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The ability of traits to adapt in response to change is one of the most fundamental 

aspects of evolution. Optimality models used to predict adaptation frequently make 

simplifying assumptions about the ability of traits to evolve freely within simple trade-

offs. However, we frequently have little understanding of genomic mechanisms 

underlying phenotypic evolution. Genetic constraints clearly limit phenotypic change, but 

the extent to which they do so is unclear. I will explore molecular and phenotypic 

responses to genomic and environmental perturbations through experimental evolution in 

T7 bacteriophage. 

First, I studied evolutionary robustness of the lysis time phenotype when lysin 

gene lysozyme was deleted. This deletion profoundly delayed lysis and thus decreased 

fitness. Evolved phages recovered much of the lost fitness and mostly restored lysis 
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timing. The recovery was mediated by changes in a tail fiber gene (gene 16) with 

muralytic activity that is generally used in genome entry.  

Next, I extended the work on lysozyme to observe the effect of increasing 

constraint on evolutionary recovery. The effects of various combinations of deletions of 

lysozyme, 17.5 (which plays a role in lysis) and 16 suggested that another gene played a 

role similar to 17.5 in lysis. The phage defective in both lysozyme and 16 did not lyse 

hosts thoroughly even after long periods of infection, suggesting that these were the only 

effective lysin genes. Adaptation of this phage on cells expressing the essential gp16 

constrained the primary adaptive pathway of recovery from lysozyme deletion. A 

mutually exclusive alternative pathway involving a variety of different genes evolved. 

The line recovered the ability to lyse normal hosts, by a mechanism involving multiple 

mutations. 

Finally, I tested the ability of T7 to adapt to an optimum lysis time. Based on 

empirical results from other phages, mature phage virions accumulate linearly inside the 

cell over time. This assumption underlies a model suggesting that availability of hosts 

determines optimal lysis time. While adaptation to different host densities caused the 

expected qualitative evolutionary changes, adaptation to conditions expected to select for 

slow lysis did not lead to the quantitative optimum. This is probably due to nonlinear 

virion accumulation. 
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2BChapter 1. Background. 

 Phenotypic traits are formed by the interaction of genetic mechanisms and 

selective pressures. Optimality models generally assume that traits evolve freely in 

response to selection within simple trade-offs. But does this approach succeed in 

predicting evolution, or must genetic details be considered? These questions are most 

easily answered in a system where selective pressures can be very well understood and 

controlled for, and where evolution at the genetic and phenotypic level can be explicitly 

tied to environmental selection pressures. 

 Experimental evolution is made possible by the large population sizes and short 

generation times of bacteriophages, viruses that infect bacteria. This method allows us to 

pinpoint adaptive selection in a way that is impossible in most systems. By looking at 

both the effect of individual mutations and the overall genetic change, we combine the 

best of genetics and genomics.  

 One powerful framework to study the genotypic nature of phenotypic adaptation 

is lysis time in bacteriophages. It is controlled by only a relatively small number of genes 

in most phages and a general molecular model has been well-supported in many phages 

(Young 1992). Lysis time is easily measured and highly variable even between phages 

with minor genetic differences (Wang 2006). Moreover, an optimality model suggests 

that lysis timing can be predicted accurately without taking genetic details into account 

(Wang et al. 1996). The fact that this optimum is determined by conditions likely to be 

highly variable in natural conditions suggests the trait is likely to frequently be under 

selection to change in nature. These conditions are also easily manipulated in the 
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laboratory, so that we can select for both slower and faster lysis. By doing so, we can 

determine the evolvability of the trait. Since a quantitative version of the model exists 

(Bull 2006), it is possible to determine whether lysis evolves to a predicted optimum 

rather than merely if it evolves towards the prediction. The combination of quantitative 

predictions and experimental evolution is a powerful approach to studying optimality that 

has rarely been employed. 

 Lysis time in T7 is particularly interesting because it does not seem to precisely fit 

the general model of bacteriophage lysis. As such, the studies here are informational 

about the genes involved in lysis itself as well as the genes involved in evolution of the 

trait. The complexity and redundancy of T7 lysis may make it difficult to fully 

understand the genetic basis of lysis without following a method similar to that used here, 

determining candidate genes as those which evolve when the primary gene is deleted or 

when the phage is put under new selective pressures.  

  This method also has the advantage of allowing us to understand the evolutionary 

redundancy of lysis genes. Complete genomes may evolve relatively easily to new 

conditions due to past selective pressure for adaptable lysis. What happens as we reduce 

the evolutionary toolkit of T7 by deleting or constraining lysis genes? Does the phage 

still overcome molecular details and re-acquire a close to optimal phenotype? Is the new 

genetic basis of the trait far less efficient than the old one? 

 In brief, this dissertation indicates that genetic details are very important to 

precise control of phenotypes, but that even when many genes are constrained 

phenotypes evolve qualitatively as expected. Also, control of lysis time is far more 

complex in T7 than the simple model of bacteriophage lysis suggests.
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3BChapter 2. Evolutionary robustness of an optimal phenotype: re-

evolution of lysis in a bacteriophage deleted for its lysin gene. 

9BABSTRACT 

 Optimality models are frequently used to create expectations about phenotypic 

evolution based on the fittest possible phenotype. However, they often ignore genetic 

details, which could confound these expectations. We experimentally analyzed the ability 

of organisms to evolve towards an optimum in an experimentally tractable system, lysis 

time in bacteriophage T7. T7 lysozyme helps lyse the host cell by degrading its cell wall 

at the end of infection, allowing viral escape to infect new hosts. Artificial deletion of 

lysozyme greatly reduced fitness and delayed lysis, but after evolution both phenotypes 

approached wild-type values. Phages with a lysis-deficient lysozyme evolved similarly. 

Several mutations were involved in adaptation, but most of the change in lysis timing and 

fitness increase was mediated by changes in gene 16, an internal virion protein not 

formerly considered to play a role in lysis. Its muralytic domain, which normally aids 

genome entry through the cell wall, evolved to cause phage release. Theoretical models 

suggest there is an optimal lysis time and that lysis earlier or later than this time decreases 

fitness. Artificially constructed lines with very rapid lysis had lower fitness than wild-

type T7, in accordance with the model. However, while a slow-lysing line also had lower 

fitness than wild-type, this low fitness resulted at least partly from genetic details which 

violated model assumptions.  
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10BINTRODUCTION 

A large body of work in evolutionary biology addresses the adaptive value of 

phenotypes, such as life history and behavioral traits, in the context of ecology (Charnov 

1982; Freeland et al. 2000; Smith 1983; Trivers 1983; Williams 1966). By necessity, 

genetics of phenotype are often ignored in these approaches, except to posit trade-off 

functions that establish boundaries on the set of possible phenotypes. These trade-offs 

often suggest optima, maximally adaptive phenotypic values under particular conditions. 

A potential limitation of this approach is that the genetic system producing a phenotype 

may constrain its evolution in ways not captured by the trade-off, thus preventing 

attainment of the optimum or directing evolution toward pathways not predicted by the 

purely phenotypic model (Lewontin 1989). For example, models of optimal behavior 

might fail if it is impossible to evolve to make a particular decision. The reliance on 

purely phenotypic models is often a necessity, because the genetic nature of phenotypes 

is almost always unknown, but the rapidly advancing science of genomics may allow us 

to accommodate their genetic bases. A precedent for this marriage of phenotype with 

genetic details already exists in bacteriophage lysis. In this study, we examine the genetic 

basis of lysis recovery to an optimum. 

Lysis, a violent rupture of the bacterial cell, is the means by which most 

bacteriophages cause the release of their progeny from the bacterial host. The timing of 

lysis is a major fitness component for a phage. It may be considered equivalent to the age 

of maturity for organisms that die after their first reproduction, such as salmon and 

century plants. Early lysis of a phage-infected cell has the drawback of releasing few 

progeny but the benefit of a short generation time, the latter being especially 
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advantageous when hosts are abundant. Conversely, late lysis allows phage to take better 

advantage of a particular host by producing more progeny, an advantage when hosts are 

scarce. There is thus an optimal lysis time which varies with host density and host 

physiology (Abedon et al. 2001; Abedon et al. 2003; Wang et al. 1996; Wang 2006), and 

this dependence of the optimum on ecological variables means that lysis time is likely to 

evolve in nature in response to changing environmental variables.  

The genetic basis of lysis of most known phages is relatively simple. All phages 

containing dsDNA have some form of endolysin gene which provides the critical lysis 

function - an enzyme with muralytic activity that degrades the peptidoglycan/murein cell 

wall but which, by itself, cannot access the cell wall. Therefore, most of these phages 

have additional genes, holins, thought to control lysis timing. Holins permeabilize the 

inner membrane, allowing endolysins access to the cell wall at the appropriate time 

(Young 1992). Thus, lysis offers the unique combination of a phenotype that can be 

addressed from an ecological optimality perspective and whose genetic basis is known. 

If lysis is generally controlled by relatively few genes, as is currently thought, 

how does a phage evolve in response to elimination of its endolysin gene? In particular, 

will the phage be permanently debilitated or will it reinvent a mechanism of lysis through 

compensatory evolution, and if so, how many and which genes will be involved? From 

the optimality perspective, will the newly evolved lysis phenotype be similar to or as 

efficient as the original, and does the optimality model apply to lysis in T7? These 

questions motivate our study. 

Bacteriophage T7 was deleted for its lysozyme gene (3.5), which resulted in a 

profound delay in lysis time and a large reduction in fitness. A partial deletion 
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inactivating only lysozyme’s muralytic activity yielded similar results. The debilitated 

phages were then adapted to higher fitness and analyzed to assess the nature of recovery 

of the lysis-proficient phenotype. Lysis and fitness recovery was extensive and was 

caused primarily by mutations in gene 16, which is not thought to effect lysis in wild-type 

T7. Intermediate lysis times appear to have higher fitness than extreme times, 

qualitatively suggesting an optimum, though the details of the system indicate that the fit 

between expectations and the model observed may not reflect the assumed tradeoff. 

29BT7 lysis. 

The only T7 proteins known to function in lysis are the products of genes 3.5 

(lysozyme) and 17.5 (holin). T7 lysozyme has two major functions in the phage life 

cycle, only one of which concerns cell lysis. T7 lysozyme also regulates late gene 

expression and DNA packaging by binding T7 RNA polymerase (RNAP). When 

lysozyme binds to T7 RNAP, it increases the rate of abortive transcription initiation, 

especially at class II promoters (Villemain and Sousa 1998). This leads to preferential 

productive transcription from class III promoters and thus to increased expression of 

structural genes whose products are required in large quantities late in the T7 life cycle 

(McAllister and Wu 1978). In turn, T7 RNAP inhibits the amidase activity of lysozyme 

(Cheng et al. 1994). Finally, when bound to lysozyme T7 RNAP pauses more efficiently 

at the CJ terminator, which plays an important role in packaging (Lyakhov et al. 1997). 

For this reason, production of viable phage is substantially reduced in infections with a 

T7 lysozyme mutant that cannot bind T7 RNAP, even if that mutant lysozyme has normal 

lysis activity (Zhang and Studier 2004). 
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T7 lysozyme (gene 3.5) is also an amidase, which breaks up the peptidoglycan 

wall (Inouye et al. 1973). T7 phages lacking lysozyme generate many viable particles 

trapped within sedimenting material (Silberstein and Inouye 1975), although they do lyse 

slowly. General molecular models of cell lysis by bacteriophages suggest that lysozyme 

builds up inside the cell, but is blocked from access to the cell wall by the inner 

membrane. At some point, the phage-encoded holin, (gp17.5 in T7) triggers the 

permeabilization of the membrane, which exposes the peptidoglycan wall to lysozyme. 

The result is rapid lysis of the cell (Wang et al. 2000; Young 1992). This model is 

supported in T7 by the fact that cells bearing a plasmid encoding T7 lysozyme lyse when 

mild detergents or freeze-thawing are used to disrupt membranes (Moffat and Studier 

1987). Interestingly, 17.5 mutants show only a modest delay in lysis and produce 

essentially normal plaques at wild-type efficiency (unpublished observations of RHH and 

IJM), although they have not been extensively studied. 

Another potential candidate for T7 lysis is gene 16. The product of the essential 

gene 16 is an internal core protein of the virion that is ejected into the host cell at the 

initiation of infection (Molineux 2001). The amino acid sequence similarity of the N-

terminal region of gp16 with the E. coli lytic transglycosylase SltY led to the suggestion 

that gp16 plays a role in lysis (Engel et al. 1991). Gp16 has been shown to have a 

muralytic activity that is important at the initiation of infection (Moak and Molineux 

2000; Moak and Molineux 2004). Gp16 is thought to locally hydrolyze the cell wall, 

thereby assisting the translocation of the phage genome from the infecting virion into the 

cell. Supporting this idea, mutations at glutamate 37, the catalytic residue of the lytic 

transglycosylase, cause a delay in genome entry under conditions where the cell wall is 
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more highly cross-linked, such as low temperatures or when cells are at high density 

(Moak and Molineux 2000). It was concluded that the mutations had no effect on lysis 

time that could not be explained as a result of this delay. However, the experiments were 

conducted using phages that contained gene 3.5, which may mask a small effect of gp16 

on lysis, and the lytic transglycosylase domain of gene 16 presents an obvious candidate 

for acquisition of new lytic enzyme activity. Indeed, the muralytic activity of the T4 

baseplate protein gp5 plays a similar conditionally essential role in effecting T4 genome 

entry under sub-optimal conditions of growth (Kanamaru et al. 2005). Furthermore, 

mutations in T4 gene 5 can compensate for T4 e (lysozyme) defects (Kao and McClain 

1980a; Nakagawa et al. 1985).  

11BMETHODS 

30BCell and phage lines.  

T7 bacteriophage is a dsDNA virus with a 40 kb genome that encodes 59 proteins 

(Molineux 1999). In this study, we used three strains of T7: (i) a wild-type T7+ (GenBank 

AY264774) differing from the reference line (Dunn and Studier 1983) by a one bp 

insertion in the non-essential gene 0.6A (Bull et al. 2003), (ii) T7"3.5, lacking all but the 

first six codons of the 152 amino acid lysozyme gene 3.5 (Zhang and Studier 2004) and 

(iii) AFK136, in which codons 130-135 of 3.5 are deleted, inactivating the lysis activity 

of lysozyme without affecting its binding to T7 RNAP (Zhang and Studier 2004). 

Nucleotide numbers used here are those of wild-type T7 as given in GenBank V01146. 
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 Plasmids with cloned phage genes were used to complement phage defects and 

minimize phage evolution while growing lysates. pAR4521 (Zhang and Studier 2004) 

carries T7 gene 3.5 downstream of its closest natural promoter, T7 ø2.5, and was used to 

grow the original T7"3.5 strain. pTP298 expresses the !"lysis genes R, Rz and Rz1 from 

the lacUV5 promoter (Rennell et al. 1991), complementing the lack of T7 lysozyme 

activity (Zhang and Studier 2004), and was used to make lysates of the original AFK136 

and the evolved phage T7"3.58. See below for explanation of the subscript. 

 Escherichia coli BL21 was used as host for plasmids. IJ1126 [E. coli K-12, F-, 

recC22, sbcA5, endA, Gal-, thi, Su+"(mcrC-mrr)102:Tn10] was used for transfections of 

T7 genomic DNA. IJ1133 [E. coli K-12"lacX74 thi!(mcrC-mrr)102::Tn10], a strain 

lacking type I and other restriction loci, was used as host for all experimental evolutions 

and other applications (Garcia and Molineux 1996). 

31BPassaging.  

 Cells from frozen stocks of IJ1133 were added to a 125 ml flask containing 10 ml 

LB (10 g NaCl, 10 g Bacto tryptone, and 5 g Bacto yeast extract per liter) at 37° in an 

orbital water bath (200 rpm) and allowed to grow for one hour to a density of 1-2 x 

108/ml, at which point 104-107 phage were added from a variable volume less than 200 ul. 

The culture was then incubated for 20-60 minutes, which sometimes resulted in complete 

lysis of the culture, before an aliquot of the infected culture was transferred to the next 

passage. A sample of the completed passage was treated with chloroform and stored, 

preserving free phage and phage particles already formed within cells. At the beginning 

of each day’s passages, the stock from the previous passage provided the starting phage 
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for transfer. A subscript denotes the passage number of a phage sample. Thus, T7"3.50 

(the original stock of T7"3.5) was passaged for 43 hours across 62 flasks to yield 

T7"3.562. T7 AFK1360 was passaged for 25.5 hours to yield AFK13643. T7+
0, which had 

already been passaged in this laboratory under similar conditions on IJ1133 for some 

time, was passaged for 20.5 additional hours to create a control for the expected fitness 

increase in the absence of any initial genomic defect (T7+
61). Some populations were 

analyzed as isolates (in which it is easier to determine the phenotypic effects of particular 

mutations), others as lysates (in which polymorphisms can be observed). Population sizes 

differed between passages and phage lines, making it difficult to draw conclusions about 

relative evolutionary rates, but because our main interest was in the attainable fitness 

from short-term adaptation, passaging continued until fitness increase, as estimated by 

the time it took passaged phage to lyse cultures from a low multiplicity of infection 

(moi), began to slow. We cannot rule out the possibility that further evolution might have 

yielded further adaptation. The mutagen N-methyl-N'-nitro-N-nitrosoguanidine was used 

at a concentration of 0.5 µg/ml for a single passage (T7"3.554) in an attempt to promote 

adaptation by increasing the mutation rate. 

32BPhenotypic assays.  

We measured viral fitness in a procedure similar to that used for passaging, 

relying on the fact that the phage population achieves a stable age-of-infection after a few 

phage generations. Thereafter, phage densities in the culture follow approximately 

exponential growth. Fitness was determined at low moi (below 0.1) across 2-5 

consecutive transfers, based on the rate of increase in total phage numbers (as measured 
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from titers) from the end of the first or second passage to the last passage. This estimate 

minimizes the effect of synchronous infection, which can otherwise yield misleading 

fitness measures. Each fitness (doublings/hour) is calculated as [log2(Nt/N0)]/t, where Nx 

is the number of phage in the flask at time x hours, corrected for dilutions over multiple 

transfers. 

For lysis time assays, exponentially growing cells (as above) were infected with 

phage at a multiplicity of ~5 to achieve synchronous infection of essentially all cells. A 

Klett-Summerson photoelectric colorimeter (Klett) was used to measure culture turbidity 

at time points across the lysis window. To obtain an average lysis time, data were fitted to 

a cumulative normal distribution using an empirical least-squares procedure, with 

suitable truncation of early readings to omit the increase in turbidity that often occurs 

prior to the onset of lysis. (The actual fit was to 1.0- #($,%2,t), where #($,%2,t) is the 

distribution function of a normal density with mean $, variance %2, and integrated from 0 

to t.) From this we derived both a mean lysis time of infected cells and the slope of the 

lysis curve at the mean (Fig. 1.2). Each reported lysis value represents at least three 

independent replicate curves. 

Phage release assays involved infecting cells at an moi of 5, then diluting 

1:100,000 after 5 minutes to decrease further adsorption. We then titered phage from 

samples at various time points, before and after treatment of the sample by chloroform. 

