hosts. They found a large degree of convergence

across lineages, both in response to host-specific and temperature-specific
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changes. In a chemostat study with ¢X, Wichman et al. (1999) found parallel
substitutions between two lineages adapting to high temperature growth
conditions. These parallel changes did not occur in the same order in each lineage,
however, and further they did not represent the largest-effect substitutions across
the course of the adaptation. The serial host-switching experiments of Crill er al.
(2000) found a small number of sites that switched in accordance with the current
host. These sites, responsible for host specificity, exhibited an asymmetrical
fitness cost that did not seem to be able to be ameliorated by secondary
compensating substitutions.

These studies suggest a fairly complex picture of ¢X adaptation to new
environments. The high-temperature growth and host-switching experiments
indicate a limited range of adaptive options available to the phage. In the strong
selective environment created by autoinhibitory sequence expression, it might

also be expected that a few changes of high fitness effect, if available, would be
taken by the phage.
The Evolution of Viral Escape from Inhibition

Here, too, it was found that the changes found in escape mutants, all in
gene H, have very high fitness effects (table 11). There are several mutations of
roughly equal effect, within one general region of a DNA-binding protein. As
with antisense RNA, inhibitory activity depends upon the binding of the inhibitor
to a target sequence. This binding of inhibitor to a specific genomic sequence
might be easily disrupted by changes in DNA-binding domains of the gene H

product.
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If a fitness increase depends upon the disruption of a complex interaction,
the resulting fitness surface should have many peaks — there are many possible
ways to effect the disruption. The number of available adaptive peaks may be
limited, of course, by the constraint that the gene H protein work normally in
genome entry and replication. Nevertheless, for this particular case, $X has many
optimal solutions to the problem of inhibitory sequences.

In several of the escape mutants the substitution sites were at or near
known differences between ¢X and S13 or G4. (For comparison, these
substitutions are shown in table 11). This would be expected if what was required
for escape was simply an alternate form of the gene H product that binds with less
affinity to the ¢$X-specific inhibitory sequences, but otherwise functions normally.

As shown by Van der Avoort ez al. (1984), the ¢X inhibitory sequences do
not inhibit G4. The sequences of the cloned ¢X escape variants may indicate why:
G4 has amino acid substitutions at four of the sites present in those variants. G4 is

essentially a “pre-escaped’ phage (if one can interpret each change separately).
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Table 11: Nucleotide and amino acid changes in wild type and escape phages.

Nucleotide: | 3340 3387 3474 3753 3755 3781 3786 3787 3788
Amino acid: 137 153 182 275 284 286
X174 A G G C T C G T C
Si3 G
D->G
G4 G A G C A
DG AT H>Q VA
$1 A T
E->K V2>F
ML clone 1 C
AP
2 G
H->D
3 T
S>F
4 A
S=2>Y
5
V21
6
VoI
CB clone G
D->G
Cost of Escape

It is reasonable to assume that the changes in gene H that confer the ability
to escape might come at some cost to the fitness of the escape mutant in a non-
inhibiting host. There may be a small cost to escape from the pF1 autoinhibitory
plasmid (7.3 doublings/hr, sd = 0.7) as compared to that on the vector control (7.9
doublings/hr, sd = 0.5), though the errors in the estimate do not allow a rejection
of the hypothesis of equal fitnesses. Furthermore, the effects of the inhibitory

insert on cell growth may be subtle, but might affect the apparent fitness of an

infecting phage.
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Selection of Sequences from Random Library

The sequence differences seen in the three unselected clones from the
randomized library were somewhat consistent with expectations. Assuming a
binomial distribution for mutated sites, the expected number of changes across the
insert sequence was 6, with an expected variance of 5.82. In this small sample of
three clones, the average number of changes was 6.33. One clone had zero
changes, an event that would be expected in about 1% of samples of this size.

The fact that the wild-type clone appeared at all may be due either to a
smaller than expected rate of mutagenic replacement in the oligonucleotide pool,
or contamination in the cloning of full plasmids from the original PCR reaction.
However, it is important to realize that these “random” clones are not actually
completely random. Although they have not gone through the selection process
for resistance to bacteriophage, the growth of the plasmids carrying these
sequences is itself a selection. It is quite possible that a large number of mutant
sequences are toxic, or inhibit cell growth. If this were the case, an over-
representation of the wild-type sequence would occur in the library after cell
growth.

Seven of the fifteen sequenced clones from the randomly mutagenized
pool contained A to T substitutions at the position corresponding to nucleotide
3963. This prevalence is almost certainly an artifact of the library synthesis
procedure. Site 3963 is the first degenerate site in the mutagenic primer rf2, and
therefore the first site after the vector amplification primer v2. The PCR reaction

with Taq polymerase is known to occasionally add one or more adenosine

82



residues to the 3’ termini of the products. This reaction could explain both the
multiple A>T substitutions at sites 3961, 3962 and 3963, and the T>A
substitutions at 3754.

