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The performance of phylogenetic methods was evaluated by
testing their success in recovering the true tree from computer simulated
data.  Data were generated on a variety of tree shapes under a complex
model of sequence evolution based on the work of Aaron Halpern and
William Bruno.  Parameters of the model were estimated by maximum
likelihood techniques applied to a phylogeny of 1,610 sequences of
mammalian cytochrome b genes.  These simulations represent a rigorous
test of the robustness of phylogenetic methods because several of the
simplifying assumptions made by inference methods are violated.

Maximum likelihood methods assuming the general time
reversible model of sequence evolution with rate heterogeneity proved to
be quite robust, outperforming all other methods on small trees.  Distance
methods were significantly worse, even when implementing the same
model of sequence evolution.  On larger trees only distance methods and
parsimony techniques were studied.  In virtually all cases parsimony
outperformed distance-based approaches.  The use of simple distance
corrections improved performance for four taxon trees and ultrametric
sixteen taxon trees but decreased the performance of the neighbor joining
method on a 228 taxon tree.  Neighbor joining performed as well or
better than searches under the minimum evolution criterion in all cases.

In general, the results of these simulations agree with the
conclusions of previous studies that phylogenetic methods perform well
over a wide range of tree shapes, highly accurate phylogenies for large
number of taxa can be obtained from moderate sequence lengths, and
model-based distance corrections are much less robust than maximum
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likelihood implementations of the same model.  Maximum likelihood
under a common model of sequence evolution was found to be
inconsistent on difficult tree shapes when the data were generated under
the model described here.  Analysis of the spectra of the generating
model and the model of inference suggest slight alterations to the general
time-reversible model that may improve its performance.



viii

Table of Contents

Chapter 1 – Introduction 1

            The GTR Family of Models 2

Weaknesses of Current Models 3

Codon and Amino Acid Models 4

Site Specific Residue Frequency Model 7

Chapter 2 - Model Inference 10

Overview 10

Description of Parameters 10

Cytochrome b Sequences 13

Phylogenetic Inference of Mammalian Cytochrome b 14

Description of the Tree Used For Inference 18

Finding Maximum Likelihood Estimates of

the Model Parameters 20

Program Requirements 22

Chapter 3 – Simulations - Four Taxon Tree 24

Overview of Simulations 24

Four Taxon Trees 25

DNA Analyses 27

Amino Acid Analyses 30

Four Taxon Results 31

DNA 32

Amino Acid 39

Amino Acid vs. DNA Analyses 41

Chapter 4 – Simulations – Sixteen Taxon Trees 43

Description of the Sixteen Taxon Trees 44

Methods Examined 45

Results 46



ix

Recent Branches 48

Intermediate Branches 48

Deep Divergences 49

Distance Methods 49

Conclusions 50

Chapter 5 - Simulations - 228 Angiosperm Tree 51

Results 54

Discussion of Parsimony Results 55

Neighbor Joining 57

Minimum Evolution 57

Angiosperm Tree Final Thoughts 58

Chapter 6 – Simulations – Randomly Generated Trees 61

Tree Generation 62

Simulation Details 64

Simulation Results 66

Chapter 7 - Conclusions, Implications and Extensions 69

Simple Distance Corrections 70

Implications for Model Improvement 75

A Final Result Relevant to Model Building for

Phylogenetic Inference 82

Tables 85

Figures 88

References 158

Vita 165



1

Chapter 1 -  Introduction

The elucidation of the tree of life is a fundamental goal of biology.

Phylogenies provide the basic framework to interpret evolutionary history for

applications in biogeography, ecology, epidemiology, comparative morphology, and

molecular biology.  Fortunately in the two last decades, as workers throughout the

subdisciplines of biology have come to appreciate the importance of considering

phylogenetic history, the molecular biology revolution has made one source of data

for constructing trees much easier to obtain.  Once sequence data have been collected

workers are faced with a bewildering array of analyses that have been proposed to

produce trees. This dissertation evaluates phylogenetic methodologies using

simulated data from complex models of DNA sequence evolution.