This procedure serves two purposes. Initially, treatment with chloroform kills cells that 

have been infected by phage and spares those that have not infected cells; without 

treatment, both will form plaques. Thus we can compare these titers to determine the 
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initial number of infected cells, which is required to calculate burst size. Later, after 

phage production has begun, the chloroformed sample is expected to form a plaque for 

each phage produced inside the cell, while the untreated sample will form only one 

plaque per infected cell. Chloroform alone did not release appreciable phage from 

AFK1360-infected cells (Fig. 6.2C), and so for this we used lysis by egg white lysozyme 

and EDTA, followed by chloroform treatment. Burst sizes for each replicate were 

calculated as follows: (average titer of phages without chloroform treatment after phage 

increase stopped) ÷ (the number of initially infected cells, calculated from time points 

before 9 minutes).  

33BSequencing and statistical tests.  

Sequences were determined by dideoxy chain termination reactions using ABI 

Big Dye mix (version 3.0) and an ABI3100 automated machine. Sequencing templates 

were either PCR products or the phage genome. Sequence files generated by the 

ABI3100 were analyzed with DNA Star software (v4.05). We sequenced the entire 

genome of T7"3.562 and T7+
61, gene 16 of AFK13643, and regions of other genomes in 

which mutations were expected based on their presence in T7"3.562. Primers and PCR 

conditions used are available upon request. All statistical comparisons used two-tailed t-

tests. 

34BEngineered recombinations.  

Genomic fragment exchanges between phages were used to associate fitness and 

lysis effects with particular mutations. DNA from different strains of T7 was digested 
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with appropriate restriction enzymes, fragments were purified, complete sets of fragments 

were ligated, and reaction products were transfected into competent IJ1126 cells. 

Selected regions of phage isolates were then sequenced from PCR products to verify the 

recombinant status. The phages constructed by this method were (i) AFK136swap, which 

is AFK1360 plus four mutations from T7"3.562: 16G14S , 16Q89H , 16N117K and 17T118A (ii) 

T7+
swap, which has the same four mutations of (i) but in a T7+

0 genetic background, and 

(iii) T7"3.5,16Q89H (from an Mlu I fragment swap between T7+
0 and T7"3.522) which 

differs from T7"3.50 by the presence of the gene 16Q89H mutation and which was 

sequenced to ensure a lack of gene 1 mutations (Table 1.2). 

12BRESULTS 

Adaptations to compensate for lost lysozyme functions were carried out in two 

phage lines: T7"3.5, in which both functions of lysozyme are lost, and AFK136, in which 

only lytic activity is destroyed. These two adaptations can be considered replications of 

each other for any similarities that evolved; any differences could be due to the different 

starting genotype or stochastic effects. For each line we observed fitness, lysis time, and 

genome sequences both before and after experimental adaptation (see Table 1.2 for strain 

details). 

35BPhenotypic evolution of lysis time and fitness.  

On host IJ1133 at 37°, T7+
0 had a fitness of 35.6 doublings/hr, and a calculated 

mean/median lysis time of 14.3 min. In contrast, fitness of the phage in which the entire 

lysozyme gene was deleted (T7"3.50) was only 10.9 doublings/hr, while lysis was 
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delayed to 28.2 min and highly asynchronous (Fig. 2.2, Table 2.2). AFK1360 was 

similarly affected by loss of just the amidase activity of lysozyme, with fitness reduced to 

11.4 doublings/hr and lysis delayed to 24.6 min. There was no significant difference in 

either phenotype between the two lysis-deficient lines prior to adaptation, suggesting that 

the loss of lysozyme’s regulatory function had relatively little fitness effect on lysis-

deficient phages compared to the loss of lysis activity. The intracellular phage yield of 

T7"3.50 phages is about one third that of AFK1360 or wild-type T7 (Zhang and Studier 

2004), which may not lead to a large effect relative to the logarithmic scale of fitness 

employed. 

After adaptation, both mutant lines evolved to lyse more rapidly (T7"3.562 12.4 

min, AFK13643 11.7 min, Fig. 2.2, Table 2.2). Fitness also improved, evolving to 32.4 

and 35.4 doublings/hr in T7"3.562 and AFK13643, respectively. While there was again no 

significant difference in lysis time between the evolved lines, AFK13643 had a 

significantly higher fitness than T7"3.562 (P<0.004; two-tailed t-test). Although it is 

tempting to attribute the lower evolved fitness of T7"3.562 to its loss of 3.5 regulatory 

function, replicate evolutions of each line would be required to support such a 

conclusion. The similarity of both evolutions is the more interesting result. Both evolved 

mutants lysed faster than T7+
0 (P< 0.003; two-tailed t-test), but slower than evolved T7+

61 

(Table 2.2). In addition to a shorter time to lysis following infection, adaptation also led 

to more abrupt, more synchronous, lysis. This observation suggests that lysis by the 

parental amidase-defective phages has a stochastic component due to the loss of a control 

mechanism present in wild-type T7. Whether the same control mechanism was reimposed 
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during adaptation or whether a new mechanism evolved cannot be determined from these 

data. 

Fitness improvement in T7"3.562 could be caused by evolution compensating for 

the lysozyme deletion and/or by adaptation to the serial passaging conditions. The host 

strain used in this work was an E. coli K-12, rather than an E. coli B derivative and the 

temperature of propagation was 37°C rather than the more usual 30° (Studier 1969). 

Indeed, considerable adaptation of T7+ to the passaging conditions occurred, from 35.6 to 

41.9 doublings/hr, while lysis time also shortened, from 14.4 min to 10.1 min (Fig. 2.2, 

Table 2.2). 

36BMolecular evolution.  

Comparison of sequences between T7"3.562 and the published sequence for T7+
0 

revealed eight point mutations and a single base deletion (Table 3.2). Their presence was 

also assayed in passages 8 and 22. We considered which of these eight mutations could 

compensate for the lysozyme defect. None were in genes known or thought to mediate T7 

lysis. Furthermore, the mutation in gene 17 has been seen in other adaptations to similar 

passaging conditions and hosts (Springman pers. comm.). It is thought to increase the rate 

of virion adsorption to cells, and is not likely to be compensatory for a lysozyme defect.  

In order to identify mutations that might be non-compensatory, T7+
0 and T7"3.562 

were allowed to recombine in IJ1133. The intersection of plaques of each phage should 

contain recombinants from cells that were coinfected. Phages were resuspended and 

passaged for 10.5 hours on IJ1133 to facilitate fixation of the fittest genotype. 

Recombination between T7+
0 and T7"3.562 should create a mixture of recombinant 
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genotypes that contain different mutations present in T7"3.562; outgrowth allows those 

mutations advantageous in the presence of lysozyme to spread through the population 

(Rokyta et al. 2002). The resultant lysate (T7+/"3.562, Table 1.2) was sequenced. It 

contained the wild-type allele for several of the T7"3.562 mutations, including gene 3.5, 

which is consistent with the higher fitness of T7+
61 relative to T7"3.562. However, the 

recombinants carried four mutations from T7"3.562, two in gene 16 and one each in 

genes 10B and 17. This result suggests that these four mutations (denoted by * in Table 

3.2) are adaptive under the conditions of growth and are not necessarily compensatory for 

the lysozyme defect. Furthermore, three of these four mutations also arose in T7+
61. 

However, as will be shown below, the gene 16Q89H mutation conferred a larger benefit in 

a lysozyme-deficient background and is thus in part compensatory, and we cannot rule 

out a similar possibility for the other mutations. 

37BIdentifying mutations compensatory for the loss of lysozyme activity.  

T7"3.562 and AFK13643 each carried mutations in gene 16, which we suspected 

restored rapid lysis due to their presence in the muralytic domain. Some of the mutations 

were polymorphic within the culture, based on sequences from a number of isolates (Fig. 

3.2), but every isolate carried at least two gene 16 mutations. All gene 16 mutations that 

evolved in the lysis-deficient lines were located in the lytic transglycosylase domain 

(Engel et al. 1991) of the protein. A precedent for this result is found with T4, where 

mutations in gene 5, a base-plate protein that has muralytic activity, compensate for the 

loss of e gene lysozyme activity (Kao and McClain 1980a; Nakagawa et al. 1985). 
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We directly evaluated the effect of gene 16 mutations and found that they indeed 

caused rapid lysis. First, phages from the T7"3.562 lysate were found in which the only 

known difference was the presence (genotype A, Fig. 3.2) or absence (genotype B) of 

16G14S, although both isolates also carried the 16Q89H and 16N117K mutations. Genotype A 

lysed significantly faster than genotype B, at 11.6 minutes instead of 12.4 min (Table 2.2, 

P<0.04; two-tailed t-test). Second, two recombinant phages were constructed in vitro: 

16G14S, 16Q89H, and 16N117K (from T7"3.562) were introduced into wild-type T7 and into 

the amidase-defective mutant AFK1360 (T7+
swap and AFK136swap , Table 1.2). Both 

phages also carry a gene 17 mutation that is not thought to affect lysis. AFK136swap had a 

fitness of 31.9 doublings/hr (Table 2.2), much higher than AFK1360 (11.4 doublings/hr; 

P<0.0001; two-tailed t-test) and a dramatically reduced lysis time (12.9 min instead of 

26.5, P<0.0001; two-tailed t-test, Fig. 4.2). However, both the fitness and lysis time of 

AFK136swap and T7+
swap were very similar and statistically indistinguishable. Thus, the 

presence or absence of gene 3.5 lysis activity is mostly or entirely masked by the gene 16 

mutant proteins.  

In view of these results, we considered whether the mutations 16G14S and 16Q89H, 

which were initially identified as possibly non-compensatory for the lysis defect (Table 

3.2; T7+/"3.562) were actually compensatory. A phage was constructed with a lysozyme 

deletion and the gene 16Q89H mutation (T7"3.5,16Q89H, Table 1.2). The gene 16Q89H 

mutation has a major influence on both lysis time and fitness in T7"3.5, increasing 

fitness by 10 doublings/hr and speeding lysis by 12 min (Fig. 5.2 and Table 2.2; compare 

T7"3.50 and T7"3.5,16Q89H). On a log scale of fitness, this single mutation accounts for 

more than half the combined effects that accrued during adaptation of T7"3.50 to 
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T7"3.562. It also changes T7"3.50 fitness and lysis more than T7+
0 changed during its 

adaptation to T7+
61, during which time the gene 16Q89H mutation also arose. Thus, while 

the 16Q89H mutation is beneficial to a wild-type phage, it is much more beneficial in the 

absence of lysozyme activity. The 16Q89H mutation is therefore compensatory for the loss 

of lysozyme activity. 16G14S and the other mutations found in T7+/"3.562 may also be 

compensatory, but this has not been determined. 

The fitness of evolved AFK13643 is approximately the same as that of unevolved 

T7+
0, but it is well below that of evolved T7+

61. Yet the lysis time of AFK13643 is closer 

to the lysis time of T7+
61 than T7+

0. It is thus plausible the gene 16 mutations have 

pleiotropic effects that reduce fitness beyond the predicted effect from lysis time. 

Reducing the efficiency of genome entry is one possibility, though we lack direct 

evidence to support the idea. 

38BBurst sizes and phage release.  

The burst size of T7+
0 was estimated at 533 phage/infected cell under these 

conditions of high moi, temperature and host, and was significantly greater than both that 

of AFK136swap, with its burst size of 237 (P<0.03; two-tailed t-test) and that of AFK1360, 

with its burst size of 81 (P<0.005; two-tailed t-test).  

Although turbidity measurements are frequently used to monitor cell lysis 

(Abedon 1992; Zhang and Studier 2004), a drop in light scattering actually reflects a loss 

of refractility of cells and is not a measure of cell lysis per se. The decline in cell culture 

turbidity that underlies our lysis time values could therefore be caused by other factors. 

However, in T7+
0, AFK136swap, and AFK1360, phage release and lysis time roughly 
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correspond (Table 2.2, Fig. 6.2). In AFK1360, however, while phage escape from 

untreated cells follows generally the same pattern as turbidity loss, the “lysis” observed 

may be fundamentally different from that of the other two lines. At no point does 

chloroform treatment appreciably increase the amount of phage release, most likely 

because chloroform targets the membrane and in this line there is insufficient muralytic 

activity to then break through the cell wall (Fig. 6.2C). Artificial lysis by the addition of 

lysozyme plus EDTA, followed by chloroform, indicates that most phage production 

occurs by 15.5 minutes, at around the time T7+
0

 
lyses. This result suggests that holin may 

be killing the host by permeabilizing the membrane and causing the loss of all cellular 

metabolism. This would halt intracellular phage production by 15 minutes after infection, 

even though phage release may continue. This finding is of fundamental importance to 

our interpretation of the fit of the data to the optimality model (see Discussion.) 

39BEffect of the gene 1 mutation.  

The mutation in gene 1 (T7 RNAP) was the first substitution detected in the 

T7"3.5 line (Table 3.2). Lysozyme mutants unable to bind T7 RNAP (but with normal 

peptidoglycan hydrolytic activity) are greatly debilitated, and at least 18 gene 1 changes 

have been shown to compensate for this loss of function (Lyakhov et al. 1997; Zhang and 

Studier 1995; Zhang and Studier 2004). The selection for this class of gene 1 mutants by 

Zhang and Studier was not exhaustive, and while the 1T794A mutation we found in 

T7"3.562 was not previously observed, it likely plays the same role. A relatively small 

effect of this mutation in the fitness assay employed here is evident by comparing 

T7"3.50 and T7"3.58, the latter carrying the gene 1 mutation, with respective fitnesses of 
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10.9 and 12.0 doublings/hr and lysis times of 28.2 and 25.4 min (Table 2.2, Fig. 5.2). 

These differences are not significant. Although restoration of DNA replication and 

packaging activities in the absence of a RNAP-lysozyme complex is fully restored by the 

gene 1 mutations, only a three-fold increase in intracellular phage results (Lyakhov et al. 

1997; Zhang and Studier 1995; Zhang and Studier 2004). Within a lysis-defective 

context, this increase has little effect on fitness as measured here, which expresses fitness 

on a logarithmic scale in doublings per hour. The number of mutations that restore 

intracellular phage DNA metabolism and packaging to T7"3.50 may be sufficiently large 

that there is a high probability that one may sweep through the phage population before a 

possibly more restricted set of mutations compensating for the lysis defect. 

We attempted to test the possibility that, in the fitness assay employed here, 

defective cell lysis masks the within-cell benefits caused by a gene 1 mutation. If this is 

the case, one would expect that the gene 1 mutation would have a greater effect on fitness 

in a phage with rapid lysis. The fitness of T7"3.5,16Q89H was therefore compared directly 

to T7"3.522. Both phages carry the 16Q89H mutation, which shortens the time of lysis. 

However, T7"3.5,16Q89H lacks the 1T794A mutation of T7"3.522 (T7"3.5,16Q89H also lacks 

1.6R20H, but gene 1.6 is nonessential and has no known function). If rapid lysis amplifies 

the effect of a gene 1 mutation restoring intracellular DNA metabolism, T7"3.522 should 

have a much higher fitness than T7"3.5,16Q89H. In contrast to this expectation, T7"3.522 

has a fitness only 2.5 doublings/hr higher than T7!3.5:16Q89H (P<0.03; two-tailed t-test, 

Fig. 5.2). This difference was not significantly greater than that between T7"3.50 and 

T7"3.58 (P<0.25) by a 4 way two-tailed t-test (Bull et al. 2000). Gene 1 was sequenced in 

an isolate from the end of each T7"3.5,16Q89H fitness assay and no gene 1 mutation arose 
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during the assay. With the caveat that measurements of lysis are indirect and may not 

reflect enhanced phage release from cells, this result suggests that the loss of the 

regulatory activity of lysozyme on T7 RNAP has a relatively small effect in the fitness 

assay we employed.  

13BDISCUSSION 

This study illustrates the evolutionary origin of a new genetic basis for a phage 

fitness component, lysis. A phage deleted for an important lysis gene was adapted by 

serial passage to determine if and how it would improve fitness and lysis. Although the 

mean lysis time of the initial phage was approximately 3 times as long as that of wild-

type and fitness was 25 doublings/hr less, most of the difference was compensated for 

during adaptation. The mean lysis times of the adapted deletion mutant and adapted wild-

type phages were within 30% of each other and fitness differences were reduced to less 

than 20% on the log2 scale.  

Evolutionary robustness, a concept similar to evolvability, is the ability to re-

evolve a phenotype or to evolve new phenotypes. In this study, similar recoveries of lysis 

timing were seen in two phages with different, related, lysis defects, suggesting 

recurrence was not dependent on identical starting conditions (Lehman 2004). Although 

the adapted defective phages had slightly longer lysis times than the adapted T7+
61, the 

differences were small relative to the magnitude of the original defects. This similarity 

can be explained by a combination of strong selection for faster lysis (relative to lysis-

defective mutants) and by evolutionary robustness of the trait.  
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The majority of the fitness increase that occurred during adaptation was 

associated with gene 16, an internal virion protein. The mutations that arose in gene 16 to 

compensate for the loss of lysozyme activity all lie within the lytic transglycosylase 

domain of the protein, which plays a role in genome entry by hydrolyzing peptidoglycan 

but which has no detectable effect on lysis in wild-type phage (Kemp et al. 2004; Moak 

and Molineux 2000; Molineux 2001). These mutations recovered much of the original 

phenotype, including release of phage from cells by chloroform treatment. 

This observation is similar to that in phage T4. The T4 e gene product codes for 

the lysozyme (the endolysin) that helps lyse the cell at the end of an infection. T4 e 

mutants do not lyse, but suppressor mutations that alter the baseplate protein gp5 restore 

lysis (Kao and McClain 1980a). The gene 5 mutation conferring this phenotype has been 

shown to affect the lysozyme domain of gp5 (Takeda et al. 1998). Most dsDNA phages 

have been shown to contain a virion-associated muralytic activity that aids in genome 

penetration of the peptidoglycan wall at the beginning of infection (Moak and Molineux 

2004), and most also code for an endolysin which, like T7 3.5 and T4 e lysozyme, 

normally functions from inside the cell to catalyze cell lysis at the end of the infection. 

Thus, evolutionary robustness of lysis time may frequently involve the modification of a 

muralytic enzyme that normally acts from outside the cell to make it act inside.  

Differences remain, however; T4 gp5 is responsible for the phenomenon known 

as lysis-from-without, where cells infected at a high multiplicity immediately lyse (Kao 

and McClain 1980a; Kao and McClain 1980b; Nakagawa et al. 1985). T7+
0 does not 

exhibit lysis-from-without and preliminary data (not shown) suggests that T7+
swap also 

does not. 
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Although the 16Q89H mutation was shown to have a major effect on the timing of 

lysis, and was the first 16 mutation to arise in T7"3.5, further adaptation led to the 

acquisition of additional mutations. Interestingly, polymorphism arose among phages in 

the final lysates of both T7"3.5 and AFK136. All contained 16Q89H or the related 16Q89L 

but also harbored one or more additional mutation. Phages carrying 16G14S lysed almost a 

minute, about 7%, faster than otherwise isogenic phages that lacked the mutation. 