The failure to obtain second-generation inhibitors from the randomly
mutagenized library might be due simply to technical factors. The complexity of
the library was on the order of 10,000 clones. Although the theoretical number of
sequences is 4200, the limit to the library’s complexity comes from the size of the
PCR reaction synthesizing the library. The amount of degenerate primer in the
reaction was 25 nmol, or 1.5 x 10!6 molecules. This is the largest number of
sequences that could possibly be examined, assuming 100% yield at every step of
synthesis, cloning and bacterial transformation. In practice, of course, the actual
number is many orders of magnitude smaller: the mass of 1.5 x 1016 cloned
sequences would be more than 30 mg.

The transformation step in making the library is particularly vulnerable to
loss of product. The library actually screened was transformed directly into E. coli
C by electroporation. Commercially available ultra-high competent cells were
also used, but yielded no transformants, either with chemically treated or
electrocompetent cells. It remains to be seen whether this failure was due to some
fault of the procedure or an incompatibility between the strain and the sequences
being cloned.

Of course it is also possible that the library even at its most complex
would not contain sequences capable of overcoming the phage escape mutants. If

the escape mechanism works by way of disruption of binding between the
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inhibitory sequence and the gene H product, recovery of that binding by
mutations in the inhibitory sequence would be very difficult. In contrast to
recovery from antisense inhibition in which the sequence need change only
enough to restore Watson-Crick base pairing with the inhibitor sequence (Bull er

al. 1998), the protein-DNA interactions in this system are much more complex.

Inhibitory Sequences from Related Phages

Inhibitory sequences from S13 worked against the parent phage and
against ¢X, but not against the escape mutant ¢1. S13 and ¢pX are sufficiently
similar that their mechanisms to block superinfection may be shared. The fact that
one resistant ¢X isolate (CB clone 1) had a change that matched a difference
between ¢X and S13 may indicate that there are interactions among the sites
within protein H necessary for inhibition. If a D->G change at residue 137 in gpH
was sufficient to escape inhibition, S13 would also escape pF1, yet it was
inhibited.

The lack of inhibitors from the G4 library was puzzling. It had been shown
that the cloned G4 homolog of the H-A intergenic region confers resistance to oX,
as well as to G4 (although the converse is not true) (van der Avoort et al. 1982:
van der Avoort ez al. 1984). Random isolates from the G4 library did not contain
any of the H-A intergenic sequences. The failure of all attempts to clone G4
inhibitory sequences might be attributed to incompatibilities among the cell type
and high copy-number plasmid used, and the inhibitory sequence. The original
inhibitory sequences were cloned a low copy-number plasmid that had no

transcriptional promoter. Further work will be required to resolve this problem.
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Regimes of Less Stringent Selection — Evolution of Intermediate Inhibitors

The method used to clone inhibitory sequences resulted in extremely
stringent selection. Because of this, the selection was most likely biased towards
mechanisms of inhibition that act absolutely, that is, that block either infection or
replication of the phage. There are other possible mechanisms that would have
been completely missed by this approach. For example, it is possible that some
sequences might confer an abortive “apoptotic” or "altruistic suicide" effect in
which the infected cell dies shortly after infection. If the selection were to take
place under conditions of low phage density or slowed phage growth, a micro
colony of such altruistic cells would persist, as the infected cells would remove
any phage encountered from the environment. Although the plate-selection
regime used here should in theory have recovered altruistic inhibitors, it is
possible (likely?) that phage growth during plate selection could not be

suppressed enough to achieve that goal.

85



Figure 13: Plasmid pUCUT and its construction.
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Figure 14: Cloning of autoinhibitory sequences into pUCUT.
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Figure 15: Strategy for synthesizing “shallow random” inhibitor library.
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Figure 16: Streak test for bacterial resistance. Strains B, D and E are susceptible,
strain A is resistant, and strain C is partly so.
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Figure 17: Location and orientation of pF1 inhibitory sequence in phage genome.
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Appendix A: Source code of program ‘asym’

“asym” simulates adaptive walks under the model given by Orr (1998),
and allows modifications to some of the assumptions of the model, as described in
chapter 1.

The program is written in C++ and makes use of two external libraries.
Linear algebra functions are handled by the FORTRAN Basic Linear Algebra
Subroutine (BLAS) library. Random number generation, random variables and
sample statistics are handled Gnu Scientific Library (GSL). Both are freely

available on the internet.