Three general approaches have been used to compare systematic methods:

arguing for a method based on first principles, comparing how analyses perform

when applied to real data from a tree that is widely agreed upon, and testing methods

on simulated data for which the true tree is known because it is specified by the

researcher.  Examining the theoretical underpinnings of methods has resulted in some

of the most significant advances in systematics (e.g., Felsenstein 1978, and Tuffley

and Steele, 1997), but such a tact is usually limited to small trees and simple models

which are analytically tractable.  Using real data from an accepted tree is problematic

because if the tree is “known,” it is probably an unusually easy tree to infer (but see

exceptions to this in Cunningham et al., 1994).   In the last decade, computer

simulation studies have taken a central role in evaluating systematic methods.

Increases in computing power have made it feasible to generate and analyze a large

number of data sets, and simulations allow the researcher to study performance over a

wide range of conditions.

Simulations provide theoretical systematists with a flexible, powerful tool, but

their relevance depends upon how well the data generation program mimics the

processes acting on real data. The development of models of sequence evolution has
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been driven by the attempt to capture the effects of the forces of molecular evolution

which might complicate systematics.  The models have been employed as tools for

phylogenetic inference either as the assumed model for maximum likelihood or as the

basis for pairwise distance corrections.  For these purposes it is important that models

have few parameters so that the calculations can be done quickly and the accuracy of

the phylogenetic estimate is not hindered by high variance arising from estimating a

large number of model parameters in addition to the tree.  These simplified models

have been co-opted as the basis of simulations.  The result is that data generators used

for simulation studies produce data that are a simplified version of real data, and that

correspond exactly to the assumptions of some of the methods that are being tested.

Moving to much more complicated models of sequence evolution provides a more

rigorous and realistic test.

The GTR Family of Models

The Jukes Cantor (1969) model (JC) assumes that mutations are fixed in a

manner consistent with a Poisson process and that a base changes into any of the

other three nucleotides with equal probability.  Transitions are known to occur more

frequently than transversions, so Kimura’s two-parameter model (K2P, 1980) allows

the rate of these two classes to differ.  Most real sequences significantly deviate from

equal base frequencies, and Felsenstein’s (F81, 1981) model extended JC to allow the

equilibrium frequencies of the nucleotides to vary.  Hasegawa, Kishino and Yano

(HKY, 1985) and Felsenstein (F84, Kishino and Hasegawa, 1989) combined the K80

and F81 models.  The culmination of the single nucleotide models was the general

time reversible (GTR) model (Lanave, 1984), which allows for differing base

frequencies and different instantaneous rate of substitution for each of the pairs of

bases.  The only constraint of the model is that of time reversibility (that  πi rij=πj rji

where πi is the frequency of base i and rij is the rate of the instantaneous rate

parameter of the i to j substitution).  Rates of evolution appear to vary dramatically

from site to site, and this variation can be added to the GTR-based sequence models
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by allowing for a certain proportion of sites to be constant, allowing sites to vary

continuously in their rate, with the distribution of rates across sites described by a

continuous distribution such as the Γ distribution as described by Yang 1994),

inferring a different rate for each site in the sequence (Olsen, unpublished), or

specifying partitions of the data and inferring a different rate for each partittion.

Weaknesses of Current Models

Although the GTR model with rate heterogeneity addresses the most obvious

forces of molecular evolution that could act upon a site, there are several

oversimplifications inherent in the model.  The three most obvious limiting

assumptions of the single nucleotide models are homogeneity of the instantaneous

rate matrix across sites (the same underlying model for all sites), stationarity of the

model across the tree (a site is subjected to the same forces over every part of the

phylogeny), and independence of sites (a change at one site does not affect the

evolution at other sites).  Each of these assumptions is difficult to avoid in a general,

statistically powerful manner.

The assumption that the model of evolution is homogeneous across the

sequences could be relaxed by applying different models to different a priori

partitions of the data.  It is not clear that the most obvious partitions (the codon

position of a protein-coding gene, or stems and loops for genes that encode RNA

molecules with functionally important secondary structures) adequately identify the

regions of the molecule that require separate models of sequence evolution.  A

different model could be applied to every site, but most studies do not have enough

data to estimate accurately all of the parameters required by such an approach.