However, both species coexisted in lysates, as did other combinations of gene 16 

mutations in T7"3.562 and AFK13643 derivatives. The variation may indicate the phage 

had not yet achieved the exact optimum balance between mediating lysis and performing 

other gp16-related functions, which include both morphogenesis and the initial steps of 

infection. The multiple functions of gp16 might constrain lysis time evolution. A lack of 

mutations of small effect might also constrain lysis time evolution to maintain 

polymorphism. In this case, phages with or without a mutation might straddle an 

optimum lysis time. At the end of some passages, such as those that ended in lysis, there 

was a high moi, and this introduces the possibility that polymorphism may have been 

maintained partially by frequency-dependent selection. Slight variations in passaging 

conditions are also a possibility.  

 It is of interest that phages SP6 and K1-5, distant relatives of T7, lack any 

amino acid sequence homologue to gp3.5 and code for only one protein with a lysozyme 

motif (Moak and Molineux 2004; Scholl et al. 2004). This motif is associated with an 

internal core protein that exhibits muralytic activity in vitro (Moak and Molineux 2004; 

Scholl et al. 2004). Because the enzyme activity in SP6 and K1-5 virions is different from 

that in T7 (lysozyme versus lytic transglycosylase) and because the activity is fused to 
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different virion proteins, it was suggested that muralytic activity was acquired after the 

T7 and SP6 phage groups had separated during evolution (Moak and Molineux 2004). 

This idea then predicts that a common ancestor lacked a virion-associated muralytic 

enzyme, although it may have harbored an endolysin function. Alternatively, like extant 

small single-stranded DNA and RNA phages (Young et al. 2000), this ancestral T7/SP6 

may have been more dependent on host proteins to mediate cell lysis. It would be 

informative to determine the lysis capacity of a T7 mutant lacking both gp3.5 amidase 

and gp16 lytic transglycosylase activities, or that of an SP6 mutant lacking its lysozyme 

activity.  

Phages such as SP6 and K1-5, which appear to have only a single muralytic 

enzyme on an internal core protein, suggest that the evolvability of gene 16 in 

compensating for the lack of lysozyme may be a recovery of past function – that a T7 

ancestor lacked a lysozyme gene, and gp16 acted both at the initial stages of infection and 

as an endolysin. If so, experimental evolution of T7"3.5 may have successfully 

recapitulated an ancestral state. This might help explain the ease with which both the 

regulatory and lytic functions of lysozyme are compensated. In addition, the lysis-

affecting mutation 16Q89H that arose in T7+
61 suggests that environmental fluctuations 

alone, without major genomic perturbations, may favor a gene 16 with the evolutionary 

capacity to regulate lysis. 

As a major phenotype of T7 amidase-defective mutants was a delay in lysis, a 

likely target of adaptation was the gene 17.5 holin. Lysis time in phage ! infected cells is 

controlled by the allelic state of the S holin gene (Chang et al. 1995). Mutations affecting 

holin were not found in the lysozyme-deficient lines but were observed in the adapted 
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wild-type T7+
61, whose lysis time was faster than that of T7+

0. Even if the 17.5 holin 

mutation speeds lysis in T7+
61 (which we have not determined directly), it may not be 

advantageous to T7"3.562 or AFK13643 if permeabilizing the membrane is not the rate 

limiting step to faster lysis.  

40BImplications for evolution of the optimal phenotype.  

If genetic details constrain evolution, an understanding of phenotype evolution 

cannot be obtained in ignorance of the underlying genetics. Lysis time is a phenotype 

conducive to optimality approaches (Wang et al. 1996), and we have shown here that 

lysis time re-evolves to approach that of the wild-type even when a major lysis gene is 

removed.  

The prediction of an optimal lysis time is based on a tradeoff between generation 

time and fecundity/burst size (Abedon et al. 2001; Wang et al. 1996). Larger bursts are 

better, except that they increase generation time because they can usually only be 

achieved by delaying lysis. At a phenotypic level, this study provides a test of the 

optimality model, and the lysis time and fitness data can be interpreted as qualitatively 

supporting the model, as evidence from other phages does (Abedon et al. 2003), 

especially # (Wang 2006). We have no a priori basis for predicting what the optimum 

lysis time should be, but an optimum is suggested from the fact that phages with 

intermediate (but short) lysis times (T7+
0) had significantly higher fitnesses than those at 

shorter (T7+
swap) and longer (AFK1360) extremes (Fig. 4.2).  

On the surface, therefore, these results qualitatively support the optimality model. 

Yet in understanding the molecular details, this conclusion becomes suspect. The reason 
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involves gene 17.5, the holin. Under normal conditions, phage build up approximately 

linearly with time inside the cell, as demonstrated for $X174 and T4 (Hutchinson and 

Sinsheimer 1966; Josslin 1970) among others, and it is this accumulation on which the 

optimality expectation is based. Here, in contrast, abolition of gp3.5 lysis function did not 

greatly extend the period of phage production, probably because the holin did not evolve. 

Once holin permeabilizes the membrane, at roughly the time of T7+
0 lysis, the host cell 

may cease to produce new proteins, halting phage production and eliminating the tradeoff 

that is a fundamental assumption of the optimality model. 

There may also be additional violations of the model. It is possible that phage 

release is not complete in AFK1360, because some phage are damaged or inextricably 

entangled in the cell wall, which might explain the smaller burst size of AFK1360 relative 

to T7+
0. Also, the lines were chosen because they are thought to differ chiefly in lysis 

mutations. However, a pleiotropic effect of the gene 16 mutations on the rate or 

efficiency of genome entry or phage morphogenesis cannot be ruled out.  

These possible violations demonstrate the difficulties of testing optimality models 

with purely phenotypic approaches. Researchers often argue that expectations of 

optimality models are not met due to genetic constraints, but genetic constraints might 

also lead to results that apparently support optimality models when, in fact, the 

assumptions of the model are violated. The genetic details of a system must be taken into 

account and used to inform further work, even when empirical data qualitatively support 

a model. This may be particularly relevant when the parameters of a tradeoff are 

manipulated experimentally, under artificial conditions (environmental or genomic) to 

which organisms have had no time to adapt. 
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4BChapter 3. Alternative pathways of evolvability and genetic redundancy 

of lysis in T7 bacteriophage. 

15BABSTRACT 

 By knocking out genes and constraining gene networks, we can test the functional 

and evolutionary redundancy of genomes. If gene networks are evolutionarily redundant 

phenotypes may be able to re-evolve readily, and increasing constraint will have 

relatively little effect. One tractable phenotype is bacteriophage lysis timing, an important 

life history trait that controls when the virus breaks open its host cell in order to infect 

new bacteria. At least three genes are strongly suspected to play a role in T7 

bacteriophage lysis. Gene 3.5 (lysozyme) encodes a lysin, gene 16 a secondary lysin that 

evolves to lyse cells effectively when 3.5 is deleted, and 17.5 produces a holin. T7 was 

deleted for various combinations of these genes in order to determine the initial effects as 

well as the mechanisms by which lysis time re-evolved. 17.5 had little effect on lysis, 

suggesting the presence of another holin. 3.5 and 16 were the only effective phage lysins 

prior to evolution. However, when a 3.5-defective phage was allowed to evolve with 16 

evolution constrained, an alternative pathway of evolvability recovered lysin activity. 

This study suggests that two genes (6.3 and 19.5) have the potential to play roles in lysis 

even if these roles are redundant or absent in wild-type T7. 
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16BINTRODUCTION 

 Very few phenotypes are controlled by only one gene. Instead, traits are formed 

by the interaction of a number of genes, a gene network. These networks may either 

involve a single gene for each function or multiple genes with overlapping functions. In 

either case, other genes not initially involved in the trait may have latent activities that 

can emerge in certain conditions, adding further complexity.   

 It is rarely clear how these networks come into existence and expand, contract, or 

diverge. One approach to this question is to remove nodes from the gene network and to 

observe functional redundancy. Allowing these partially dismantled networks to evolve 

can then also help us understand the evolutionary redundancy of traits. This may reveal 

how networks gain and lose complexity, while also revealing cryptic nodes. 

 Here, we use bacteriophage lysis timing as a model system. It is an important life 

history trait that can evolve readily and is easily assayed. Most phages, viruses that attack 

bacteria, need to destroy their host’s cell wall in order to escape. The two-component 

model of lysis is general to all large dsDNA viruses thus far studied (Wang et al. 2000), 

although the specifics may vary somewhat (Xu et al. 2005; Xu et al. 2004). It involves 

two classes of proteins, holins and lysins (Young 1992). A lysin, with muralytic activity 

that can degrade the host’s cell wall, builds up inside the cell. It is prevented from 

accessing the cell wall by the host’s inner membrane. At the same time, a transmembrane 

protein known as a holin gathers in the inner membrane until it permeabilizes the 

membrane, allowing the lysin to pass through and degrade the cell wall. Although the 

molecular mechanisms of holin activity are not well understood and are likely to differ 
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between holins, they achieve a sudden rather than gradual release of lysin through the 

inner membrane (Grundling et al. 2001). This action allows the cell to continue phage 

production until lysis without obvious decay, whereas a gradual release of lysin would 

cause the cell’s productivity to wane well before lysis (Josslin 1970; Wang 2006). The 

unabated accumulation of progeny has an obvious fitness benefit, and is general to all 

phages in which it has been explored, which span the range from small RNA phage 

%X174 to large lytic DNA phages T4 and # (Hutchinson and Sinsheimer 1966; Josslin 

1970; Wang 2006).  

 However, there is evidence suggesting that T7 lysis is somewhat more 

complicated and functionally redundant than the general model suggests (Heineman et al. 

2005). Perhaps most notably, T7 failed to evolve according to an optimality model, 

probably due to a violation of the assumption of linear accumulation (Heineman and Bull 

2007). This suggests that genetic details have a vital effect on T7 lysis, and that further 

dissection of the molecular mechanisms is required to understand phenotypic evolution. 

For this reason, T7 lysis provides an excellent system to look at both functional and 

evolutionary redundancy of gene networks by knocking out nodes. 

Lysis in T7 seems to involve at least three proteins, a lysin, a holin, and an entry 

protein with transglycosylase (muralytic) activity. One, gp17.5, is the only known holin 

(Vukov et al. 2000). Another, lysozyme (gp3.5) is a lysin (Inouye et al. 1973). Phages 

lacking gene 3.5 lyse slowly and leave many mature phage virions trapped inside cells 

(Silberstein and Inouye 1975). This protein also binds to T7 RNA polymerase and alters 

gene expression (Zhang and Studier 2004). Finally, gp16 is an essential virion protein 

(Molineux 2001) with muralytic activity. The elimination of this activity by substitutions 
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at the catalytic residue can slow genome insertion (which requires phage proteins to enter 

the cell through a hole in the cell wall) but has little effect on lysis (Moak and Molineux 

2000; Moak and Molineux 2004). However, when a phage lacking gene 3.5 was allowed 

to evolve, substitutions in gene 16 mediated recovery of lysis (Heineman et al. 2005), 

indicating gp16 has at least a latent role in lysis.  

 The purpose here is to (i) explore the effect of knockouts of different 

combinations of these genes, and (ii) observe how the defective phages evolve to 

overcome the defects, as a way of discovering new mechanistic layers of T7 lysis. This 

will allow us to study the evolutionary redundancy of lysis in response to network 

perturbations. 

17BMETHODS 

41BCell and phage lines.  

 IJ1126 [E. coli K-12, F-, recC22, sbcA5, endA, Gal-, thi, Su+ ! (mcrC-mrr) 

102:Tn10] was used for transfections of T7 genomic DNA. IJ1133 [E. coli K-12!lacX74 

thi!(mcrC-mrr)102::Tn10] was the primary host used for all adaptations and assays. It is 

referred to throughout as the “normal” host when it bears no plasmid. A plasmid (pPK70) 

that carried a complete gene 16 insertion in vector pWSK129 (Wang and Kushner 1991) 

was used to express gp16 in order to complement phages lacking 16. Note that a phage 

lacking 16 in its genome but which carries gp16 in its virion can infect cells and 

undergoes a normal transcription and replication cycle, but any virions produced are 

aberrant and incapable of infecting new cells if gene 16 is not provided by the host. 
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IJ1133 cells carrying pPK70 are referred to here as “+gp16” hosts. Two other plasmids 

were used to complement phage defects. pAR4521, which provides gp3.5 (Zhang and 

Studier 2004) was used for T7 lines lacking gene 3.5 (lysozyme). pTP298, which 

expresses phage ! lysis genes R, Rz and Rz1 and complements lack of lysin activity by 

gp3.5, was used for the T7 strain AFK136, which contains a deletion of the enzymatic 

site in gene 3.5.  

 The sequence of our wild-type T7 line (T7+) is published (GenBank AY264774, 

Bull et al. 2003) and is the same as the original wild-type T7 (GenBank V01146, Dunn 

and Studier 1983) except for a 1 bp insertion following base 1896 in the nonessential 

gene 0.6. The Dunn-Studier sequence is used as a reference for location of all changes in 

evolved lines. Evolved lines are denoted by a subscript E; for example, T7+ adapted to 

our adaptive conditions is T7+
E. 

Deletions in T7 were generally created by growing a phage on a host carrying a 

pUC18 plasmid whose insert was engineered to consist of typically 100-200 bases 

immediately 5’ of the region to be deleted, juxtaposed to the 100-200 bases immediately 

3’ of the region to be deleted. For example, the insert used to create T7!17.5 was 

comprised of a PCR product containing T7 bases 35718-36343 juxtaposed to bases 

36553-36933; the final PCR product was generated by a PCR reaction that joined PCR 

products of the respective 5’ and 3’ regions and lacked the holin gene 17.5. Once this 

plasmid (p&17.5) was created, a T7 with a gene 17 amber mutation (17am61) which was 

able to form infectious progeny only on a suppressor strain, was plated on amber 

suppressor strain E. coli B argF40 SuII (IJ486) carrying this plasmid. Most 
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recombinations between the phage and plasmid that removed gene 17.5 would also 

remove the amber mutation in gene 17 and thus be able to plate on a non-suppressor 

strain. T7 was plated on B40Su II:p&17.5, one plaque was replated on IJ1133 to isolate 

phages that no longer required the amber suppressor, and several isolates were assayed by 

PCR to evaluate the 17.5 deletion. Other T7 deletion lines included T7!3.5, which lacks 

almost all of gene 3.5 (Zhang and Studier 2004), AFK136, in which codons 130-135 of 

3.5 are deleted, eliminating lysin activity while preserving T7 RNA polymerase binding 

(Zhang and Studier 2004), and T7!16, a precise deletion of gene 16 (Moak and Molineux 

2000). 

 Genomic fragment exchanges between phages were used to combine multiple 

gene deletions or to isolate the phenotypic effects of particular changes in adapted lines. 

DNA from different strains of T7 was digested with restriction enzymes, fragments were 

isolated, sets of fragments were ligated to regenerate genomes, and these genomes were 

transfected into competent IJ1126 cells. The phages constructed by this method were (1) 

T7!3.5!17.5, carrying the 3.5 and 17.5 deletions as well as all changes (except one at 

position 34975) from a T7 adapted to grow well on our environmental conditions (T7+
61 

from Heineman et al. 2005; here referred to as T7+
E); (2) T7!16!17.5, carrying the gene 

16 and 17.5 deletions; (3) AFK!16, carrying the partial deletion of 3.5 from AFK136 as 

well as the 16 deletion; and (4) various T7!17.5 and AFK!16 phages also carrying 

changes that arose during evolution. These phages are named by the genes in which they 

bear substitutions. For example, the phage identical to AFK!16 except that it carries the 

changes in genes 0.7, 1.6 and 1.8 that were present in an evolved AFK!16 strain is 
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named AFK!16+g0.7+g1.6+g1.8. (All AFK!16 phages that carry one of the gene 1.8 changes 

carries the substitution rather than the insertion, see Table 1.3). 

42BPassaging.  

 Conditions used to adapt phage lines were similar to those of Heineman et al. 

(2005). Basically, phages were propagated under conditions expected to select fast 

growth rate of the phage population, using serial passage across cultures of cells in 

exponential growth phase. Frozen stocks of cells were grown in 10 ml of LB at 37°C in a 

shaking water bath (200 rpm) to a final density of 1-2 x 108 cells/ml after 1 hr. At this 

time, 104-107 phages were added. After incubation for 20-60 min, 104-107 phages 

(infective centers) were added without treatment to the next flask or, if the passage was 

the final one for the day, it was treated with chloroform, killing cells and halting phage 

reproduction. Chloroform treated samples were used to resume passages on subsequent 

days. Passages were sometimes allowed to progress to lysis in order to facilitate 

recombination among phages and thereby decrease the effect of clonal interference, 

which can slow adaptation (Miralles et al. 1999).  

 The three phages adapted in this fashion were T7!17.5 (7.5 hr), T7!3.5!17.5 (52 

hr), and AFK!16 (59 hr). AFK!16 was adapted on IJ1133 +gp16 cells, which 

compensated for the otherwise lethal deletion. In no case can we know for sure that 

phenotypic evolution was at an endpoint, but the fitness of the T7!3.5!17.5 and 

AFK!16 adaptation lines were no longer increasing rapidly by the end of adaptation 

(data not shown). An earlier study used selective conditions identical to those used in this 

study (Heineman et al. 2005) to adapt various phages. These evolved phages are useful 
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for comparison to the new adapted lines. The phages are T7!3.5E, AFK136E, and T7+
E 

(originally referred to as T7!3.562, AFK13643, and T7+
61 respectively). 

43BPhenotypic assays.  

 Fitness here is measured as doublings/hr of the phage population, a measure 

proportional to the ‘intrinsic rate of increase’ (r) often used in ecology. The passage 

conditions used impose directional selection on r. This measure indicates how quickly the 

phage population expands (under the conditions used) and is directly comparable across 

different phages, regardless of generation time and other phage life history parameters, 

but the comparison is meaningful only when the different phages are assayed under the 

same conditions. In keeping with this understanding, fitness assays employed a protocol 

nearly identical to that used in passaging, except that the phage moi was maintained at 

lower than 0.1 at all times. Phages were transferred for a total of 100 min across 4-5 

flasks, and titers were taken at 40 and 100 min. The initial 40 min allowed the phage 

population to begin growing approximately exponentially (Heineman et al. 2005). Fitness 

is calculated in doublings/hour as [log2(Nt/N0)]/t, where N is the final number of phages 

at time t, taking into account dilutions over the course of the assay. 

 Lysis time assays were done as in Heineman et al. (2005) and involved infecting 

cells grown as above with phage at an moi of about 5 (phage density of ~ 5x108/mL). At 

this phage density, almost all cells are infected quickly. Average time to lysis can be 

approximated by fitting the gradual decline in cell turbidity to a cumulative normal 

distribution using an empirical least squares method (Heineman et al. 2005). Decline in 

cell turbidity is not a measure of lysis per se. However, it is often used as a proxy 
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(Abedon 1992; Zhang and Studier 2004) and we have previously found lysis time to 

roughly parallel phage release even in T7 strains with defective lysis (Heineman et al. 

2005). Cultures infected with lysis-defective phages frequently do not lyse completely, 

but suffer a relatively small initial drop followed by a long period of no change. Lysis 

“turbidity decline index” was calculated as the turbidity decrease of the culture by the 

endpoint divided by the turbidity maximum, which occurred shortly after phage addition. 

High values indicate relatively complete lysis. 