MAKEFILE

SHELL = /bin/sh
LIBHOME = /usr/local/lib
INCFLAGS -I/usr/include/g++-2 -I/usr/local/include -I/usr/local/include/gsl

LIBFLAGS = -L./ -L/usxr/iocal/lib/gsl
RANLIBS = -lgslrandist -1lgslrng -lgslstatistics -lutils -lgslerr -lgslspecfunc

BLASLIBS = -llapack -lblas -latlas
STDLIBS = -lstdc++ -1lm
$(0OBJS) : $(SRC)
$(CC} S (INCFLAGS) $(FLAGS) -c $(SRC)
SRCDIR = ~/programs/asym
PROG = asym
cC = g++
LIBS = $(RANLIBS) $(BLASLIBS) $(STDLIBS)
LINKER = g77
#FLAGS = -g -0
FLAGS = -g
OBJS = asym.o
SRC = asym.cc
$(PROG) : $(OBJS) $(UTIL)

$ (LINKER) $(FLAGS) -o $(PROG) $(OBJS) $(LIBFLAGS) $(LIBS)

asym.o : asym.cc
${(CC) -c asym.cc $(INCFLAGS) $(FLAGS)
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“ASYM.H”

#include <string.h>
#include <stdio.h>

#include <stdlib.h>
#include <math.h>

#include <list>

#include <iomanip.h>
#include <fstream.h>
#include <float._h>

extern "C* {

#include <gsl/gsl_randist_h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_test.h>
#include <gsl/gsl_statistics.h>
}

#define true 1
#define false O
#define boolean int

/* FORTRAN declarations (for BLAS) */
extern "C" (
void dcopy__(int*, double~*, int~*, double*, int*);
void daxpy__(int*, double~*, double*, int*, double*, int*):;
void dtrmv_(char*, char*, char*, int*, double*, int*, double*, int*);
void dgemv_(char*, int*, int~*, double*, double*, int~*, double*, int*, doubler*,
double*, int*};
double ddot_{int*, double~*, int*, double*, int~*);
void dgetrf_ (int*, int~*, double<*, int*, int*, intc=);:
void dgetri_(int*, double*, int*, int<*, double*, int*, int~*);
}

void error{const char=*)}:;
int factorial(int):;
int count(int, int);

template<class T>
class stack {
T v;
T p;
int sz;
public:
stack(int s) { v = p = new T[sz=s]; }
~stack() { delete(] v;

void push(T a) { if (p - v == sz} error(“"stack overflow"); else *p++ = a; }

T pop{() { if (p - v == 0) { error(*stack underflow"); return 0.0; } else return
*--p; }

T pull() { if (p - v == 0) { error("stack underflow"”); return 0.0; } else return

*++v; )}
int size() const { return p-v; }

}:

const double PI = 3.141592653589793238462643;
#define nMax S0
#define NMax 10000

CASYM.CC”
#include "~asym.h"
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void main(int arge, char *argv[]) {(

gsl_rng_env_setup(};
gsl_rng *rng = gsl_rng_alloc{gsl_rng_ranlux);

int n = 50, p = 0, N = 100, order = 0, sample_size = 1, count,
mutations = 0, fixations = 0, trial =0, i, j, k., 1, sampleSize, nfix[NMax],
nben(NMax], nmut[NMax];
unsigned long int seed;
double trait0, epistasis, scaleProduct, effectsMean, effectsShape,
rmOuct [NMax], rnOut([NMax], rocOut[NMax], rsOut[NMax], sOut[NMax], wout [NMax],
s, rStart, rPlus, r, abs_r, wStart, wPlus, w, wl, w2, wPot, traitStart,
traitPlus, traic,
z0{nMax], zl{nMax], z2(nMax], disp(nMax], disp2[nMax], scale[nMax];
char f£filel([20l, file2(20], £ile3[20], £ile4[20], hist(20], posfl[20], symflag;
ofstream outf, posf;

if{arge == 1) (
cout << "asym <effects mean> <effects shape> <asymmetry param> <seed> <n> <p>"
<< * <N> <K> <sample size> <trait> <filename>" << endl;
exit(0);
}

trait0 = atofl(argv(10]);
sampleSize = atoi(argv([9]}:;
order = atoi(argvI(8]};