Relaxing the assumption that the model of evolution is constant over the entire

tree has been accomplished in several ways.  For phylogenetic questions involving

deep divergences, the frequencies of the nucleotides often differ significantly between

taxa.  A general Markov model of sequence evolution, which is not time reversible

but allows base frequencies to vary over the tree, has been described (Lockhart et al.
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1994, and Galtier and Guoy 1998).  These methods have not been widely applied

because of computational difficulties.  LogDet distances (Steele 1994, Lockhart et al.

1994, Lake, 1994) provide a distance correction that is robust to changes in

nucleotide frequency over the tree (as with all pairwise distance corrections, it is

impossible for the method to automatically correct for unequal rates across sites, but

Waddell et al. 1995 have shown that removing a portion of invariant sites overcomes

this weakness to a large extent).   Yang et al. (1999) have developed non-stationary

models which infer a value of a model parameter for every branch in the tree, but

these methods seem to produce pathological parameter estimates indicating that

overfitting of the data is a serious problem for these models.  Thorne et al. (1998),

Kishino et al. (2001) and Huelsenbeck et al. (2000) developed techniques that allow

the rate of evolution to change over the tree, either by continuous drift or by discrete

changes.  A generalization of these techniques to other model parameters may

represent an efficient way to allow the model of evolution to change over the tree, but

this idea has not been implemented or tested.

Non-independence of sites could result from neighbor effects (mutations

affecting more than one site or the nucleotide at one position affecting the mutational

spectrum of adjacent sites), important base pairing interactions in the transcribed

RNA, or correlations between sites within the same codon.  The sheer number of

potential interactions between sites makes it infeasible to consider them all in a

statistically powerful way.  Muse (1995) and Tillier et al. (1998) have proposed

models to deal with the base pairing interactions of rRNA.  Codon models address the

non-independence caused by the genetic code (another alternative is to translate

protein coding sequences into amino acids and apply amino acid models).

Codon and Amino Acid Models

Muse and Gaut (1994) and Goldman and Yang (1994) independently

developed models attempting to capture the fact that synonymous substitutions occur

much more frequently than changes which alter the amino acid.  Both of these models
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disallow changes to codons that differ by more than one DNA substitution from the

original codon.  The Muse and Gaut model adds one new parameter to the GTR

family of models.  The new parameter is ω, the nonsynonymous to synonymous rate

ratio.  Muse and Gaut’s model can be expanded by adding different equilibrium

frequencies for each of the codons.  No consideration is given to the similarity of the

amino acids in the model, despite the fact that conservative amino acid changes are

known to occur more frequently than changes to a residue whose chemical nature is

very different from the original amino acid.  Goldman and Yang’s model can also be

used to calculate w, but the model is formulated with the rate of change between two

codons determined by the chemical similarity of the amino acids that they code for, as

measured by Grantham’s distance(1974).

Both the Muse-Gaut and the Goldman-Yang models automatically generate

rate heterogeneity and non-independence across nucleotide sites.  These models do

not incorporate rate heterogeneity across different codons.  This constraint can be

relaxed by adding Γ-distributed rate heterogeneity, but the other model parameters are

still homogeneous across codons.

Amino acid models span the range from very simplistic to extremely

parameter rich.  Bishop and Friday (1987) introduced a version of the Cavender-

Farris model for amino acids (all changes equally likely).  Incorporating different

equilibrium frequencies for each of the amino acids, the proportional model, is

straightforward.  Neither of these models capture information about similarity of

amino acids, nor do they seem to fit real data well.  On the other extreme, every

substitution rate can be assumed to have its own parameter.  The REV model (Adachi

and Hasegawa, 1996) for amino acids has 208 free parameters (as opposed to 8 free

parameters for GTR, the nucleotide version of Rev).  Constraining the instantaneous

rate of change to be zero for all amino acids that do not have codons that are adjacent

in the genetic code (referred to as REV0) reduces the number of parameters to 88 (for
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the vertebrate mitochondrial code). Neither REV nor REV0 have been widely applied

in systematics because of the large amount of data needed to infer their parameters.