 For phage release assays, cells were again infected at an moi of 5. After 5 min, 

they were diluted by 105, which mostly halted further adsorption. At various time points, 

samples were removed and either plated immediately onto IJ1133 cells or treated with a 

lysis solution consisting of egg white lysozyme and EDTA, followed by chloroform 

addition, and only then plated. The former treatment results in a plaque for each free 

phage as well as each infected cell, while the latter forms a plaque for each free phage 

and each mature, intracellular virion that has been released from its cell by the lysis 

solution. In combination these measurements allow us to determine both phage release 

and phage production inside the cell. 

44BRecombination assays of compensatory evolution.  

 Recombination assays allowed us to identify what changes that appeared during 

adaptation were not strictly compensatory for the deletion or other genomic modification. 

Specifically, these assays identified which changes remained advantageous when deleted 

genes were reacquired or when other mutations were present. The assay was performed 

by recombining an evolved phage (carrying the genomic modification and potentially 
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compensatory mutations) with a wild-type or other phage lacking the genomic 

modification and lacking compensatory mutations. (In one case both phages had adapted 

by different pathways and the recombination assay was used to determine the epistatic 

interactions between the changes associated with each pathway.) The recombination was 

achieved by cross-streaking both phages on a plate, thereby allowing co-infection and 

thus recombination at the intersection of the two streaks. The recombination creates many 

combinations of the evolved mutations. As the genomic modification is deleterious, the 

phage backbone lacking this modification will ascend, as will any of the evolved changes 

that are beneficial regardless of the genomic modification. 

45BSequencing and statistical tests.  

 All sequencing employed an automated ABI3100 and ABI BigDye mix (v.3.1). 

Sequencing was done either from PCR products or directly from the viral genome, and 

analyzed with DNAStar Lasergene Seqman II software (v.5.05). The entire genomes of 

T7!17.5E, T7!3.5!17.5E, AFK!16E, and AFK136E were sequenced. (The latter had been 

previously adapted but not entirely sequenced). T7!17.5E, unlike the other evolved lines, 

was sequenced and assayed from an isolate, rather than from a population. All endpoint 

recombination assay populations were sequenced over the regions that contained changes 

in the original, evolved phage, and similarly some intermediate populations of the 

AFK!16 adaptation were sequenced over regions in which changes were present in the 

final phage. We also verified all genomic fragment exchanges by sequence or PCR band 

size. Primers and PCR conditions used available upon request. Unless indicated 

otherwise, all statistical comparisons were based on two-tailed t-tests. 
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18BRESULTS 

 Phages with deletions or partial deletions of genes implicated in lysis were 

characterized for their effects on lysis. The genes deleted included those coding for gp3.5 

(lysozyme), gp16 (entry protein) and gp17.5 (holin). Some of these phages were then 

adapted to determine the nature of alternative evolutionary pathways to lysis recovery. 

Evolved lines were sequenced and characterized, and in many cases the effects of 

individual substitutions were determined.  

46BRole of gene 17.5 in lysis.  

 The holin is considered to control lysis time, and assays using a phage ! system 

have indicated that gp17.5 of T7 acts as a holin (Vukov et al. 2000). Yet 17.5 is not 

essential to T7. Consistent with earlier evidence, the wild-type phage deleted for its holin 

gene (T7!17.5) had a lysis time of 16.6 min, 2.8 min later than that of T7+ (13.8 min, 

P<0.0002; Fig. 1.3) under our assay conditions, a significant delay but far less than 

expected if 17.5 was the only holin. T7!17.5 had a turbidity decline index of ~80%, 

indistinguishable from the decline of ~85% for T7+. This suggests that T7 may have 

another holin or holin-like membrane-degrader. (Although it is possible that membrane 

degradation could result from something that is not a transmembrane protein and thus not 

strictly a holin, all such potential entities are referred to as holins here for simplicity.) 

 However, gp17.5 does seem to play some role in lysis, and might also have an 

effect on phage production inside the cell. Prior work with the T7 strain AFK136, 

carrying a partial deletion of 3.5 that eliminates its muralytic activity (Zhang and Studier 

2004), shows that intracellular phage accumulation stops at 13.5-14.5 min, approximately 
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the time T7+ lyses, even though AFK136 lysis is profoundly delayed beyond this time 

(Heineman et al. 2005). This finding contrasts with work in three other phages (T4, 

%X174, and #) in which suppression of lysis results in linear phage accumulation well 

past the normal lysis time (Hutchinson and Sinsheimer 1966; Josslin 1970; Wang 2006). 

In all of these studies, lysis was delayed by changes in holin, which suggests that the 

cessation of accumulation in T7 AFK136 may have been because the defect was in a 

lysin rather than a holin. One possibility in AFK136 is that the holin gp17.5 kills the host 

at the normal lysis time by permeabilizing the membrane, thus halting phage growth.  

 To test this, we constructed a mutant with a lysis-defective lysozyme and a 17.5 

deletion (AFK!17.5) and observed phage release over time in artificially lysed cells to 

determine when phage growth within the cell stopped. Both AFK136 and AFK!17.5 

production halted at similar times (Fig. 2.3), indicating that gp17.5 was not fundamental 

to this cessation. However, phages did escape cells more slowly in AFK!17.5 than in 

AFK136 (Fig. 2.3), showing that gp17.5 affects lysis in defective-lysozyme phages.  

47BEvolvability of lysis in 17.5 deletion mutants.  

 In light of the importance of gp17.5 to lysis, we wished to determine if T7 could 

easily recover from the 2.8 min delayed lysis caused by the deletion. Understanding the 

genetic basis of recovery could also be useful in identifying other holins in the genome. 

T7!17.5 was adapted for 7.5 hrs to yield T7!17.5E, which lysed at 12 min, 4.6 min 

earlier than its immediate ancestor, T7!17.5 (P<0.00002; Fig. 1.3). This phage in fact 

lyses more rapidly than T7+ (though more slowly than T7+
E, Heineman et al. 2005). Thus 

the lack of 17.5 does not prevent the evolution of new lysis times. 
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 Four changes were observed in T7!17.5E: a 2168 bp deletion of genes 0.3-0.7, 

and single-base substitutions in 4.3, 16, and 19.5 (Table 1.3). Genomes were constructed 

with different combinations of these changes to determine their separate effects. The gene 

16 change by itself had little effect on lysis (P<0.52). Combining the 16 and 19.5 

substitutions (to make T7!17.5+g16+19.5) increased lysis time two minutes over that of 

T7!17.5+g16 (from 16.9 to 18.9 min, P<0.0005; Fig. 1). Gp19.5 is a nonessential protein 

of unknown function that may have endonuclease activity (Kim and Chung 1996). A role 

of the 19.5 substitution in lysis is not entirely unexpected, as gp19.5 may be involved in 

the formation of the M-hairpin loop. Deletion of the M-hairpin delays lysis by 50% of the 

normal time (at 30°C) and may affect cell membrane degradation, though the mechanism 

of this effect is unclear (Kim et al. 1997). However, the effect of the 19.5 change (in the 

presence of the 16 change) is in the opposite direction of that with all four changes. One 

possibility is that the 19.5 change may permit phage growth within the cell to continue 

past the time it would generally halt. If it does this by delaying the permeabilization of 

the membrane, it might also delay lysis. 

 The change in 4.3 is silent and a priori would seem to have little effect. This 

leaves the 2168 bp deletion of the early region to account for the 6.9 min earlier lysis of 

T7!17.5E relative to that of T7!17.5+g16+g19.5 (P<10-7, Fig. 1.3). Given that the 19.5 

change (combined with the 16 change) slowed lysis, there may be an epistatic interaction 

among these changes, perhaps between the 19.5 substitution and the deletion. However, 

no prior work can justify an interaction between 19.5 and the deleted early genes. The 

deletion minimally destroys 0.3, 0.4, 0.5, 0.6A and 0.6B and removes at least the protein 

kinase function of 0.7, which has important regulatory functions. However, this early 
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deletion is relatively similar to those seen in a number of other adaptations, including 

T7+
E, so there is no a priori reason to suspect that the deletion evolved specifically in 

response to the deletion of 17.5. It may instead hasten genome entry, which will make 

lysis earlier by shortening the life cycle of the phage (Studier 1979). Based on a 

recombination assay, the 2168 bp deletion was advantageous even when 17.5 was 

present, while the 19.5 substitution was compensatory for the 17.5 deletion. 

48BEvolvability of lysis in T7 lacking both 3.5 and 17.5.  

 Recovery of fitness and lysis time in the 3.5 deletion line was fairly complete 

(Heineman et al. 2005), as was that of the 17.5 deletion line after even a very short 

adaptation. Would a phage deleted for both genes be able to recover to approximately the 

same extent, or would its lysis phenotype be too damaged? A phage carrying most 

genetic changes from T7+
E (Heineman et al. 2005) was deleted for 3.5 and 17.5 

(T7!3.5!17.5) and adapted for 52 hr to produce T7!3.5!17.5E (Table 1.3). Lysis time 

recovered to 11 min, an endpoint of lysis very similar to that of T7!3.5E, and final fitness 

(37.5 db/hr) was actually higher than that of T7!3.5E (32.4 db/hr from Heineman et al. 

2005, P<0.002). Comparison to the T7!3.5E line is more relevant because T7!17.5E was 

not adapted to a point where lysis time or fitness had stopped changing rapidly. The 

higher final fitness of T7!3.5!17.5E over that of T7!3.5E is plausibly the result of longer 

adaptation rather than an intrinsic benefit to loss of gp17.5 activity, but in any case the 

17.5 deletion did not greatly reduce the evolvability of the phage. Many of the changes 

were similar to those found in T7!3.5 (Heineman et al. 2005, Table 1.3). Thus, the 
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absence of 17.5 was not important in this adaptation, consistent with the ease of recovery 

in T7!17.5E. 

49BRole of gene 16 in lysis: holin activity.  

 Phages with defective lysozyme (gp3.5) evolve to compensate with substitutions 

in the transglycosylase (muralytic) domain of gene 16 (Heineman et al. 2005). Does gp16 

affect lysis in the wild-type phage? Gene 16 is essential, so a T7 lacking 16 does not form 

viable particles unless complemented by the host. However, a T7 whose genome lacks 16 

but whose virion carries gp16 (produced from a complementing host) will lyse the cell. 

T7!16 lysed hosts at 15.9 min, 2.1 min later than T7+ (P<0.0001, Fig. 1.3). Lysis was 

complete, however, with turbidity declining by ~85%, similar to wild-type values. This 

delay is consistent with a model in which gp16 does affect lysis directly in otherwise 

wild-type phage, contrary to observations based on missense substitutions that decrease 

gp16’s muralytic activity (Moak and Molineux 2000).  However, we must entertain the 

possibility that the absence of gp16 during the life cycle slows lysis indirectly, rather than 

through any direct role in lysis.   

 One possibility is that an additional and undiscovered role of gp16 is as a second 

holin. However, the double-deletion phage of 16 and 17.5 (T7!16!17.5) lysed at 17 min. 

This is only 1.1 min later than T7!16 (P<0.007) and only 0.4 min later than T7!17.5 

(P<0.25, Fig. 1.3), although lysis was somewhat less complete for this double deletion 

than for either of the single deletions (~70% decline in turbidity). If the two genes were 

both holins, lysis would be expected to be more delayed in the double deletion mutant 

than in T7!17.5. If they were the only two proteins with holin activity, lysis should be 
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profoundly delayed. These data indicate that gp16 is certainly not the only alternative to 

gp17.5 for holin activity in T7, and they question whether gp16 has substantial holin 

activity at all. 

50BRole of gene 16 in lysis: lysin activity.  

 Gp16 is known to be at least a latent lysin (Heineman et al. 2005). If gp3.5 and 

gp16 are the only phage lysins, loss of both activities should be much more challenging 

than loss of either separately. T7 AFK136, which has a lysin-deficient 3.5, was deleted 

for gene 16 to generate AFK!16. This phage had little or no detectable lysis on normal 

hosts, with a turbidity decline index of only around 15%. In contrast, AFK136 turbidity 

declined by ~70% and T7!16 declined by ~85% turbidity. This interaction shows that, 

while the wild-type gp16 plays some small role in lysis, it is vital to lysis of cells lacking 

the primary lysin. Any other lysins that might exist are only slightly effective.  

51BEvolution of lysis in a phage (AFK!16) with primary compensatory mechanism 

constrained.  

 T7 AFK136 was previously adapted in order to study compensatory evolution in 

response to gp3.5 lysin deficiency (Heineman et al. 2005). Evolution led to greatly 

reduced lysis time (from 24.6 to 11.7 min) and increased fitness (from 11.4 to 35.4 db/hr) 

over a relatively short time, 24.5 hr (Fig. 3.3). How is recovery affected when the primary 

pathway of recovery, gene 16 evolution, is constrained? AFK!16 can productively infect 

cells carrying a plasmid encoding gp16 (+gp16 hosts). Adaptation of AFK!16 allows the 

phage to reproduce and evolve, but no evolution of gene 16 is possible because it is 
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supplied in wild-type form by the host rather than inherited as part of the phage genome. 

This prevents the main evolutionary pathway for lysis compensation (Heineman et al. 

2005). 

On the complementing host, AFK!16 lysed at 17.9 min and had a fitness of 23.4 

db/hr (Fig. 3.3). T7+ lysis was much earlier and its fitness was much higher. Since T7+ 

fitness was relatively unaffected by whether the host provided gp16 (34.0 db/hr with 

gp16 in the host and 35.6 db/hr without it), the low AFK!16 fitness was not primarily the 

result of the +gp16 hosts being adversely affected by the expression of gp16. Following 

adaptation of AFK!16 for 59 hr, fitness increased from 23.4 to 35.2 db/hr, and lysis time 

shortened from 17.9 to 11.7 min, (Fig. 3.3). Fitness change was fairly gradual across the 

adaptation, without the steep initial rise that is frequently observed.  

For comparison, AFK136 (on normal hosts, not bearing gp16) had started with a 

lower fitness (11.4 db/hr, P<0.0005) and later lysis (24.6 min, P<0.0003).  The initial 

advantage of AFK!16 can be attributed to the presence of large amounts of host-

produced gp16, which was most likely very important to lysis when lysozyme was 

defective. However, AFK136E attained similar phenotypic values as AFK!16E after 

adaptation for a much shorter time (Fig. 3.3, Heineman et al. 2005), suggesting that the 

gene 16 constraint did slow adaptation. Interestingly, AFK!16E substantially regained the 

ability to lyse normal hosts (from ~15% turbidity decline prior to evolution to ~65% 

afterwards) indicating that some other gene or combination of genes may have developed 

lysin activity. 
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52BAlternative genetic pathways of adaptation in AFK!16E.  

 AFK!16E was fully sequenced, revealing a number of changes, many in 

nonessential genes of unknown function (Table 1.3). Intermediate populations were 

sequenced over sites known to change in AFK!16 to determine when these changes 

occurred (Table 2.3). No changes were detectable after 18.7 hr of adaptation despite 

significant fitness increase by this time (from 23.4 to 27.9, P<0.006), suggesting either 

that early beneficial changes were later lost or that several of the final substitutions were 

present but individually too rare to be detected in the consensus sequence.  

 Data from recombination assays determined that most of the changes from 

AFK!16E (all except for the gene 1.8 and 17 substitutions) were compensatory for 

lysozyme defect rather than for having gp16 provided from a plasmid (Recombinant 1, 

Table 2.3). These changes therefore represented a pathway of lysis time evolvability 

largely independent of gp16.  

 It was not clear whether the changes seen in AFK!16E would still be 

advantageous when an adapted 16 that compensated for 3.5 defect was available. 

Introduction of adapted gene 16 via another recombination assay resulted in the spread of 

the adapted 16 and the loss of all of the changes seen in AFK!16E (Recombinant 2, Table 

2.3). This suggests epistatic interaction between the two alternative pathways, and the 

superiority of the original one involving 16 evolution. 

 The effects of several substitutions were assayed individually or in groups of 2-3 

in the AFK!16 background to identify those of largest effect (Fig. 4.3). While epistasis 

might affect the importance of these substitutions in different genetic backgrounds, 

substitutions that alter lysis greatly are likely to be important to lysis recovery somehow. 



 46

By this criteria, there are a minimum of three genes involved in lysis time change; either 

0.7 or 1.6, 6.3, and either 17, 17.5, or 19.5. This is different from the overwhelming 

dominance of changes in a single gene, 16, seen in AFK136E.  

 Somewhat surprisingly, the addition of the 6.3 substitution (to a line also carrying 

other changes) shortened lysis time from 15 min to 12.3 min (P<0.02). Very little is 

known about gene 6.3, and it is poorly conserved in related phages. This result suggests 

that it may be more important than it had appeared, at least in a highly lysis-defective 

phage. Other changes of particular interest were the changes in 17.5 (holin) and 19.5 

(which was also involved in compensation for holin deletion in the T7!17.5 adaptation).  

 None of these phages carrying subsets of the evolved substitutions lysed cultures 

thoroughly (all caused turbidity declines of less than 25%) on normal hosts despite the 

relatively complete lysis of AFK!16E (~65% turbidity decline). This suggests that 

substitutions in multiple genes were required to work epistatically together to permit 

effective lysis in the absence of functional lysozyme and gp16.  

19BDISCUSSION 

 We explored the genetic redundancy of phage T7’s lysis time phenotype by 

adapting increasingly constrained, lysis-defective phages. The phages were capable of 

substantial compensatory evolution and fitness recovery in all cases, though the nature of 

this recovery depended on the initial defect. 
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53BComplexity of T7 holin activity.  

 The widely accepted general model of phage lysis is fundamentally a two-

component system, with a holin permeabilizing the inner membrane with very precise 

timing, allowing the lysin to access and degrade the cell wall (Young 1992). The model 

has thus far been found to apply in all dsDNA phages, although some small phages lyse 

their hosts with a single protein without lysin activity (Wang et al. 2000) which in many 

cases seems to prevent synthesis of the cell wall (Bernhardt et al. 2002). This study 

reveals that lysis in T7 either differs in some fundamental way from the standard model, 

or that it has redundant holin functions that mask each other and lead to cell death at 

similar times. Gene 17.5 is the single documented holin in T7. The presence of a second 

holin (or entity with holin-like activity) is suggested by the fact that even 17.5 deleted 

phages halt growth inside the cell abruptly at around the time T7+ lyses, and one likely 

cause of cell death is a holin. Moreover, the 17.5 deletion has a relatively small effect on 

lysis time. Deletions of phage holins generally delay lysis greatly, as in P1 (Schmidt et al. 

1996), or prevent it almost entirely as in P22 (Rennell and Poteete 1985) and # (Reader 

and Siminovitch 1971). By the simple model of bacteriophage lysis, holins are solely 

responsible for limiting access of lysins to the cell wall (Young 1992), so if T7 is to fit 

this model, another holin must be involved. While it is possible that T7 carries a gene 

with the normally-masked ability to prevent cell wall synthesis, as has been found in 

some small phages, this alternative would still implicate another gene in lysis. 

 While the nature of this putative extra holin is not known, gene 19.5 has been 

found to affect lysis in other studies (Kim et al. 1997; Kim and Chung 1996). A 

substitution in 19.5 slows lysis in a line deleted for 17.5. While the direction of change is 
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surprising, it may be due to epistatic effects or a role in preventing premature cell death. 

This gene also evolves in a line with a defective 3.5 but a functioning 17.5. Gene 19.5, 

and the M-hairpin loop it affects, are worthwhile targets of further study.  