N = atoi(argv(7]):;
p = atoi(argv([6])};
n = atoi{argvisSl);

seed = atol(argv{4l]):
epistasis = atof(argv(3]);
effectsShape = atof(argv(2]);:
effectsMean = atof(argvil]);

if (epistasis == 0.0) symflag = *'s';
else symflag = ‘a‘;

sprintf(£filel, "%s.in", argv([1il]);

outf.cpen(filel};
outf << *Parameters for experiment: * << argv[ll] << endl

<< “effects_mean = " << effectsMean << endl

<< "effects_shape = " << effectsShape << endl

<< "sample size = " << sampleSize << endl

<< "asymmetry = " << epistasis << endl

<< "distance of trait origin from optimum = * << trait0 << endl

<< "number of dimensions (n) = * << n << endl

<< "number of neutral dimensions (p) = * << p << endl

<< “order of saved mutations (K) = " << order << endl

<< "sample size (N} = * << N << endl

<< “symmetry in pleiotropy? " << (symflag == 's' ? *"yes®" : "no") << endl;
outf << endl << " seed for random number generator = ® << seed << endl;
outf.close();

gsl_rng_set(rng, seed);

sprintf(filel, "$s.m.dat*, argv{ll});
sprintf(file2, "%s.n.dat", argv([ll]):;
sprintf(file3, *"%s.o.dat", argv(ll]):;
sprintf(£filed4, "%s.s.dat*, argvill]):
sprintf(posfl, "%s.pos*, argv[1ll]):
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posf.open(posfl);

nmut (trial] =
nfix[trial}l = 0;
nben[trial] =

wPlus = exp(-0.5});
cout << endl

<< " beneficial total beneficial~"
<< endl

<< *"trial mutations tried mucations tried fixes mutations -
<< ® total fixations distance to opt fitness * << endl

€€ M e e e e e -

€€« M e -

<€ ®  mmmmmm et e
<< setw(6) << trial + l<< *
<< setw(lS) << mutations << *
<< setw(l5) << nmut(trial] + l<< *
<< setw(6) << nfix[trial] << * *
<< setw({l5) << wPlus << endl;

// start trials -- N total

trial = 0;

while(trial < N) {

// £ind matrix describing mutation bias
if(symflag != *'s') {
scaleProduct = 0.0;
for(j = 0; 3 < n; j++) (
scale[j] = gsl_ran_gamma(rng, epistasis, 1.0 / epistasis);
if(fabs(scale(j]) < le-50) scale(j] = 0.0;
scaleProduct += scale(j]:;
}
scaleProduct /= n;
for(j = 0; j < n; j++) (
scale(j] /= scaleProduct;

} else for(j = 0; j < n; j++) scale(j] = 1.0;
posf << “"axes mean and variance:\t" << gsl_stats_mean(scale, n) << ‘\c'
<< gsl_stats_est_variance(scale, n) << endl;

count = O;
mutations = 0
nmut(triall = Q;
nben{trial] =
nfix{triall =

o

if(order == || (order > 0 && trial == 0)) ¢
sprintf(hist, *$s.%d.dat”, argv{1ll], trial + 1};
outf._open(hist):;

}

// find staring point -- fitness should be proportional to 0.607 (= exp(-1/2))
z0[0] = scale(0]}:

for(j = 1:; j < n; j++) z0[j] = 0.0;

w = exp(-0.5);

wStart = w;

rStart = z0([0];
posf << trial << '\t' << nmut(trial] << '\t' << nfix(trial] << *:\n*;

for(k = 0; k < n; k++) posf << ' ' << z0[k]:
posf << endl;
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// don't bother going further if not going to keep sample point anyway,
// if £ >0.9, or if done
while(w < 0.960653066 && (nmutftrial] < 100000000) &&

(order == 0 || nfix(trial] + 1 <= order)) (

// set effect of mutation to minumum
wPot = 0.0;
for{(j = 0; j < sampleSize; j++) {

// generate mutation and find potential new location
wl = 0.0;
abs_r = 0.0;
if(effectsShape == 1.0} r = gsl_ran_exponential(rng, effectsMean);
else r = gsl_ran_gamma(rng, effectsShape, effectsMean / effectsShape) ;
if(fabs(r) < 1e-50) r = 0.0;
for{(k = 0; k < n; k++) {
disp(k] = gsl_ran_gaussian(rng, 1.0)};
if(fabs{displ[k]) < le-50) disp(k] = 0.0:
abs_r += powl{disp(k], 2.0);
}
abs_r = r / sgrt(abs_r);
for(k = 0; k < n; k++) (
zl[k] = z0[k]l] + (disp(k] * abs_r):;
wl += pow(zl(k], 2.0)/scalelkl]:;
}
if(wl > 1300) wl
wl = exp{-wl/2.0)
if(wl > wPot) {
wPot = wl;
for(k = 0; k < n; k++} {
disp2(k] = displk]:
z2[k} = z1(k]:;
rPlus = r;
}

1300;

~ ||

}
} 7/ for(j = 0; j < sampleSize; j++)

if({++mutations * sampleSize) % 10000 == 0} {

cout << argv[ll] << = °
<< setw(€6) << trial + 1 << * *
<< setw(l5) << mutations << *
<< setw(l5) << nmut(trial] + 1 << *
<< setw(6) << nfix[trial] << =
<< setw(f) << w << " *
<< setw(1l8) << wPot << endl;