54BEvolution of tertiary lysin(s).  

 T7 with defective lysozyme has delayed lysis and low fitness, both of which 

largely recover after adaptation mediated by changes in a secondary lysin, gene 16 

(Heineman et al. 2005). Gene 16 plays only a small role in lysis in wild-type T7, but is 

vital when lysozyme is defective. On normal hosts, lysis with both genes knocked out 

was far more debilitated than with either knockout alone. Indeed, lysis was almost 

undetectable, suggesting that not only do gp3.5 and gp16 serve overlapping functions, 

they might be the only effective lysins in the cell.  

 An earlier adaptation of a phage with defective lysozyme led to recovery 

mediated by compensatory changes in the muralytic domain of an entry protein (gp16). 

This mechanism was straightforward and may in fact represent a reversion to an ancestral 

state in which there was no separate lysin (Heineman et al. 2005). When this primary 

pathway was blocked, lysis once again recovered, showing that lysis can evolve by many 

molecular mechanisms. However, changes in several genes seem to be important to this 

secondary pathway of evolvability, and there is no clear mechanism for the recovered 

lysis. While lysin activity returned, multiple genes working in combination were now 

required for what had previously been done by either of two genes alone. The changes 

involved in the secondary pathway were without exception disadvantageous when an 
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evolved gene 16 from the primary adaptive pathway was available. This shows powerful 

negative epistatic interactions between the two pathways. 

 Many of the changes seen in the secondary pathway were difficult to predict, 

especially the gene 6.3 change, which had a very large effect on lysis time. The role of 

6.3 has been a mystery, perhaps because its effect on lysis is so marginal in normal 

genomes (and laboratory conditions). By looking at alternative pathways of evolvability, 

we can isolate these increasingly diffuse redundancies.  

 It is tempting to attribute the recovery of lysis to muralytic activity of 6.3 that 

requires modifications in holin (gp17.5) and/or the potentially holin-affecting gp19.5 

(Kim et al. 1997) to access the cell wall, although this is purely speculative, and would 

run counter to the general observation that any holin will allow any lysin to act on the cell 

wall (Wang et al. 2000). Whatever the mechanisms of adaptation, the fact remains that a 

phage with only very minor lysis ability re-evolved substantial muralytic activity over a 

fairly short period of time. The enormous redundancy seen in such a small genome 

suggests that many phenotypes are likely to evolve readily.  

55BImplications for optimality evolution.  

 A quantitative model for optimal lysis time assumes that virions accumulate 

linearly inside the cell after production begins, as seen in #, T4 and %X174 (Hutchinson 

and Sinsheimer 1966; Josslin 1970; Wang 2006). Thus, later lysis increases generation 

time, but also increases how many progeny can be released (Wang et al. 1996). This then 

leads to the prediction that optimal lysis time will depend on environmental factors such 

as host density.  
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 However, experimental adaptations of T7 failed to match the optimality 

predictions in conditions expected to select slow lysis (Heineman and Bull 2007). This 

may be due to the presence of redundant holins, which could have the paradoxical effect 

of lowering evolvability by preventing the evolution of large burst sizes to accompany 

late lysis. Some redundancy of lysis genes certainly exists in other phages such as # 

(Wang et al. 2000), but in most it does not seem to impede adaptability. Even a point 

substitution in holin can greatly slow lysis in phage # (Wang 2006), which is very 

different from what we observe in T7 (this study, Heineman and Bull 2007). 
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5BChapter 4. Testing optimality with experimental evolution: lysis time in 

a bacteriophage. 

21BABSTRACT 

 Optimality models collapse the vagaries of genetics into simple trade-offs to 

calculate phenotypes expected to evolve by natural selection. Optimality approaches are 

commonly criticized for this neglect of genetic details, but resolution of this disagreement 

has been difficult. The importance of genetic details may be tested by experimental 

evolution of a trait for which an optimality model exists and in which genetic details can 

be studied. Here we evolved lysis time in bacteriophage T7, a virus of Escherichia coli. 

Lysis time is equivalent to the age of reproduction in an organism that reproduces once 

then dies. Delaying lysis increases number of offspring but slows generation time, and 

this tradeoff renders the optimum sensitive to environmental conditions: earlier lysis is 

favored when bacterial hosts are dense, later lysis is favored when hosts are sparse. In 

experimental adaptations, T7 evolved close to the optimum in conditions favoring early 

lysis but not in conditions favoring late lysis. One of the late-lysis adaptations exhibited 

no detectable phenotypic evolution despite genetic evolution; the other evolved only 

partly toward the expected optimum. Overall, the lysis time of the adapted phages 

remained closer to their starting values than predicted by the model. From the perspective 

of the optimality model, the experimental conditions were expected to select changes 

only along the postulated tradeoff, but a trait outside the trade-off evolved as well. 
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Evidence suggests that the model’s failure ultimately stems from a violation of the trade-

off, rather than a paucity of mutations. 

22BINTRODUCTION 

 Understanding the ultimate causes of phenotypic variation is one of the 

fundamental goals of evolutionary biologists. Optimality is a convenient tool because it 

allows us to focus on natural selection, which is both a powerful process in phenotypic 

evolution and one that is frequently amenable to a priori hypotheses. If optimality models 

match empirical observations, especially if they do so quantitatively, it suggests that we 

understand what shapes phenotype evolution (Orzack and Sober 1994). Optimality 

models assume that traits vary freely within relationships constrained by simple trade-

offs, which otherwise allows these models to neglect the genetic and molecular bases by 

which phenotypes are formed and evolve. While some optimality models are genetically 

explicit, the accommodation of detailed mechanisms can render models less general. By 

neglecting genetic details, optimality models can potentially predict phenotype across a 

wide range of ecologies, often independent of organism.  

 The tool of optimality has been widely used, especially for traits thought to 

change relatively easily, such as behavior and life history. Optimality models of sex ratio 

(Charnov 1982; West et al. 2000), foraging behavior (Charnov 1976), altruism (Axelrod 

and Hamilton 1981), age of first reproduction (Stearns and Crandall 1981), parental 

investment (Trivers 1972), senescence (Novoseltsev et al. 2002) and others (Krebs and 

Davies 1993; Krebs and Davies 1997) have played a vital role in developing our 

framework of evolution. The uses of optimality theory range from yielding a broad 
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perspective for the foundations of evolution to providing quantitative insights about the 

evolution of specific traits (as with sex ratio).  

The simplifications used in many optimality approaches, especially at the genetic 

level, have been criticized as fundamental flaws that render the optimality approach 

useless or suspect (Gould and Lewontin 1979; Pierce and Ollasen 1987; Walters and 

Martell 2004). The prior lack of resolution of this controversy may be attributed largely 

to insufficient knowledge of the genetic architecture of phenotypes. However, the 

genomics era may finally give us the tools to analyze phenotype genetics and allow us to 

answer the critical question behind this disagreement: does understanding life history 

evolution require a familiarity with genetic details, or do models assuming simple 

generalized trade-offs successfully describe adaptation? If genomes adapt successfully 

and freely enough, their idiosyncrasies perhaps can be ignored, despite or even because 

of the complexity of their mechanisms. However, if some traits cannot change or if 

limitations imposed by pleiotropy and other constraints, lack of mutations, or small 

population size greatly influence evolution by changing the trade-off surface or 

preventing adaptation along it, we must take genetic details into account. 

For a number of reasons, it is difficult to test the success of optimality by observing 

natural populations, at least because many factors not considered by the model may vary 

between populations and confound the comparisons. Here, we use an experimental 

adaptation of a phage to test a priori quantitative predictions of a simple life history 

optimality model. 
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56BModel system: lysis time. 

Bacteriophages or “phages” are viruses that infect bacteria. Obligately lytic phages 

have simple life cycles somewhat like that of plants and animals that reproduce only once 

(Fig. 1.4). First, during what might be considered an environmental or dispersal phase, 

the phage has left its “maternal” host and not yet infected a new one. The length of this 

period depends on environmental factors such as host density, phage diffusion rates, as 

well as the adsorption of the phage. The next phase, eclipse, is analogous to a juvenile 

phase. During this period, the phage has infected a cell, but has not yet produced any 

progeny. It is instead co-opting the host’s cellular machinery to make the cell a phage 

factory. At the end of eclipse, E minutes after infection, phage progeny begin to be 

produced within the cell. Progeny numbers within the cell increase monotonically over 

time; a linear accumulation has been observed in each of the three phages thus far 

assayed (Hutchinson and Sinsheimer 1966; Josslin 1970; Wang 2006), with up to as 

much as 1000 progeny in phage ! (Reader and Siminovitch 1971). Although these phage 

progeny are fully constructed and viable, they remain trapped inside the cell. Finally, at 

lysis, L minutes after infection, the phage ruptures its host’s cell wall to release its 

progeny into the environment, and phage production stops. The time between the eclipse 

time and lysis time (L - E) is the post-eclipse time.  

Lysis timing impacts two viral fitness components, fecundity and generation time. 

If a phage lyses early, generation time is short but relatively few progeny are produced 

from that host. If it lyses late, it produces more progeny but at the cost of increasing its 

generation time. Consequently, the optimal lysis time depends on external factors, one of 
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the most useful being the density of hosts, which sets a lower limit on generation time 

(Abedon et al. 2001; Abedon et al. 2003; Wang 2006; Wang et al. 1996). The optimal 

lysis time parallels a result from optimal foraging in a patchy environment, in which the 

optimal amount of time spent in a resource patch varies depending on the density of 

patches (Charnov 1976). Sparse hosts increase the relative value of the current host and 

thus increase optimal lysis time.  

Although host density is predicted to have a large effect on the evolution of lysis 

time, it is a property of the natural phage environment that is nearly impossible to 

measure and is likely to vary widely (Hambly and Suttle 2005). To overcome this 

difficulty, we use an experimental approach, creating environments of different, constant 

host density to provide a range of optima. Although these conditions are artificial, it is 

plausible that phages might encounter them in the wild at least briefly. The conditions are 

also uniform enough and designed so that plasticity in lysis time should not be a factor in 

the evolution (Abedon 1992). Most importantly for the test of the model, we can hold 

essentially all environmental conditions constant except density of permissive hosts, thus 

avoiding selection of unwanted traits and ensuring an ideal fit to the model assumptions.  

57BThe optimality model. 

The equation for the optimal lysis time is approximately 

 

 rEL ˆ/1ˆ '(               (1a) 
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(quantitative model from Bull 2006 based on the assumptions of Wang et. al. 1996). The 

optimal lysis time at equilibrium ( L̂ ) equals the duration of eclipse time (E) plus the 

inverse of the intrinsic rate of increase of the phage ( r̂ ) when the phage is at the 

optimum. The model thus predicts that the optimal post-eclipse period (L - E) changes in 

response to environmental conditions that alter fitness, such as host density. The 

advantage of this result is that it consists of just three easily measured properties of the 

phage: lysis time, eclipse time, and population growth rate. The first two depend on cell 

physiology, but not cell density per se, whereas growth rate depends on the entire suite of 

passage conditions.  

This model assumes a linear burst size function as in Fig. 1.4, a constant density 

of hosts in excess of phage density (with adsorptions according to a mass action process 

of collisions between bacteria and phage), and strict genetic control of lysis time. From 

Bull (2006), the resulting equation for asymptotic phage growth in our simplified 

experimental environments is r ( A(be)L"r )1) , where b is burst size and A is the product 

of cell density and adsorption. The optimum is found by differentiating with respect to b, 

setting *r
*b"("0 , and treating L as a function of b.  

 When formula (1a) is parameterized with empirical data, equality indicates that 

optimality conditions are potentially satisfied. It is of course possible that the equality is 

satisfied but the phage is not at the optimum. For example, if the phage was poorly 

adapted to the host, one could find a host density (hence a value of r) that satisfied (1a), 

but adaptation would improve r and thus reveal that the phage had not been at the 

optimum. Worse, when the equality is not satisfied, the formula does not give the 
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optimum, although it can be used to indicate the direction of the deviation from the 

optimum. The problem is that the optimum is rE ˆ/1'  but the data give an estimate of 

only rE /1' . Without knowing what r̂  should be, it is not possible to specify the 

optimum. However, if the phage has reached close to its maximum r, further changes will 

not greatly affect the values. If the relevant parameters of the phage life history are 

known (including the linear accumulation function of Fig. 1.4), the optimum can be 

calculated directly. 

 Some key assumptions in this model are: (i) the phage accumulation function is 

fixed and linear; (ii) hosts are at constant density and in great excess of phage; (iii) 

infected cells lyse exactly L minutes after infection, without any phenotypic variance. 

The first assumption has been relaxed somewhat by allowing two alternative linear phage 

accumulation functions. This simple extension does not affect optimality conditions for 

our purposes here (Bull 2006). The second assumption is not realistic for natural 

populations but can be enforced experimentally. The third assumption can be relaxed and 

the model solved for normal and gamma distributions of lysis times (Appendix 1). With a 

normal distribution of post-eclipse times (X), the optimum is given by 

 

 L̂""("E""'"X̂ ,               (1b) 

 

where 

 

 X̂ (
1
r̂
'""r% 2               (1c) 
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and %
2 is the variance in lysis time between infections (Appendix 1). Although this result 

is exact, the assumption of normality violates phage biology because negative values of X 

(which are allowed by normality) are assigned negative burst sizes in the model. So the 

result is biologically feasible only for r% 2 + 1  at best (Appendix 1). If the distribution of 

post-eclipse times is gamma, the optimum satisfies (1b), where X̂  is the solution to 

 

 
 
1 ' r̂X̂ ' 2r̂ %

2

X̂
 - 2X̂(r̂ + X̂

% 2 )ln(1 ' r̂ %
2

X̂
) ( 0 .         (1d) 

 

Since the gamma distribution does not allow negative values, this result can be applied 

generally. Unfortunately, (1d) cannot be solved explicitly, but it does offer a useful limit 

and approximations. The limit of X̂  as"% 2 ,"0 "is 1 / r̂ . (1c) is the %2 first order 

approximation of X̂ , and a further approximation is possible under restrictive conditions 

on r and %2 (Appendix 1). If all else fails, (1d) is easily solved numerically.  

58BBacteriophage T7. 

The phage used here is the obligately lytic T7, which infects many lab strains of 

Escherichia coli. Its genome is 40 kb double-stranded DNA with approximately 60 genes 

(Molineux 1999). The phage encodes its own DNA polymerase and RNA polymerase 

(both having been adopted for use in molecular biology), and its genome regulation has 

been the subject of a virtual infection model (Endy et al. 2000). Even for a phage, T7 is 
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remarkably fecund, and adapted strains can increase by a trillion-fold per hour (this paper 

and Heineman et al. 2005). Phages similar to T7 make up a large proportion of the global 

phage population, which in turn makes up a large amount of the world’s biomass (Suttle 

2005).  

59BMechanisms of lysis timing. 

Lysis is better understood at a biochemical and genetic level than almost any 

other non-trivial life history trait. At a superficial level, the molecular basis of lysis is 

similar among many phages, despite the fact that lysis appears to have evolved 

independently many times (Young 1992; Fig. 2.4). In phages with all but the smallest 

genomes, lysis is effected by two molecules, an enzyme to degrade the cell wall (lysin) 

and a timer (holin). A lysin produced by the phage has the enzymatic activity to break 

down the cell wall; four different families of phage hydrolases are known that have this 

activity (Nelson et al. 2006). However, the cell wall lies outside the inner membrane, and 

lysins do not have the ability to get past the inner membrane by themselves. Thus, a 

second type of molecule is involved as well, the holin, a membrane protein that creates 

pores in the inner membrane. Interestingly, the holin does not appear to create pores 

gradually, but triggers membrane permeabilization suddenly (Grundling et al. 2001). This 

permeabilization allows the lysin to access the cell wall, where it quickly lyses the 

bacterial host (Young 1992). In some phages, the lysin is exported first and then activated 

by a holin, which preserves the status of holin as timekeeper (Xu et al. 2004). 

In bacteriophage !, lysis timing can change greatly based on single mutations in 

the holin, suggesting that lysis time may in many cases be capable of rapid evolution 
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(Ramanculov and Young 2001; Wang 2006). Those studies have also demonstrated little 

apparent pleiotropy between lysis time and other traits. Collectively, therefore, the 

molecular basis of lysis in many phages matches many assumptions in the optimality 

model, including the genetic malleability of lysis timing. The molecular basis of lysis in 

phages does not provide the logic for the linear accumulation of phage progeny in the 

cell following eclipse, so that assumption is based on phenotypic observations from 3 

unrelated phages (Hutchinson and Sinsheimer 1966; Josslin 1970; Wang 2006). 

Although T7 is a well-studied phage, its mechanism of lysis is only partly known 

(Heineman et al. 2005; Inouye et al. 1973). T7 encodes a formal lysin (gp3.5, an amidase) 

and at least one holin, gp17.5 (Inouye et al. 1973; Vukov et al. 2000; Wang et al. 2000; 

Young 1992). Deletion of the lysin gene causes a profound delay in lysis, which can be 

recovered by mutations in the transglycosylase domain of the entry protein gp16 

(Heineman et al. 2005). Even though gp17.5 has been shown to act as a holin in a ! 

system (Vukov et al. 2000), deletion of gene 17.5 has surprisingly little effect on lysis 

time (see Chapter 3), suggesting that either the phage encodes another holin or the 

mechanism of lysis in T7 does not fit the general model. Our use of the optimality model 

in this experimental study of T7 was based on a detailed understanding of lysis 

mechanisms in other phages and the suggested similarity of T7 lysis to those systems. 

The level of informed generalization motivating this study exceeds that typically used for 

optimality modeling in other systems.  
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60BExpectations. 

From the collective knowledge and work presented above, we expected that lysis 

time in T7 would be able to evolve rapidly and independently of other traits. 

Furthermore, from the perspective of our model, we expected that, once T7 was adapted 

to the passage conditions, changes in host density would select changes in only the 

correlated phenotypes of lysis time and burst size. At a sequence level we expected 

changes in lysis time to map to the holin gene, 17.5. 

23BMETHODS 

61BCell and phage lines.  

All nucleotide numbers presented are those of wild-type T7 (T7+, GenBank 

V01146, Dunn and Studier 1983). IJ1133 [E. coli K-12"lacX74 thi!(mcrC-

mrr)102::Tn10], a strain lacking type I and other restriction loci, was used as the 

permissive host for all experimental evolutions and many other applications (Garcia and 

Molineux 1996). In the adaptation to mixed permissive and nonpermissive cells, the 

nonpermissive cells were the K-12 strain IJ1517 trxA::Kn. This latter strain served only 

as a sink for phage; all infections fail to release phage progeny due the absence of the 

essential DNA polymerase cofactor, thioredoxin (Chamberlin 1974). Even after 

adaptation, the phage did not form plaques when plated on cells lacking thioredoxin, so 

the host remained non-permissive throughout (unpublished data). IJ1126 [E. coli K-12, F-

, recC22, sbcA5, endA, Gal-, thi, Su+"(mcrC-mrr)102:Tn10] was used for transfections of 

T7 genomic DNA. The three phage lines evolved are designated T7Hi (adaptation to high 
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density), T7Lo (formal low density adaptation), and T7pLo (preliminary low density 

adaptation) as explained below. 

62BPassages. 

 Cells from recently thawed -80°C 20% glycerol LB stocks were added to a 125 

ml flask containing 10 ml LB media (10 g NaCl, 10 g Bacto tryptone, and 5 g Bacto yeast 

extract per liter) at 37° in an orbital water bath (200 rpm) and allowed to grow for one 

hour to a density of 1-2 x 108 viable cells/ml before phage addition. Different cell 

concentrations and combinations were used for propagating phage in the three protocols 

applied here. In the high host density protocol, phages were added to undiluted cultures 

of IJ1133 grown under these conditions. In the preliminary low host density treatment, 

the one-hour IJ1133 cultures were diluted before phage addition, as described below. 

Last, the formal low density treatment used a mix of permissive cells (IJ1133) diluted to 

1-2 x 106/ml into nonpermissive IJ1517 at 1-2 x 108/ml. 

At this one hour timepoint, 104-107 phages (almost always more than 105) were 

added to the flask. The culture was incubated for 20-60 minutes (usually 30), before an 

aliquot of the infected culture, including both 104-107 (again usually more than 105) free 

phage and infected cells, was transferred to the next flask in which cells were at the 

requisite density and had been incubated for one hour. The cultures were sometimes 

allowed to lyse in order to permit recombination and speed adaptation, but most 

passaging occurred at a multiplicity of infection such that few cells were infected by 

more than one phage. A sample of the completed passage was treated with chloroform 

and stored, preserving free phage and releasing phage particles already formed within 



 63

cells; aliquots transferred to new flasks were not subject to chloroform treatment except 

between days. Passages were typically carried for three or more hours continuously 

across multiple flasks before the process was halted for the day. At the beginning of each 

day’s passages, the final stock from the previous passage provided the starting phage 

population for transfer.  

 The phage line adapted to high host density was passaged on cells at 108/ml for 

more than 35 hours and is designated T7Hi. The formal low density adaptation started 

with T7Hi and used mixed cells at a combined density of ~108/ml (permissive cells at 106) 

for 60 hours; the end phage is designated T7Lo. The mutagen N-methyl-N'-nitro-N-

nitrosoguanidine was added at a concentration of 0.5 µg/ml in passages at 0, 12.5, 24.33, 

and 47 hr of this treatment to promote adaptation by increasing the mutation rate. The 

preliminary low density adaptation was initiated with a phage intermediate between T7+ 

and T7Hi (an isolate from 1133E of Heineman et al. 2005) that was phenotypically 

indistinguishable from T7Hi. It was propagated through a progressive series of lower and 

lower cell densities without any apparent phenotypic adaptation (1-2 x 107 cells/ml for 11 

hr, 2-4 x 106 cells/ml for 15 hr, 1-2 x 106 cells/ml for 15 hr, then 5-10 x 104 cells/ml for 

33 hr) to yield T7pLo.  

63BFitness.  

 Viral fitness was measured in a procedure similar to that used for passaging, 

relying on the fact that the phage population achieves a stable age-of-infection after a few 

phage generations. Thereafter, phage densities in the culture follow approximately 

exponential growth. Fitness was determined by passage at low phage/cell ratios (not 
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exceeding 0.1 by the end of the transfer) across 4-5 consecutive transfers, using the rate 

of increase in phage titers measured from the end of the first or second passage to the end 

of the last passage. This estimate minimizes the effect of synchronous infection at the 

outset, which can otherwise yield misleading fitness measures. A fitness is given as 

doublings/hour, calculated as [log2(Nt / N0)] / t, where Nt is the number of phage in the 

flask at time t hours, corrected for dilutions over multiple transfers. For determining the 

optimality criterion, this number was transformed to a loge value (r), per minute. 

64BAdsorption.  

 Adsorption assays involved adding 106 phages from a fresh phage lysate (no more 

than one day old) to cells suspended in LB in flasks as above (~108 cells/ml), waiting 5 

minutes, and then spinning down a sample to pellet adsorbed phage. Unspun and spun 

suspensions at 5 min were then plated to obtain total phage and free phage densities 

(Ntotal, Nfree,) respectively. Adsorption - was calculated from Nfree = Ntotal e-5-.  

65BEclipse time.  

 Eclipse time assays involved adding 107 phage to cells grown one hour to 108/ml; 

after 5.5 min, samples were taken over chloroform every 30 seconds, until approximately 

1.5 min before the average lysis time of the phage. Titers were taken of the treated 

samples, yielding a combined estimate of free phages and intracellular phages. Eclipse 

time was then estimated by fitting the data numerically to a simulation that modeled 

adsorption, eclipse, and a linear accumulation of phage after eclipse over time. 

Adsorption was modeled as the product of free phage density, free cell density and the 
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adsorption parameter; cell density was measured at the start of the assay and assumed 

constant over the course of the brief assay; coinfection was ignored because the phage 

density was much lower than cell density; adsorption was measured separately. Parameter 

values for phage density, eclipse, and the slope of linear phage increase were fit by 

empirical least squares in which the difference log(observed phage density) – log(model 

phage density) was normalized by log(observed phage density) to enforce equal 

weighting of the squared deviations at all time points; deviations at early time points 

could otherwise be dominated by deviations at later time points when phage densities had 

increased. T7+ eclipse time, for which precision was less important, was estimated as first 

increase of phage by more than 0.5 doublings from data gathered in a previous study 

(Heineman et al. 2005). That study infected cells at a multiplicity of five, and thus the 

data are not suited to the empirical least squares method. 

66BLysis time.  

We used two different assays of lysis time. In the first, exponentially growing 

cells (as above) were infected with phage at an moi (multiplicity of infection) of ~5 to 

achieve rapid infection of cells. A Klett-Summerson photoelectric colorimeter (Klett) was 

used to measure culture turbidity at time points across the lysis window. To obtain an 

average lysis time, data were fit to a cumulative normal distribution using an empirical 

least-squares procedure (Heineman et al. 2005). This method provided mean lysis time of 

infected cells for the culture. Each reported lysis value is the average of at least three 

independent cultures.  
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While this method is convenient, there are two reasons that an additional method 

is required. First, the formula for optimal lysis time includes variance in lysis time, which 

cannot be accurately calculated in the presence of multiple infections or by this method. 

Second, multiple infections may speed lysis, due to increased expression of lysis proteins. 

Evidence consistent with this latter hypothesis was in fact observed when estimating the 

lysis time of T7Lo by different methods (Table 1.4). 

The second method assayed lysis time in primarily singly-infected cells. 5 x 107 

phage were added to 10mL of cells at 108/ml, grown 5min, then diluted 105-fold and 103-

fold in separate flasks to stop adsorption. Infective centers (a mix of untreated free phage 

plus infected cells) were plated at various time points to determine changes in titer. 

Assigning upper and lower bounds to the phage densities, the phage titers observed over 

time can be converted into proportions, treated as cumulative probabilities. In turn, the 

expected cumulative probabilities were generated from a model of the adsorption and 

lysis process and fit by empirical least squares against the observations. The model for 

distribution of lysis times is described in Appendix 2. All lysis times reported here used 

this protocol unless stated otherwise.  

67BBurst size.  

For burst size assays, 106 phages were added to suspensions of exponentially 

growing cells in flasks (108 cells/ml). The mix was diluted 1000-fold after 5 minutes to 

curtail further adsorption. At 5.5 and 6.5 min phages were titered both before and after 

treatment with chloroform. Treatment with chloroform kills cells, and since 6.5 min 

precedes the end of eclipse, all infections fail to leave progeny; the only plaques in the 
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chloroform treatment derive from free phage. The initial density of infected cells can be 

determined by comparison of these titers. At 15.5, 16.5 and 17.5 min, chloroform-treated 

samples were plated to estimate phage density. Burst sizes for each replicate were 

calculated as: (titer of phage produced at late time points) / (the number of initially 

infected cells, calculated from initial time points).  

68BSequencing.  

Sequences were determined by dideoxy chain termination reactions from PCR 

products using ABI Big Dye mix (version 3.1) and an ABI3100. Sequence files were 

analyzed with DNA Star software (v4.05). The entire genomes of T7pLo and T7Lo were 

sequenced, as were all sites of T7Hi at which its recent ancestor or descendent (T7Lo) had 

mutations. Primers and PCR conditions used are available upon request. 

69BRecombination assays to assess compensatory changes.  

To determine whether the mutations evolved at low density were specifically 

beneficial in the low density conditions, the high host density adapted ancestor was cross-

streaked with T7pLo or T7Lo to allow coinfection at the intersection. Coinfected T7 

genomes recombine with high frequency. Phages from the region of intersection were 

resuspended and passaged briefly on IJ1133. Recombination between original and 

adapted lines creates a mixture of recombinant genotypes that contain different 

combinations of mutations; outgrowth allows those mutations advantageous in the 

conditions used to spread through the population (Rokyta et al. 2002). This method has 

been successfully used to separate mutations of positive and negative effect (Heineman et 
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al. 2005). Pools of recombinant phages were passaged at high host density and at low 

host density (0.5-1 x 105 cells without any nonpermissive hosts). For T7pLo, the 

recombinant was passaged for 15.5 hr at high host density, 10.6 hr at low. For T7Lo, the 

recombinant was passaged for 16.25 hr at high host density, 18.33 hr at low. T7Lo was 

also recombined with T7+ and adapted at low host density for 18 hr. Regions that differed 

between the two recombined genomes were sequenced in the outgrowth populations. This 

sequencing was in all cases done from populations of the final lysate in order to detect 

polymorphism. The protocol used is demonstrated for the T7Lo adaptation in Figure 3. 

70BEngineered recombinations.  

Genomic fragment exchanges between phages were used to associate lysis effects 

with particular mutations. DNA from T7Hi and T7Lo was digested with appropriate 

restriction enzymes, fragments were purified, complete sets of fragments were ligated, 

and reaction products were transfected into competent IJ1126 cells. Selected regions of 

phage isolates were then sequenced from PCR products to verify the recombinant status. 

This method was used to generate i) T7Hi17.5, which was T7Hi plus the mutation 24 bp 

upstream of 17.5 from T7Lo, ii) T7Hi16, which was T7Hi carrying the two gene 16 

mutations from T7Lo, and iii) T7Hi1, 1.2, 4.3, which contained all mutations in genes 1, 

1.2, and 4.3 that occurred during adaptation to low host density. 

71BParametric test of optimality.  

The optimality criterion (1b) can be written as L̂")"E")"X̂(r,% 2 )"("0 , where X̂(r,% 2 )  

is from (1c) or (1d). When parameterized with empirical values, equality will generally 
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not be met. To test whether the deviations are significant, we used a parametric bootstrap 

approach (as these equations do not obviously lend themselves to standard ANOVA 

approaches, at least because of unequal error variances). We assumed normal 

distributions for each of the phage traits, parameterized with the observed means and 

variances. The sampling procedure used to obtain the data was simulated from these 

distributions, drawing the same numbers of observations for each trait as in the data, 

calculating means, and assessing how often the simulated data deviated from the 

optimality criterion with the opposite sign as the observed deviation. (Negative values of 

% 2  were assigned a value of 0.) 

24BRESULTS 

72BAdaptation to high host density. 

Wild-type T7 (T7+) had a lysis time (measured at high moi) of 13.3 min and an 

eclipse time of approximately 9 min in the environments used here. In our high host 

density passaging conditions of 108 cells/ml, wild-type fitness was 35.6 db/hr (1 / r = 

2.4). The optimal lysis time calculated from eclipse time and fitness is 11.4 min (9 + 2.4), 

ignoring lysis time variance, and does not match the observed lysis time of 13.3 min (Fig. 

4.4A); this discrepancy is not surprising as the phage was not adapted to these conditions. 

We can infer from the model that adaptation should select a shorter lysis time than 13.3 

min. Furthermore, as noted above, the optimum after adaptation would be even shorter 

than 11.4 min because r would increase as lysis time evolved. As E is not necessarily 

optimized for these conditions, it may evolve as well. 
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T7+ was adapted to high host density. The evolved phage, T7Hi, had a fitness, lysis 

time, lysis variance, and eclipse time of 47.9 db/hr (1 / r = 1.8), 10.4 min, 0.4 min2 and 

7.1 min, respectively (Table 1.4). As expected, fitness had increased and lysis time 

decreased after adaptation. The eclipse time also shortened, which is likely a consequence 

of selection for short generation time. For example, a moderately large segment of the 

early region was deleted during this evolution (1479 bases, eliminating non-essential 

genes 0.4, 0.5, 0.6A and 0.6B, as well as parts of 0.3 and 0.7), which might increase the 

rate at which the phage genome enters the cell, accelerating the entire life cycle. 

Fortunately, the optimum in our model includes separate terms for eclipse time (E) and 

growth rate (r), so the optimality criteria can be adjusted accordingly. At a lysis time of 

10.4 min, T7Hi was close to its putative optimum of 9.1 min (Fig. 4.4B). This difference 

is small but (surprisingly) is statistically significant (P<0.001). Given the layered model 

assumptions underlying these estimates and test, we are hesitant to attribute biological 

significance to this difference, but the test does indicate high significance to it. 

73BAdaptation to low host density. 

A preliminary selection at low host density started with a phage phenotypically 

indistinguishable from T7Hi, transferred it through progressively lower cell densities, 

ultimately down to ~105 cells/ml for 33 hr. The putative optimality criterion under the 

conditions was for a lysis time of 14.7 min, yet there was no detectable change in the 

lysis time of the endpoint phage (T7pLo, data not shown). Five substitutions were found in 

this genome, although none proved (by a recombination test) to be specifically beneficial 
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at low host density. Suspecting that the small population size impeded adaptation, we 

modified the design to create the formal low density adaptation. 

The formal low density selection was initiated with T7Hi and used a mixed 

population of hosts. Approximately 99% of the hosts aborted the infection so that no 

progeny were released. The other 1% were permissive (density of ~106/ml). This design 

allowed us to, in essence, reduce burst size and thus reduce r for the population while 

maintaining a effective phage population size larger than in the preliminary selection 

(albeit smaller than in the adaptation to high host density). Using the eclipse time of 7.1 

min, lysis time variance of 0.4 min2 and the fitness of 7.9 db/hr (1/r = 11.0) under these 

conditions, optimal lysis time is putatively 18.1 min. 

74BEvolution of lysis time and eclipse.  

After 60 hr of adaptation, lysis time increased to 12.4 min, a modest and 

significant alteration from the 10.4 min in the initial T7Hi (P<0.005 by 1-tailed t-test, Fig. 

4.4C). On the surface, this increase appears to be qualitatively consistent with the 

optimality model, although lysis was still 6 min too fast to satisfy the new phage’s 

putative optimality criterion of 18.6 min. Also, about a third of this change was due to an 

increased eclipse time (from 7.1 to 7.8 min, P<0.006 by 2-tailed t-test), which is not 

predicted by the model. The post-eclipse period was also significantly longer in T7Lo (3.3 

to 4.6 min, P<0.0001 by 4-way 1-tailed t-test, Bull et al. 2000), a result qualitatively 

consistent with the model.  
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75BBurst size increase.  

Burst size increased significantly during adaptation to low host density, from 266 

to 327 phage released per infection (P<0.04 by 1-tailed t-test), an increase of 23%. The 

post-eclipse time of T7Lo is 39% longer than that of T7Hi, as though the rate of phage 

accumulation is actually somewhat slower overall in T7Lo. The variances of these 

estimates are so large as to preclude any definitive conclusions, however.  

76BMolecular evolution.  

Seven new mutations were observed in the complete sequence of an isolate from 

T7Lo (Table 2.4). Four of these changes could not be rationalized for any effect on lysis, 

but two were in gene 16, which can affect lysis in some conditions, and one was 24 bp 

upstream of the start of 17.5, the holin gene.  

When these mutations were evaluated in subsets, two-three of them affected lysis 

time, as measured by high moi lysis assays. T7Hi17.5, which was T7Hi plus the mutation 

upstream of 17.5, lysed significantly more slowly than T7Hi (12.3 rather than 10.5 min, 

P<0.04 by one-tailed t-test). Similarly, T7Hi16, which carried the two mutations from 

T7Lo gene 16 in a T7Hi background, lysed more slowly than T7Hi. (12.4 min, P<0.0002 by 

one-tailed t-test). On the other hand, T7Hi1, 1.2, 4.3, which carried the four most 5’ 

mutations in a T7Hi background, did not lyse more slowly than T7Hi (10.7 min, P<0.14 by 

one-tailed t-test). 

By our recombination test of compensatory evolution conducted in a low density 

environment, all mutations that evolved in T7Lo were beneficial in a low density 

environment. While this result may seem redundant with the adaptation, an important 
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distinction between the recombination assay environment and the adaptation environment 

is that the assay did not use non-permissive hosts. This test thus confirms that selective 

pressures were similar between low host density per se and mixed host conditions, as 

predicted by the model, and that the lack of phenotypic evolution in the preliminary study 

was not due to a lack of selection.  

For the recombination assay conducted at high density, the resulting phage’s lysis 

time was indistinguishable from that of T7Hi, as expected (P<0.84 by 2-tailed t-test). Of 

the seven new mutations from T7Lo, none ascended to the levels seen in the low-density 

recombination assay: four were lost and three remained polymorphic at intermediate 

levels. Mutations should remain polymorphic if they are nearly neutral. Thus, no 

mutation evolved in the low density selection appeared to be highly beneficial at high 

density, indicating that all were compensatory for low density. The changes in gene 16 

and upstream of 17.5 that delayed lysis were among those lost at high density and thus 

specifically beneficial for low density. 

Recall that T7Hi was the ancestor of the T7Lo adaptation and that T7Hi had 

acquired deletions of several early genes. A possible explanation for the limited 

adaptation at low density was thus that the deleted genes were necessary for evolving late 

lysis. This explanation was ruled out with a recombination between T7+ (carrying all the 

genes) and T7Lo. Adaptation of the recombinant pool at low density led to a genome the 

same as T7Lo, with the early genes deleted. 
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25BDISCUSSION 

Optimality models of evolution attempt to manage complexity by reducing the 

organism to simple trade-off functions and reducing evolution to a deterministic process 

of natural selection caused by few selective forces. There are obviously factors affecting 

evolution besides natural selection on simple trade-offs: alternative selective forces, 

mutation rate, population size, migration, generation time, evolutionary history, 

pleiotropy, and insurmountable limits to evolution. However, it may be possible to 

predict phenotypes accurately without taking many genetic details into account. Our 

study specifically addresses this possibility using phage lysis time as a phenotype. 

Experimental adaptations of a phage failed to reach the expected optimum lysis time in 

two sets of conditions, high and low host density, although the discrepancy was large 

only in the latter. In all adaptations, the phage remained closer to the starting conditions 

than predicted. 

 In general, three types of explanation can be proffered for this difference between 

prediction and outcome: (1) the basic premise of the model is correct but the optimum 

has been miscalculated (and the phage really did achieve optimality); (2) the experiment 

was too brief for the phage population to experience the appropriate mutations; (3) the 

phage genome does not obey the assumed trade-off. With respect to (1), we extended the 

model from its earlier version to incorporate environmental variance in lysis time, but 

that modification does not explain the difference; there is otherwise no basis for 

entertaining this possibility, but we cannot exclude it. The other explanations will be 

addressed below. 
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 In the high host density adaptation, T7Hi evolved to approximately a minute later 

than the predicted optimum at high host density (Fig. 4.4B). The difference was 

statistically significant, although the biological significance of the difference is 

questionable, as the suite of parameter estimation models might introduce a systematic 

bias. More importantly, lysis time remained several minutes faster than optimum in both 

low density selections. In a preliminary selection, there was little phenotypic evolution 

despite five substitutions. In the main (formal) low density adaptation, lysis time evolved 

but remained far from the putative optimum, and a trait outside the model, eclipse time, 

explained a third of the phenotypic change in lysis time (Fig. 4.4C). 