}

++nmut[trial];
// we've found the best of <sampleSize> mutations:
// proceed with screen for fixation
if(wPot > w) { // a beneficial mutation
++nbenftrial];
// favorable: find selection coefficient,
// calculate prob of fixation and seive for fix'n
s = wPot/w - 1.0;
if(gsl_ran_flat(rng, 0.0, 1.0) <= 1.0 - exp(-2.0 * s5)) (
// we have a winner: store all scaled effects for later plotting
++nfix(triall;
for(k = 0; k < n; k++) z0(k] = z2(k];
if(count == NMax) break;
1/ rmOut [count] = rPlus/(trait * sqrt(n));
174 roOut[count] = rPlus/(distance * sqrt(n)):
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outf << trial + 1 << *'\t*' << nmut(trial] << *'\t’' << nben{trial}
<< '\t' << nfix{trial] << *\t°
<< W << "\t' << wPot << ‘\t' << rPlus/sqrt(n) << °*\t' << s
<< *\L’' << wPot - w << '\t' << (wPot - w}/w << endl;
posf << trial << *\t' << nmut{trial] << *\t' << nfix[trial] << ":\na";
for(k = 0; k < n; k++) posf << ' ' << z0(k}];
posf << endl << endl;
w = wPot;
}
}
} // while(w < 0.260653066 && fixations < NMax)
trial++;
outf.close();
} 7/ while(trial < N);
posf.close();
}
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Appendix B: Source code of program ‘fixx’

“fixx” simulates adaptive walks through Fisher’s trait-space but allowing
the presence of multiple genotypes and clonal competition.

The program is written in C++ and the libraries described in appendix A.

MAKEFILE

SHELL = /bin/sh
LIBHOME = /usr/local/lib

INCFLAGS = -I/usr/include/g++-2 -I/usr/local/include -I/usr/local/include/gsl
LIBFLAGS = -L./ -L/usr/local/lib/gsl

RANLIBS = -lgslrandist -1lgslrng -lgslstatistics

BLASLIBS = -~llapack -lblas -latlas

STDLIBS = -lstdc++ -1lm

$(0OBJS) : $(SRC)
$(CC) $(INCFLAGS) $(FLAGS) -c $(SRC)

SRCDIR = ~/programs/£ixx

PROG = fixx

CcC = g++

LIBS = $(RANLIBS) S$(BLASLIBS) ${(STDLIRS)
LINKER = g77

#FLAGS = -g -0

FLAGS = -g

OBJS = fixx.o

SRC = fixx.cc

$(PROG) : $(0BJS) $(UTIL)
$(LINKER]} $(FLAGS) -o $(PROG)} $(OBJS) $(LIBFLAGS) $(LIBS)

fixx.o : fixx.cc
$(CC) -c fixx.cc $(INCFLAGS) $(FLAGS)

“FIXX.H”

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <set>

#include <iomanip.h>
#include <fstream.h>
#include <float.h>

extern "C* {

#include <gsl/gsl _heapsort.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_vector.h>
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#include <gsl/gsl_blas.h>
#include <gsl/gsl_test.h>
#include <gsl/gsl_statistics.h>
}

#define true 1
#define false 0
#define boolean int

const double PI = 3.141592653589793238462643;
const double NSCALE = 0.39894228; // = 1/sgrt(2+*PI)
const double SCALE = 3.0;

#define nMax 50

#define NMax 10000

typedef double(*PF) (double, double, gsl_vector*):

double gaussian(double scale, double width, gsl_vector* data) {
double ddot;
gsl_blas_ddot(data, data, &ddot);
return (scale * exp(-{(ddot/(2.0 * width * width)))});

};

class genome:;

class mutation {
gsl_vector *x, *x0;
set<genome*> isIn;
double size, s, length;
static int ndims;
static PF pwf; // pointer to fitness function
static gsl_rng *rng:;
static double alpha, beta;
public:
mucation();
mutation(gsl_vector~);
mutation(gsl_vector*, gsl_vector*):;
~mutation() { gsl_vector_free(x0); gsl_vector_free(x); }
static void set_pwf(PF pf) { pwf = pf; }
static void set_rng(gsl_rng* r) { rng = r; }
static void set_params(double a, double b) { alpha = a; beta = b; }
static void set_ndims(int i) { ndims = i; }
void Start(gsl_vector* v) ( gsl_vector_memcpy(x0, v): }
gsl_vector* Start() { return x0; }
gsl_vector* X({)} { return x; }
double Set(gsl_vector~*);
double Set(gsl_vector+*, gsl_vector®);
double S() { returm s; }
double S(gsl_vector*);
double S(double d) { s = d; return s; }
double Size() { return size; }
double Size(double d) { size = d:; return size; }
double Lengch();
int IsIn();
boolean IsIn(genome* g) ({ if(isIn.find(g) != isIn.end()) return true; }
void Add(genome* g) { isIn.insert(g); }
void Remove (genome* g) { isIn.erasel(g); }
}:

class genome {

private:
gsl_vector *x;
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set<mutation*> has;
double distance, size, w, S;
static PF pwf; // pointer to fitness function
static int ndims;
public:
genome (genome* g) {
size = 1.0;
has = *(g->sHas());
x = gsl_vector_alloc(ndims);
gsl_vector_memcpy(x, g->X());
}
genome() {
has.clear();
x = gsl_vector_calloc(ndims);
size = 0.0;
w
s

oy

0.0
0.0

}
genome (gsl_vector* v) (
has.clear();
x = gsl_vector_alloc(ndims):;
gsl_vector_memcpy(x, Vv);
size = 0.0;
w pwf) (SCALE, 1.0, x):
s 0;
}
~genome () { gsl_vector_ free(x); }
void Print() (
cout << endl;
for(int i = 0; i < ndims; i++)
cout << gsl_vector_get({x, i) << *\t';
cout << endl;
}
static void set_pwf (PF pf) ( pwf = pf
static void set_ndims(int i} { ndims
double W();
double W(double d) { w = d; return w; }
double S(double);
double Size() { return size; }
double Size(double d) ( size = d; return size; }
double Mutate(mutation*);
double Spawn(mutation~*);

(*
0.

int Has():;
double Has (mutation* m) (
if(has.find(m) != has.end({()}
return size;
else

return 0.0;
}
double Distance() {
distance = 0.0;
gsl_blas_ddot({x, x, &distance);
distance = sqgrt(distance);
return distance;
}
int Insert{(mutation* m) ( has.insert(m); return has.size(); }
int CopyTo(genome* g} {
if (thas.empty()) (
set<mutation*>::iterator mptr;
for{mptr = has.begin(); mptr != has.end(); mptr++)
g->Insert((*mptr)):
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return has.size():;
}
set<mutation*>* sHas() { return &has; }
gsl_vector* X() { return x; }
gsl_vector* Add(mutation* m) (
gsl_vector_add(x, m->X()};
has.insert(m);
m->Add(this) ;
return x;
}
}s

mutation::mutation() {
isIn.clear():
length = 0.0;
s = 0.0;
x = gsl_vector_calloc(ndims);
x0 = gsl_vector_calloc(ndims};
};

mutation::mutation{gsl_vector~ st} (
double w0, wl, r, scale;
isIn.clear();
gsl_vector *sum;
sum = gsl_vector_calloc(ndims):;
length = 0.0;
s = 0.0;
X = gsl_vector_calloc(ndims);
x0 = gsl_vector_calloc(ndims);
gsl_vector_memcpy(x0, st);
if(alpha == 1.0) r = gsl_ran exponential(rng, alpha * beta):
else r = gsl_ran_gamma(rng, alpha, beta);
for(int i = 0; i < ndims; i++) gsl_vector_set(x. i, gsl_ran_gaussian{rng, 1.0)};
gsl_blas_ddot(x, x, &scale):
gsl_vector_scale(x, r/sqrt{scale));
gsl_blas_ddot(x, x, &length);
length = sqgrt(length);
w0 = (*pwf) (SCALE, 1.0, x0):;
gsl_vector_add(sum, x0);
gsl_vector_add(sum, x);
wl = (*pwf) (SCALE, 1.0, sum};
s = wl/w0 - 1.0;
gsl_vector_free(sum) ;
}s

mutation::mutation(gsl_vector* st, gsl_vector* weights) {
isIn.clear():;
length = 0.0;

1:

double mutation::Set(gsl_vector* st) {
gsl_vector_memcpy(x, st):
length = 0.0;
gsl_blas_ddot(x, x, &length);
length = sgrt(length);
return length;

};

double mutation::Set(gsl_vector* st, gsl_vector* en) (
gsl_vector_memcpy (x0, st);
gsl_vector_memcpy({(x, en);
length = 0.0;
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gsl_blas_ddot(x, x, &length) ;
length = sqgrt(length) ;
return length;

}:

double mutation::S(gsl_vector=* start)
double w0, wil;
gsl_vector *sum;
sSum = gsl_vector_calloc(ndims) ;
if(s == 0.0) (
gsl_vector;memcpy(xo, startc);
w0 = (*pwf) (SCALE, 1.0, x0);
gsl_vector_add(sum, x0);
gsl_vector_add(sum, x) ;7
wl = (*pwf) (SCALE, 1.0, sum);
S = wl/wl - 1.0;
}
gsl_vector_free(sum);
return s;
}:

double mutation::Length(void) {
if(length == 0.0) ¢
gsl_blas_ddot(x, x, &length) ;
length = sqgrt(length) ;

return length;
}:

int mutation::IsIn() {

{

Set<genome*>::iterator gp = isIn.begin();
if(isIn.empty()) cout << “none” << endl;

else
do {
cout << (*gp) << endl;
gp++;
} while(gp != isIn.end());
return isIn.size();
}:

double genome: :Mutate (mutation* m) {
m->Add(this) ;
has.insert(m) ;
m->Start(x) ;
gsl_vector_add(x, m->X());
w = (*pwf) (SCALE, 1.0, x);
return w;
}:

double genome::W() {
w = (*pwf) (SCALE, 1.0, x}:
return w;

}:

int genome::Has(} (
return has.size();
}:
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“FIXX.CC”

#include "fixx.h"

PF mutation::pwf = &gaussian;
gsl_rng* mutation::rng = NULL;
double mutation::alpha = 1.0;
double mutation::beta = 1.0;
int mutation::ndims = 50;

PF genome: :pwf = &gaussian:
int genome::ndims = 50;

void main(int arge, char *argv{]) ¢

gsl_rng env_setup();
gsl_rng *rng = gsl_rng_alloc(gsl_rng_ranlux);
gsl_vector *start, *origin, *zero;

double alpha, beta, N = 1.0el0, N_prime, mu = 1.0e-6,
goal = SCALE * 0.960653066, w_bar, s, tLoss, count;

unsigned long int seed, nmutations = OL;

int ndims = 50, nfix[NMax], nben[NMax], amut [NMax], trial, ntrials = 100,
i, j. k., 1, m, generation, log = 100;

boolean adapted;

mutation *mtesct;

genome *g, *gtest, *deadgenome;

set<mutation*> mutations, newmutations, losses;

set<mutation*>::iterator mptr;

set<genome*> population, offspring, boneyard;

set<genome*>::iterator gptr;

char filel(20], file2[20], file3([20], file4([20],
hist (20}, posfl(20], symflag:;

ofstream outfl, outf2, posf;

if(argc == 1) (
cout << "fixx <file> <alpha> <beta> <seed> <dims> <trials> *
<< "<N> <mu>" << endl;
exit(0);
}

log = atoilargv(9l);

mu = atof(argv(8]):;

N = atof(argv(7]);

ntrials = atoi(argv(6]):;

ndims = atoi(argv(5}]):;

seed = atol(argv(4l]):

beta = atof(argv([3]);

alpha = atof(argv(2]);
sprintf£(filel, "%s.in", argv({il):

outfl.open{filel);
outfl << "Parameters for experiment: * << argv(l] << endl

<< "alpha = " << alpha << endl

<< "beta = * << beta << endl

<< "mu = * << mu << endl

<< "number of dimensions (n) = * << ndims << endl

<< "Population Size (N) = " << N << endl

<< "seed for random number generator = " << seed << endl;
outfl.close();

cout << "Starting experiment * << argv{l] << * with the following parameters:*
<< endl << "alpha = " << alpha << "; *
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<< “"beta = " << beta << *; "

<< "mu = * << mu << *; *
<< "number of dimensions (n) = * << ndims << *; *
<< "Population Size (N} = * << N << endl

<< "seed for random number generator = " << seed << endl;
if(log) cout << *logging to * << argv[l] << *.<trial>.dat every "
<< log << " generations."” << endl;
else cout << "Not logging generation-by-generation data" << endl;

gsl_rng_set(rng, seed);
mutation::set_params(alpha, beta);
mutation: :set_rng({rng);

mutation: :set_ndims(ndims);
genome: :set_ndims (ndims) ;

start = gsl_vector_calloc(ndims);

gsl_vector_add_constant (start, 1.0/sqrt((double) (ndims)));
g = new genome (start);

sprintf(filel, "%s.dat*, argv[l]};
outfl.open(filel);

for(trial = 0; trial < ntrials; trial++) (
g = new genome(start);
g->Size(N);
sprintf(file2, *$s.%d.dat*, argv(l], trial + 1);
outf2.open(file2);

adapted = false;

nmut [trial]l = 0;
nben{triall = 0;
nfixftrial] = 0;

generation = 0;
population.clear();
mutations.clear();
offspring.clear();
newmutations.clear();
boneyard.clear () ;
losses.clear():
population.insert(qg);

while(!adapted) (

// expand population by fitness, find w_bar

w_bar = 0.0;

N_prime = 0.0;

gptr = population.begin();

while(gptr i{= population.end()) {
N_prime += (*gptr)->Size((*gptr)->W() * (*gptr)->Size(}}:
w_bar += (*gptr)->Size() * (*gptr)->W();
gptr-(--i-;

}

w_bar /= N_prime;