Given the adaptation observed in the formal low density treatment and that those 

mutations were also shown to be beneficial in the conditions of the preliminary low 

density treatment, it seems likely the failure of phenotypic adaptation in the preliminary 

low density experiment was due to a small effective population size limiting the input of 

mutations. The number of phages transferred was usually on the order of 105, which is 

itself low, but further reduced by the fact that 95% of phages transferred are predicted to 

remain unadsorbed in 30 min at this cell density. Thus, the actual population would not 

have allowed many mutations to arise, and most of those would not have been exposed to 

selection. The fact that the mutations from T7Lo (evolved in the mixed host environment) 

spread in the recombination assay done at low density strongly suggests that mutations 

were the limiting factor in the preliminary low-density experiment. Of course, this 

impediment to adaptation in our experiment may also apply in nature at low density, if 

phages experience a range of host densities. In ecological theory, populations with rich 
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resources are often expected to be more important to adaptation than marginal 

populations (Kirkpatrick and Barton 1997).  

77BFailure of T7Lo to match optimality.  

Following the failure of the preliminary low density selection to achieve 

phenotypic adaptation, the formal low density selection used a design that consisted of a 

mix of permissive and non-permissive hosts. The effect of non-permissive hosts was 

merely to reduce phage population growth rate by increasing phage mortality rate, and 

although the specific nature of our design may be unrealistic, there are many reasons why 

similar causes of phage mortality could be important in natural settings (Chopin et al. 

2005; De Paepe and Taddei 2006).  

 Significant phenotypic and genetic evolution was obtained in this low density 

experiment (Fig. 4.4C). The evolved phage, T7Lo, lysed slower than its ancestor T7Hi, but 

its phenotype values did not satisfy the optimality criterion. This failure could be due to 

insufficient time, although other evidence (below) also suggests that the trade-off is 

violated. The fact that the experiment transcended 280 generations and fixed seven 

mutations suggests that there was ample opportunity for the evolution of lysis time if that 

phenotype could evolve large changes easily, as it does in other phages such as ! (Wang 

2006). However, evaluation of equation (A1.d) reveals that selection for the optimum is 

relatively weak near the optimum, far more so at low host density than at high (Fig. 5.4), 

so insufficient time remains a possible partial cause of the failure. However, the observed 

discrepancy between evolved T7Lo and the putative optimum appears too great to be 

explained by this alone. 
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Given that we observed the evolution of seven mutations in the formal low density 

adaptation, the large discrepancy between predicted and observed lysis time is especially 

surprising from one perspective. It seems most plausible that the typical phage 

environment in the wild is low host density, if only because lytic phages quickly exploit 

their hosts and because few natural environments are thought to sustain high absolute 

densities of (non-stationary phase) single bacterial species. Deviation from optimality is 

most expected when organisms encounter novel conditions, not when they encounter 

common conditions (West et al. 2000). From this perspective, therefore, a phage should 

be predisposed to evolve a lysis time that is appropriate for low host density, which is not 

what we observed. 

 Our predictions about the genetic changes likely to be associated with adaptation 

to low host density were partially met. Unexpectedly, there was no change in the coding 

region of the holin gene 17.5, but the change upstream of it did delay lysis (Table 1.4). It 

may have some regulatory effect, although it is upstream of the ribosome-binding 

sequence, and there are no T7 promoters in this region. Changes in gene 16 also delayed 

lysis but were not necessarily expected, as the lysin activity of gene 16 has no detectable 

effect on lysis in T7+ (Moak and Molineux 2000). However, gene 16 has effected the 

recovery of lysis after abolition of phage lytic activity in gene 3.5 (Heineman et al. 2005), 

so its contribution here is plausible. 

78BPossibility of nonlinear phage accumulation function.  

There was a pronounced failure to evolve late lysis in T7Lo, as judged by the 

optimality criteria: the predicted post-eclipse period was nearly 11min, whereas the 
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observed was close to 4.6 min. Does this mean that T7 cannot evolve later lysis? 

Paradoxically, late lysis per se is never favored directly in the optimality model. Instead 

selection favors an increase in burst size, and a delay in lysis is an unavoidable downside 

of the increased burst size. The evolution of late lysis per se is in fact trivial for T7 – any 

change that delays the life cycle will delay lysis, for example – but there is no possible 

benefit unless burst size improves. The failure, therefore, must lie in the ability to 

increase burst size. In terms of the model, this failure would mean that progeny phage do 

not continue to accumulate (linearly) when T7 lysis is delayed beyond the normal time, in 

contrast to the evidence in three other unrelated phages. 

Our genetic work with T7 may shed light on this enigma. Loss of lysin activity of 

the lysozyme gene (3.5) in T7 results in a profound delay in lysis and phage release, but 

no increase in burst size even when cells are artificially lysed. The simple explanation is 

that, with an active holin (time-keeper), cell death occurs at the usual lysis time because 

the holin is causing the cell to “bleed” by permeabilizing the inner membrane, but the 

dead cell remains intact without the lysozyme to disrupt the cell wall and lyse it. Thus the 

cell ceases phage production but the phages do not escape. Loss of lysozyme activity 

therefore delays lysis without increasing burst size. Adaptation of this lysis-defective 

phage might be expected to select a delay in holin timing as one avenue to increase 

fitness (resulting in a larger burst), but the only evolutionary outcome observed was re-

evolution of lysis at the normal time (Heineman et al. 2005). We thus lack evidence that 

T7 progeny accumulation inside the cell is linear with time, even though a diverse set of 

other phages do exhibit linear accumulation. While we might have anticipated the lack of 

linear accumulation in T7 from our previous work, that work used T7 phages that were 
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profoundly and artificially debilitated and did not immediately indicate a meaningful 

constraint on natural evolution. 

79BAdaptation of T7Lo eclipse.  

 Optimality models are commonly tested by comparing organisms evolved in their 

natural environments. While this approach has many advantages, it is also subject to 

complications such as selection from confounding variables, non-independence between 

groups, and even the neglect of taxa that evolved outside the parameter bounds of the 

study. An advantage of our experimental test over observational studies is that it was 

possible to observe evolution of multiple phenotypes in an environment designed to 

select just changes in lysis time and burst size. This broader perspective provides insight 

to the model that would otherwise be difficult to obtain.  

A puzzle revealed in this fashion was the evolution of a longer eclipse time in the 

low density adaptation, contributing a third as much to delayed lysis as the increase in the 

post-eclipse time. Evolution of a shorter eclipse during adaptation of T7+ to high density 

was not surprising in view of the presumed novelty of these environments to T7+. The 

evolution of a longer eclipse at low density after T7Hi was already adapted to the cells 

was surprising, since the cell physiology was presumably the same in the low-density as 

in high-density environments. That evolution represents a failure of our optimality model 

to capture phenotype evolution, although in this case, the optimum is easily recalculated 

for any eclipse time. The evolution of eclipse time might be incorporated into a more 

complicated model of lysis, although such a model requires understanding the impact of 

different eclipse times on the (linear) phage accumulation function (Bull 2006).  
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Our results somewhat fly in the face of important precedents for the study of lysis 

time in phages (Abedon et al. 2003; Wang 2006). Those studies competed phages with 

different holin mutations and observed evolution of rapid lysis under expected conditions. 

One difference is that our study used T7, whereas those studies used T4 and !. Both of 

those phages have been shown to exhibit a linear accumulation of progeny inside the cell. 

A second difference is those studies both started with known holin variation, ours waited 

for variation to arise and ascend. Third, our study tested quantitative predictions; our 

results were in fact in qualitative agreement with the model A more useful comparison to 

those precedents would thus be a long term study such as ours, but using phage ! or T4 

instead of T7.  

Experimental adaptations have addressed the evolution of life history traits in 

cellular life as well (MacLean et al. 2004; Pijpe et al. 2006; Prasad and Joshi 2003; 

Reznick et al. 2006; van Kleunen et al. 2002). The models tested have rarely been both a 

priori and quantitative, although there appears to be a trend in this direction (Carvalho et 

al. 1998). Protein expression levels in the bacterium E. coli have been experimentally 

shown to evolve to a quantitative optimum (Dekel and Alon 2005).  

80BImplications for optimal virulence.  

Optimal virulence models maximize parasite fitness along a trade-off between 

parasite transmission and host mortality (virulence). A typical prediction is that 

pathogens evolve to kill faster when there are many hosts available and transmission is 

high (Jensen et al. 2006), and this framework has been used to inform research into the 

evolution of human diseases (Ewald 1996). Our lysis time model is probably the simplest 
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quantitative one available for the evolution of virulence, if one considers rapid lysis as 

more virulent than slow lysis (Abedon et al. 2003). The failure of T7 to match the 

predictions of an optimal virulence model raises questions about the likelihood of success 

of generalized virulence models in other systems, especially when considering that 

virulence of a human pathogen is far more complicated than is lysis time of a phage. 

Thus, harming the host often may frequently be a side effect of pathogen reproduction, 

not necessarily involved in a direct trade-off with increased transmission (Sokurenko et 

al. 2006).  

The use of vaccines that prevent infection has been suggested to favor the evolution 

of lower virulence to unvaccinated hosts (Gandon et al. 2003). Our formal low-density 

treatment used what is analogous to a perfect vaccine, from which no infecting virus 

escapes, and its effect was to select longer lysis time, tantamount to lower virulence.  
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Figure 1.2. Lysis curve for T7+
0. The dotted line shows a representative lysis curve based 

on Klett values. The solid curve shows the best-fit cumulative normal curve, and the 

vertical line shows the estimated mean lysis time for these data. 
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Figure 2.2. Fitness and lysis time adaptation. Solid symbols represent initial values, open 

symbols represent values after adaptation. T7"3.5: &,'; AFK136: (,); T7+: !,*. Each 

line represents the adaptation of a phage line. In all lines, lysis time decreased and fitness 

increased during adaptation, so the direction of adaptation is from lower right to upper 

left. 95% confidence bars, sometimes smaller than the point, are provided for lysis and 

fitness data.  
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Figure 3.2. Gene 16 mutations found in individual phage genomes obtained from 

T7"3.562 and AFK13643 lysates. The 5’ end of gene 16 was sequenced using phages from 

several isolated plaques in order to identify polymorphisms. A filled rectangle means that 

the mutation was present in an individual phage genome, an empty rectangle means that 

it was absent. The number of purified phages found carrying a particular genotype is 

shown in parentheses for each genotype.  
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  Genotype of isolates  Genotype of isolates 
Nucleotide Change A (2) B (2) C (1)  D (1) E (4) F (2) 

30634 G ->A G14S              
30646 A->C K18Q              
30660 C->A silent              
30701 C->T T36I              
30860 A->T Q89L              
30861 A->C Q89H              
30945 T ->G N117K              
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Figure 4.2. Apparent stabilizing selection for lysis time. In the absence of gene 16 

mutations, lysozyme deficiency has a large effect on fitness and lysis time, which is 

largely rectified by gene 16 mutations. Fitness at an intermediate lysis time is higher than 

at more extreme times, suggesting an intermediate optimum which may actually be 

caused largely by violations of the optimality model.  
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Figure 5.2. Phenotypic evolution and appearance of mutations during T7"3.5 evolution. 

The horizontal axis indicates the times (hours of passage) during the adaptations when 

phage lysates were obtained, the data points correspond to passage numbers 0, 8, 22, and 

62. Fitness (closed circles) and lysis time (open circles) exhibit an inverse relationship. 

Mutations are indicated only at the time at which they were first observed. T7"3.5,16Q89H 

(squares) is also shown near time 0. 
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Figure 6.2. Phage release for T7+
0 (A), AFK136swap (B) and AFK1360 (C). Phage titer of samples treated with chloroform 

(squares) or untreated (circles) at various time points after infection. A different replicate of AFK1360 (triangles) was also 

subjected to artificial lysis (see Materials and Methods) to ensure release of mature phage particles. This assay has a slightly 

lower titer than the untreated replicate shown at the beginning and end of assay, which may be caused by variance between 

replicates. 
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Figure 1.3. Lysis time of various phages on normal hosts. Error bars indicate one 

standard error. Bars are labeled with the same letter if they are statistically 

indistinguishable by two-tailed t-test. Gene 16 and gene 17.5 deletions both delay lysis, 

though deleting them both has little effect beyond merely deleting gene 17.5. T7!17.5 

was adapted to yield T7!17.5E, which has a large deletion of some early genes, a silent 

change in gene 4.3, and coding changes in gene 16 and 19.5. The gene 16 change had 

little effect on lysis when isolated, while adding the gene 19.5 change actually delays 

lysis. T7!17.5E lyses much faster. This suggests that the 2168 bp 0.3-0.7 deletion, the 

only coding difference between T7!17.5+g16+g19.5 and T7!17.5E, has a large effect 

(although this effect may be due to quicker genome entry rather than lysis per se).  
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Figure 2.3. Phage release for AFK136 and AFK!17.5. Dotted lines indicate phage titer 

at various times after infection, a measure including both unlysed cells and free phage 

virions. Solid lines indicate phage titer when cells were lysed artificially to free mature 

phages from hosts. AFK136 is released from cells slowly, due to lysis defects (open 

squares). Within the cell, as seen with artificial lysis, phage production is rapid at first but 

halts suddenly (closed squares). AFK!17.5 halts phage production within the cell at 

approximately the same time as AFK136 (closed circles), demonstrating that the failure 

to continue accumulating phage is not caused by the holin activity of gene 17.5. The 17.5 
deletion does, however, substantially decrease the rate at which phages escape the cell 

(open circles.) 
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Figure 3.3. Phenotypic evolution of AFK!16 (solid lines). The horizontal axis shows 

times when phage lysates were obtained. Fitness (closed circles) increased over 

adaptation while lysis time (closed squares) decreased. AFK!16 evolved slowly relative 

to AFK136 (dotted lines, from Heineman 2005). AFK136 fitness (open circles) was 

actually lower than that of AFK!16 before adaptation (due to the difference in hosts, as 

AFK!16 was adapted and assayed on +gp16 cells), but it increased far more quickly. 

Lysis time (open squares) also evolved more quickly in AFK136. This demonstrates that 

prevention of gene 16 evolution was a meaningful constraint on the rate of phenotypic 

adaptation. Despite the significant gains in fitness by hour 18.7 in AFK!16, none of the 

substitutions present in the final evolved phage had yet appeared (Table 2.3), suggesting 

the presence of other substitutions that later disappeared due to epistatic interactions. 

Error bars, sometimes smaller than the point, indicate one standard error. 
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Figure 4.3. Lysis times of various phages on hosts producing gp16. (Of these phages, 

only AFK!16E lysed appreciably on normal hosts.) Error bars indicate one standard 

error. Bars are labeled with the same letter if they are statistically indistinguishable by 

two-tailed t-test. AFK!16 lysed slowly, while AFK!16E recovered relatively rapid lysis. 

The gene 0.7 and 1.6 substitutions together had a large effect (2.6 min). The 0.7 

substitution may have indirectly hastened lysis time by altering genome entry or might 

have some other regulatory effect. Adding the 1.8 change to these other substitutions had 

no detectable effect, which is not surprising as a recombination assay suggested it was an 

adaptation specifically to +gp16 hosts (unpublished data). The further addition of the 6.3 

change hastened lysis by 2.7 min, suggesting this largely uncharacterized gene was very 

important. Finally, the 17, 17.5, and 19.5 changes combined delayed lysis by 3.5 min.  
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Figure 1.4. The basic life cycle of a lytic phage is analogous to that of many other organisms that reproduce only once. The 

environmental period, in which phage await contact with a host, is similar to dispersal. The eclipse period is the time after 

infection but before any viable progeny are constructed. This period, in which the host is turned into a phage factory, is much 

like the juvenile phase of other organisms. In the post-eclipse period, “adulthood,” progeny begin to accumulate inside the cell. 

The phage accumulation function is linear in all known cases, meaning that, after eclipse, progeny are assembled within the 

cell at a constant rate. Lysis allows the viral progeny to escape the host cell at the end of an infection but halts further phage 

production inside the cell. Later lysis increases the amount of phage produced inside the cell but also increases generation 

time. 
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Figure 2.4. General molecular model for lysis. The lysin, which can destroy the cell wall, is at first held away from the cell 

wall by the inner membrane. Phage progeny continue to increase inside the cell, but are not released. Holin acts as timekeeper 

by at some point permeabilizing the membrane rapidly. This allows lysins to pass the inner membrane and destroy the cell wall 

all at once, killing the host and releasing phage. While T7 has the genetic characteristics of lysis in many other phages, its lysis 

mechanisms are not so well understood. 
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Figure 3.4. Summary of T7 adaptation and recombination design. Wild-type T7 (T7+) was 

adapted to high host density to yield T7Hi. T7Hi was adapted to mixed permissive and 

nonpermissive cells, expected to select for slower lysis (yielding T7Lo, which was sequenced). A 

recombination assay was done between T7Hi and T7Lo. The recombinant population should 

contain many combinations of substitutions from each genome. The recombined pool adapted to 

high cell density was similar to T7Hi in both sequence and lysis time, indicating that the 

substitutions that occurred during T7Lo adaptation were only greatly advantageous under 

selection for slow lysis (4 mutations were lost, 3 remained polymorphic but did not ascend to 

high levels). The recombinant line adapted to low cell density was indistinguishable from T7Lo in 

sequence and phenotype, suggesting that all of the mutations were highly advantageous at low 

host density. A recombination between T7Lo and T7+ adapted at low density also arrived at a 

sequence identical to T7Lo. 
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Figure 4.4. Lysis time adaptation. Lysis time (L) can be broken down into eclipse time (E) plus post-eclipse time (L – E). Optimal 
lysis time is predicted as approximately E + X, where X = 1 / r plus a small correction for variance in lysis time from Appendix 1. For 
this reason, a line L = E provides a useful baseline for comparison of these values. In all cases, the putative optimum is based on 
current fitness (r) and eclipse time, hence is subject to change as these traits adapt. (A) Not surprisingly, T7+ lysis was not optimal in 
high host density conditions prior to adaptation. (B) After adaptation to high host density, lysis time approached the optimum; eclipse 
time also shortened. (C) After adaptation to low host density, evolved lysis time increased slightly but remained well short of the 
putative optimum. Surprisingly, eclipse time also increased in this selection. The optima in these figures are referred to as putative 
optima, because their values are based on the observed r rather than the r that would be achieved at the optimum ( r̂ ). The low density 
conditions used in these adaptations used a mix of permissive and non-permissive hosts (the formal low density adaptation). 
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Figure 5.4. Strength of selection for the optimum. Equation (A1.d) was used to plot fitness against average lysis time (post-eclipse 

time) for parameters somewhat matching those of the high and low density adaptations. The optimum is at the peak, indicated by the 

filled circles. The vertical bars through the curves indicate a type of selective equivalence for 60 hr of adaptation: if a homogenous 

population’s initial lysis time was at the boundary of this interval, a mutant whose lysis time was exactly optimal would ascend from 

an initial frequency of 10-6 to 0.5 in 60 hrs. Populations whose starting genotypes were inside this interval thus may not be able to 

evolve the optimal lysis time (in 60 hr of adaptation) even if the appropriate mutations arose. However, the strength of selection for 

the optimum is substantially greater at high host density than at low. Parameters were (R = 80, c = 0.4, E = 7.1, %2 = 0.5 for high 

density; R = 70, c = 0.004, E = 7.8, %2 = 0.9, with an additional term added to account for non-permissive hosts, from Bull 2006). No 

attempt was made to fit the observations quantitatively. 
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Table 1.2. T7 lines used in this study.  
 