N_prime = N/N_prime;

gptr = population.begin();
while(gptr != population.end()}) {

// normalize genome population so that total population = N
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(*gptr) ->Size((*gptr})->Size() * N_prime);

// calculate selection coefficient
s = ({*gptr})->W()/w_bar) - 1.0;

// threshhold for stochastic/deterministic behavior
if((*gptr}->Size() < N * 0.001) tlLoss = 1.0 / s;
else tLoss = N * 0.001;

// kill genome if s = 0 and of very small size
if(s < 0.0 && (*gptr)->Size() < N * 0.001) ¢{
//delete (*gptr):;
// population.erase(gptr);
boneyard.insert((*gptr)};
}
// if below threshhold then test for loss
if((*gptr)->Size{) < tLoss} (

// lost
if(gsl_ran_flat(rng, 0.0, 1.0) < exp(-2.0 * s5)) {
/7 delete (*gptr);
/7 population.erase(gptr) ;
boneyard. insert((*gptr));

// not lost: at threshhold
} else
(*gptr)~->Size(tLoss);

// not below threshhold: add mutants
} else {(

// number of mutant is binomially distributed
/7 {double mutants don't happen)
nmutations = gsl_ran_binomial (rng, mu,
(unsigned long int) (floor{(*gptr)->Size()))):

// generate <nmutations> new mutants to the current genome
for(i = 0; i < nmutations; i++) (
++nmutf{triall;
mtest = new mutation(({*gptr)->X()};
gtest = new genome({~*gptr));
gtest->Mutate (mtest) ;
if(gtest->W() < (*gptr)->W()} {
delete mtest;
delete gtest;
} else (
++nben{trial];
s = (gtest->W()/w_bar) - 1.0;
if(gsl_ran_flat(rng, 0.0, 1.0) < exp(-2.0 * s)) (
delete mtest:
delete gtest;
} else {
++nfix{triall;
gtest~->Size(l.0 / s);
offspring.insert(gtest);
newnmutations.insert(mtest) ;
}
}
}
}
gpLtr++;
} // while(gptr != population.end(})
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if(loffspring.empty(}) {
gptr = offspring.begin();
while (gptr != offspring.end()) (
population.insert((*gptr));
offspring.erase(gptr);
++gptr;
}
}
if(!boneyard.empty())
gptr = boneyard.begin():;
while (gptr != boneyard.end()) {
population.erase( (*gptr));
delete (*gptr):
boneyard.erase(gptr);
++QDLr;
}
}
if (lnewmutations.empty()) {
mptr = newmutations.begin();
while(mptr != newmutations.end()) {
mutations.insert((*mptr));
newmutations.erase(({*mptr});
++mptr;
}
}
if({mutations.empty(}) (
mptr = mutations.begin(};
while(mptr != mutations.end()) {
count = 0.0;
gptr = population.begin();

while(gptr != population.end()) (
count += (*gptr)->Has((*mptr));
++gptr;

}

if({count == 0.0) (

losses.insert {(*mptr));
}
++mptr;
}
}
if(!losses.empty()) {
mptr = losses.begin();
while(mptr != losses.end()) {
mutations.erase( (*mptr));
delete(*mptr) ;
losses.erase{mptr) ;
++mptr;
}
}

if(generation % log == 0 && log) )
outf2 << trial + 1 << '\t’ << generation + 1 << ‘\t' << w_bar << ‘\t*
<< nmutftriall << '\t' << nben[trial] << ‘\z’
<< nfix[trial] << '\t' << population.size() << °‘\t’
<< mutations.size() << endl;
if(generation % 1000 == 0)
cout << "." << flush;

boneyard.cleax();

losses.clear()}:;
offspring.clear();
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newmutations.clear();

++generation:

if(w_bar > goal) adapted = true;
}

k = 0;

N_prime = 0.0;

for (gptr = population.begin(); gptr != population.end(); ++gptr) {
N_prime += (*gptr)->Size();

}

cout << endl << trial + 1 << *\t' << nmut(trial] << "\c*
<< nben[trial] << '\t' << nfix{triall << endl;

k = 0;
mptr = mutations.begin();
outfl << *"#* << trial + 1 << '\t' << nmut{trial] << °*\t*
<< nben{trial] << *\t' << nfix{trial] << endl;
while(mptr != mutations.end()) (
count = 0.0;
gptr = population.begin():
while(gptr != population.end()) (
count += (*gptr)->Has((*mptr});
++gptr;
}
count /= N_prime;
Va4 if(count > 0.15)
outfl << trial + 1 << *\t*' << count << ‘'\t'
<< (*mptr)->Length() << *'\t' << (*mptr)->S(}) << endl;
delete(*mptr) ;

++mptr;

}

while(gptr != population.end(}) {
delete (*gptr):
++gptr;

}
outf2.closel();

}
outfl.close():;

}
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