Phage Line Description 
 
T7+

0 Wild-type T7. 

*T7+
61 T7+

0 after adaptation to passaging conditions. 

AFK1360 T7 with mutant lysozyme, lacking lysis activity. 

*AFK13643 AFK1360 after all experimental adaptation (43 passages) 

T7"3.50 T7 deleted for lysozyme gene. 

T7"3.522 T7"3.50 after 22 passages of adaptation. 

*T7"3.562 T7!3.50 after all experimental adaptation (62 passages). 

T7"3.5,16Q89H Phage T7"3.50 plus mutation 16Q89H and a silent mutation at nucleotide 30654 T->G (16A20A).  

AFK136swap AFK1360, with 16G14S, 16Q89H, 16N117K, and 17T118A from T7"3.562. 

T7+
swap T7+

0, with 16G14S, 16Q89H, 16N117K, and 17T118A from T7"3.562. 

T7"3.562(A) Isolate from T7"3.562 with 16G14S,16Q89H and 16N117K mutations. Genotype A in Fig. 3.2. 

T7"3.562(B) Isolate from T7"3.562 that is the same as T7"3.562(A) except that it lacks 16G14S. Genotype B in Fig. 3.2. 

*T7+/"3.562 

 

Recombinant between T7+
0 and T7"3.562, adapted to fix mutations of fittest genotype. Is 3.5+ and contains mutations 

10BE375K, 16G14S, 16Q89H and 17T118A. 

* indicates lines whose sequences and phenotypes were analyzed as cultures. Genetic variants present only at low frequencies would not have 

been detected but might affect the phenotype of the culture. 
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Table 2.2. Phenotypic traits in T7 lines, with 95% confidence intervals. 

Line       Fitness  Mean Lysis Time 
Slope of lysis curve 

at mean1 

T7+
0 35.6 ± 0.4 14.4 ± 1.1 -0.36 ± 0.23 

T7+
61 41.9 ± 2.1 10.1 ± 0.1 -0.48 ± 0.16 

AFK1360 11.4 ± 1.1 24.6 ± 2.6 -0.02 ± 0.003 
AFK13643 35.4 ± 1.3 11.7 ± 0.6 -0.17 ± 0.19 
T7!3.50 10.9 ± 0.4 28.2 ± 5.5 -0.06 ± 0.05 
T7!3.58 12.0 ± 2.9 25.4 ± 4.2 -0.04 ± 0.02 
T7!3.522 23.0 ± 1.3 16.8 ± 5.3 -0.09 ± 0.06 
T7!3.562 32.4 ± 1.5 12.4 ± 0.6 -0.42 ± 0.08 
T7!3.5:16Q89H 20.5 ± 2.9 15.9 ± 0.4 -0.24 ± 0.05 
AFK136swap 31.9 ± 3.3 13.1 ± 0.9 -0.26 ± 0.23 
T7+

swap 32.7 ± 1.0 12.9 ± 0.3 -0.36 ± 0.06 
T7!3.562(A)    ND 11.6 ± 0.8 -0.32 ± 0.14 
T7!3.562(B)    ND 12.4 ± 0.7 -0.34 ± 0.13 
ND=Not determined 
1A measure of lysis synchrony. Per minute decline in culture turbidity (as a proportion of total 
turbidity) measured at mean lysis time (see Materials and Methods). More negative values correlate 
with more abrupt lysis.  
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Table 3.2. Genetic evolution in adapted T7 lines relative to starting phage1.     

Nucleotide Gene Change Gene Function T7"3.58 T7"3.522 T7"3.562 AFK13643 T7+/"3.562 T7+
61

5550 1 A->G T794A T7 RNAP + + + ND - - 
7964 1.6 G->A R20H Unknown - + + ND - - 
24088* 2 10B G->A E375K Minor Coat Protein - - + ND + + 
24171 Tø C deletion T7 RNAP Terminator - - + ND - - 
30634* 16 G ->A G14S Internal Core Protein - - +/- 3 - + - 
30646 16 A->C K18Q “ - - - +/- - - 
30660 16 C->A silent “ - - - +/- - - 
30701 16 C->T T36I “ - - +/- - - - 
30860 16 A->T Q89L “ - - - +/- - - 
30861* 16 A->C Q89H “ - + +/- +/- + + 
30945 16 T->G N117K “ - - +/- +/- - - 
34975* 17 A->G T118A Tail Fiber - - + ND + + 

1257-
2736 
 

0.3-0.7 
fusion  
0.4-0.6 
deletion 

Deletion 
 

Various4 

 
- 
 

- 
 

- 
 

ND 
 

ND 
 

 
 

+ 
 

15094 5 G->T A248S DNA Polymerase - - - ND ND + 
29770 15 G->A K482K Internal Core Protein - - - ND ND  
32860 16 G->A G756S “ - - - ND ND + 
36389 17.5 A->G I16V Holin - - - ND ND +/- 5 

36492 17.5 T->G I50S “ - - - ND ND +/- 5 

ND=Not determined. 
1 Mutations below the dotted line were found only in T7+

61. 
2 * Indicates mutations present in T7+/"3.562 and therefore possibly non-compensatory. 
3 +/- Indicates polymorphism in lysate. 
4 Deletion H1 of Studier (1973). Retains anti-restriction activity of 0.3, and transcription shut-off but not protein kinase activity of 
0.7. Genes 0.4 - 0.6 have no known function. 
5 All six T7+

61 purified phages contained one gene 17.5 mutation. Two contained 17.5I16V, four contained 17.5I50S. 
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Table 1.3.  Genetic evolution of adapted lines.  
Gene Nucleotide Change Gene Function T7+

E T7!3.5E AFK136E T7!17.5E T7!3.5!17.5E AFK!16E 
Removes genes 
0.3-0.6 
entirely, and most 
of 0.7† 

575-2742 
  

Deletion 
  

Various 
  

  
  

  
  

  
  

  
  

  
  

  
  

Fusion between 
59th codon of 
0.3, 187th codon 
of 0.7‡ 

1101-2583 
  

Deletion 
  

Various 
  

  
  

  
  

  
  

  
  

  
  

  
  

0.3-0.7 fusion, 
0.4-0.6 deletion‡ 1257-2736 Deletion Various             
0.7 2606 A->G M196V Protein kinase             
Immediately 
before 1 3163 G->A               
1 5274 G->A A702T T7 RNA polymerase             
1 5550 A->G T794A T7 RNA polymerase             
1.2 
 

6227-8 
 

T,G deleted 
 

Non-essential, F 
exclusion             

1.6 7964 G->A R20H Unknown             
1.6 8027 T->G L41W Unknown             
1.8 8750 T->C M1T Non-essential           * 
1.8 
 

8768 
 

C insert, missense 
at 9th codon Non-essential           * 

3.5 just prior to 
deletion 10718 

C->T stop at 5th 
codon               

3.8 
 11294 

G del, nonsense 
at 24th codon Non-essential             

4.3 13385 C->T L12L Nonessential             
5 15094 G->T A248S DNA polymerase         i   
6.3 18458 G->A G22D Non-essential             
10B 24088 G->A E375K Minor coat protein         i   
T$ 24171 C deletion T7 RNAP terminator             
T$ 24178 G deletion T7 RNAP terminator             
12 26153 A->G N438D Tail protein            
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Table 1.3 continued.  
Gene Nucleotide Change Gene Function T7+

E T7!3.5E AFK136E T7!17.5E T7!3.5!17.5E AFK!16E 

15 29770 G->A K482K Internal core protein         i   
16 30634 G->A G14S Internal core protein             
16 30642 C->T F16F Internal core protein             
16 30646 A->C K18Q Internal core protein             
16 30660 C->A A22A Internal core protein             
16 30701 C->T T36I Internal core protein             
16 30860 A->T Q89L Internal core protein             
16 30861 A->C Q89H Internal core protein         i   
16 30945 T->G N117K Internal core protein         i   
16 31819 G->A A409T Internal core protein             
16 32860 G->A G756S Internal core protein         i   
17 34975 A->G T118A Tail fiber             
17 35438 T->G L272W Tail fiber           
17.5 36350 T->C S3P Holin           
17.5 36389 A->GI16V Holin *         
17.5 36492 T->G I50S Holin *         
19.5 39459 C->A A24D Non-essential             
19.5 39501 A->G E38G Non-essential             
Changes are marked in black.  Polymorphic changes marked in grey.   
i indicates substitution present in initial phage 
* indicates that every isolate sampled from population had either one or the other of these substitutions. 
† Gene 0.7 is unlikely to be translated.. 
‡ Should retain protein kinase activity of 0.7 (Studier 1973). 
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Table 2.3. Genetic evolution of AFK!16 at intermediate times for adaptation and after recombination assays.  
 
                                       

                      AFK!16                                      AFK!16E 
 Time adapted (hours) 

Gene Nucleotide Change 0 11.2 18.7 29.7 39.9 59.3  

Recombinant 1:  
AFK!16E and AFK136, 
adapted on normal hosts. 

Recombinant 2:  
Recombinant 1 and 
AFK136 carrying evolved 
16 (AFKswap from 
Heineman et al 2005), 
adapted on normal hosts. 

0.7 2606 A->G M196V             † 
1.6 8027 T->G L41W             
1.8 8750 T->C M1T        *     
1.8 
 

8768 
 

C insert, 
missense at 9      *    

6.3 18458 G->A G22D             
16 30634 G->A G14S           
16 30660 C->A silent          
16 30860 A->T Q89L          
16 30861 A->C Q89H        — + 
16 30945 T->G N117K           
17 35438 T->G L272W    — —       
17.5 36350 T->C S3P              
19.5 39501 A->G E38G                   
  

        

These changes were 
advantageous when gp16 
provided by genome 
rather than host. 
 

These changes were 
advantageous when 
evolved gp16 
compensatory for lysis 
defect was available. 

Changes are marked in black. Polymorphic changes marked in grey.  
Intermediate and recombinant phages were sequenced from the population and only over regions containing substitutions in AFK!16E. 
Large X indicates gene 16 sites not present in these lines due to gene deletion. 
— indicates the substitution was only present at very low levels. 
* indicates that every isolate sampled from population had either one or the other of these substitutions. 
† instead has deletion of bases 1253-2741, inclusive.  Gene 0.3-0.7 fusion as Studier (1973), but with three extra residues remaining. 
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Table 1.4. Phenotypic traits of T7 lines, with standard errors (computed from the 

observations) and number of assays. 

 T7Hi T7Lo 

Optimum (high density) † 9.1 10.1 

Optimum (low density/mixed) † 18.1 18.6 

Lysis time † 10.4 ± 0.2  (3) 12.4 ± 0.0 (2) 

Lysis variance € 0.4 ± 0.2  (3) 0.9 ± 0.2 (2) 

High moi lysis time † 10.5 ± 0.2  (6) 11.8 ± 0.1  (6) 

Eclipse time † 7.1 ± 0.1  (4) 7.8 ± 0.2  (3) 

Burst size 266 ± 16  (6) 327 ± 27  (7) 

Fitness (high density) ‡ 47.9 ± 0.4  (4) 43.7 ± 1.2  (3) 

Fitness (low density) ‡ 12.1 ± 0.5  (4) 11.7 ± 0.4  (3) 

Fitness (low density/mixed) ‡ 7.9 ± 0.6  (4) 8.1 ± 0.8  (4) 

Adsorption £ 3.3 ± 0.3  (2) 4.0 ± 0.4  (3) 

 

† minutes, € minutes2, ‡ doubling/hour, £ 10-9 ml/min. 
 
r = Fitness x 0.011552 
 
Optima estimated as 432 )3/5(/1 %% rrrE )''  (Appendix 1). 
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Table 2.4. Genetic evolution in T7Hi and T7Lo. 
 
Nucleotide Gene Change Gene function T7Hi T7Lo 

1257-2736 
 

0.3-0.7 fusion, 
0.4-0.6 deletion

Deletion 
 

Variousa 

 
+ 
 

+ 
 

15094 5 G->T A248S DNA Polymerase + + 
24088 10B G->A E375K Minor coat protein + + 
30861 16 A->C Q89H Internal core protein, lysin activity in some conditions + + 
30945 16 T->G N117K Internal core protein, lysin activity in some conditions + + 
32860 16 G->A G756S Internal core protein, lysin activity in some conditions + + 
34975 17 A->G T118A Tail fiber + + 
36492 17.5 T->G I50S Holin + + 
4325 1 C->T Y385Y T7 RNA polymerase - +b 
5451 1 A->G I761V T7 RNA polymerase - + 
6238 

 
1.2 C->T A34A 

 
Non-essential, F exclusion, inhibits E. coli deoxyguanosine 
triphosphohydrolase. 

- 
 

+b 

 
13481 4.3 C->T L44L Non-essential, unknown. - +b 
31735 16 G->A A381T Internal core protein, lysin activity in some conditions - + 
32142 16 G->A E516E Internal core protein, lysin activity in some conditions - + 
36320 

 
Intergenic, 24 bp 

before 17.5
G->A 
 

Upstream of ribosome-binding sequence of holin 
 

- 
 

+ 
 

      
Mutations below the horizontal line were new in T7Lo. Mutations above the line evolved from T7+ to T7Hi.   
 

aDeletion H1 of Studier (1973). Retains anti-restriction activity of 0.3 and transcription shut-off but not protein kinase 
activity of 0.7. Genes 0.4-0.6 have no known function.   
bSubstitutions polymorphic in T7 recombinant adapted to high density, indicating that they are not strongly 
disadvantageous at high host density.   
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6BAppendices 

27BAPPENDIX 1. ENVIRONMENTAL VARIATION IN LYSIS TIME. 

 The optimality model developed in Bull 2006 assumed that the lysis time (L) of a 

genotype is constant across hosts. Measurements of lysis time from phages indicate that 

lysis is not synchronous and thus that L is not necessarily constant (variation in lysis time 

could, in principle, stem from variation in time to adsorption). The optimality model was 

therefore modified to consider environmental variation in L. The model adopted here 

assumed that (i) lysis time, L,  "(""/"'"x , where x is the post-eclipse time, distributed with 

mean $ and variance %
2 . Burst size (b) follows the linear model b = Rx, with R being the 

constant rate of intracellular phage accumulation. From Bull (2006), the intrinsic growth 

rate (r) of the phage population satisfies  

 

   r""(""(be)Lr )1)c""("(Rxe)r ( E' x )")"1)c        (A1.a) 

 

 L and b are invariant (c is the product of cell density times adsorption; for our 

experimental conditions, we neglect the phage death rate and washout terms in Bull 

2006). When x varies among infections within a culture, the relevant equation is 

 

   r""(""Ex{be)Lr )1}c ( [Re)rE Ex (xe)rx ) )1]c      (A1.b) 
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where Ex  is the expectation taken over x When x follows a normal distribution with mean 

$ and variance% 2 , (A1.b) becomes 

 

   r""( R ce) rE ($ ) r% 2 )e
)r$' r2% 2

2 ) c        (A1.c) 

 

Assuming normality has the advantage of allowing an exact analytic solution for the 

optimum (below). However, normality of x allows negative values, which are 

biologically disallowed. Thus, it is also useful to consider a distribution confined to x>0, 

such as a gamma. When x follows a gamma distribution, (A1.b) becomes 

 

  

  

r""( R ce)rE $

1' r
% 2

$

0
12

3
45

$2

% 2
'1
) c        (A1.d) 

 

 For each model, the optimum lysis time is found by differentiating the respective 

equation (A1.c or A1.d) with respect to x and setting 
*r
*x

  ( 0 . Differentiating (A1.c) 

leads to text equation (1b) as an exact solution. Differentiating (A1.d) leads to  

 

 
 
1 ' r̂$̂ ' 2r̂ %

2

$̂
 - 2$̂(r̂ + $̂

% 2 )ln(1 ' r̂ %
2

$̂
) ( 0      (A1.e) 
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81BApproximations.  

 A normal distribution allows x to take on negative values, and the model, in turn, 

assigns negative fecundity. Consequently, text equation (1b) may not be accurate for 

large variances. To establish bounds on % 2  that will avoid negative values, note that if 

$""(""2% 2 for a normal distribution, then less than 1% of values are negative (if $""( % 2 then 

16% are negative). Furthermore, the optimum approximately satisfies $̂"(""
1
r̂

, so 

r% 2 "+"1 2 should conservatively ensure that (1b) is accurate, and r% 2 "+""6may be adequate. 

However, this correction amounts to at most a minute increase in the optimum, and a 

minute may be well within the bounds of measurement error for the other terms in the 

optimum. The gamma distribution does not pose the problem of negative values, but an 

analytic solution of (A1.e) is not attainable. An approximate solution is 

 

 û""(""6
r
""'"r% 2")""""

5
3

r3% 4           (A1.f) 

 

but this approximation is useful only if r% 2 "+"""1 and r2% 2 ""+"""7.68 . However, (A1.e) can be 

solved numerically for arbitrary r and %2.  
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28BAPPENDIX 2. DISTRIBUTION OF LYSIS TIMES. 

 The model of infection times is as follows. In a culture of cells to which phage 

have been added at time 0, the time to lysis since phage addition is T "("X"'"Y , where X is 

the time to adsorption and Y is the time to lysis following adsorption. The variable X is 

known to follow an exponential distribution with parameter A, the product of cell density 

and adsorption (Adams 1959). Let the distribution of Y be f(y), with y strictly positive. 

 To obtain the cumulative probability of lysis to time t, P(t), we want 

P(t)""(""Pr(T 9 t)"""(""Pr(X 'Y 9 t)""(""Pr(X 9 t )Y ) . From this and the assumption that 

adsorption follows an exponential distribution with parameter A, it follows that  

 
P(t)""(""" f (y) Ae)Axdx"dy

0

t) y

:
0

t

:

"""""""""""""""""("" ;6) e)A(t) y)

7

t

: )"f (y)"dy
        (A2.a) 

 

For appropriate choice of f(y), it may be possible to solve (A2.a). However, (A2.a) lends 

itself to numerical integration, which is the approach adopted here. For this study, we 

used a gamma pdf for f(y). 

 Assays of lysis time are usually conducted by diluting the culture after a moderate 

interval of adsorption but before any observable lysis (thus preventing secondary 

infections). Assuming that further adsorption is stopped at time t = <, equation (A2.a) is 

easily modified to 
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 P(t)""("""
;e)=< ) e)A(t) y)

7

t)<

: )"f (y)"dy

1")"e)A<        (A2.b) 

 

 Finally, if our model is L = E + t, where E is fixed, the distribution of post-eclipse 

times (y) is obtained by translating total lysis time by E and fitting data to the variable t = 

L – E. 
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