Yang et al. (1998) reviewed the models of amino acid evolution that can be

employed for phylogenetic analysis, introduced a useful nomenclature for describing

these models, and introduced some extensions to previous models.  They distinguish

two paths that have been taken to add realism to amino acid models without requiring

a large number of nuisance parameters be inferred:  empirical and mechanistic

approaches.  Empirical models are created by comparing a large number of real

sequences in a pairwise manner and counting the number of times each type of amino

acid substitution occurs then scaling the matrix to a desired divergence. This

approach was originally taken by Dayhoff et al. (1978) leading to the widely used

PAM matrices.  Jones et al. (1992) have produced an updated version of the matrix

(the JTT model) after analyzing a larger data base of protein sequences.  Presumably

this method would generate reasonable transition probabilities for amino acids, but

there are complications.  Converting pairwise distances between known proteins into

a matrix of transition probabilities requires assumptions about rate heterogeneity

between sites and assumes that the same type of changes are occurring at every site

(see Wilbur, 1985, for a discussion of the internal inconsistencies in the PAM matrix

that may arise from ignoring rate heterogeneity).  Adachi and Hasegawa (1996)

produced a matrix specifically for mitochondrial proteins by inferring the parameters

of the REV model on a data set of the protein-encoding portion of the mitochondrial

genome from 24 taxa (mainly mammals).  This empirical matrix is called mtREV24,

and it (or the very similar mtMammREV matrix) can be used in place of a matrix

based on Dayhoff or Jones.

An amino acid model can be built from a codon model by collapsing all of the

synonymous codons into one amino acid state.  These mechanistic models explicitly

deal with the effects of the genetic code on amino acid replacement patterns.  If no

attempt is made to consider differences in rates depending on the identity of the
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amino acids, then the model, referred to as the equal-distance model, is essentially an

amino acid version of the Muse and Gaut model.  Yang et al. (1998) analyzed the

protein-encoding genes of 20 mammalian mitochondrial genomes.  They found that

all amino acid models were significantly improved by adding Γ-distributed rate

heterogeneity between sites.  The mechanistic models gave higher likelihoods than

the empirical models, but REV resulted in much higher likelihood than either class of

models indicating that neither approach was capturing enough complexity for large

analyses.  For the empirical models, mtMammREV outperformed JTT and Dayhoff.

For the mechanistic models they considered two weighting schemes based on

different metrics of amino acid dissimilarity, Grantham’s distance (1974) and the

distance of Miyata et al. (1979).   The best performance was obtained from

calculating the acceptance rate as an exponential function  of Miyata et al.’s distance.

Unfortunately implementation of the mechanistic models are quite slow, making

these methods difficult to study in large simulation experiments.

Site Specific Residue Frequency Model

Clearly different sites in a protein perform different functions.  For instance, a

residue close to the active site of an enzyme or involved in an important folding

interaction might be constrained to be one of the 20 amino acids.  Other sites in the

protein might be free to be any amino acid.  In the middle ground between these two

extremes, we would expect some sites in which natural selection (Darwin, 1859)

requires that the amino acid be a certain size or have a certain polarity, or “prefers”

amino acids based on a mixture of steric and chemical properties.  In light of this

intuition about constraints on protein evolution, the homogeneous models of amino

acid and codon replacement seem greatly oversimplified.

Homogeneous models of amino acid replacement can be given rate

heterogeneity, but the notion that slowly evolving sites obey the same rules as the

sites with the highest rates of change seems unrealistic.  There are two obvious

biological reasons for sites to have low rates of change:  low mutation rate and high



8

level of constraint.  Continuous distributions of rates across sites, like the gamma,

treat slow sites as if they simply have a low mutation rate.   Variation in mutation rate

is a plausible explanation for some heterogeneity, particularly if rate variation occurs

between widely separated genes or genes from different genomes. The fact that

pseudogenes show considerably less rate heterogeneity than is seen in coding

sequences (Yang 1994) implies that differing levels of selective constraint produce

much of the rate variation observed in coding sequences.  Non-homogeneity has been

addressed to some extent by secondary structure specific models of protein evolution

(Goldman et al. 1996, Thorne et al. 1996, and Goldman et al. 1998), but not in a way

that recognizes differences in constraints between adjacent sites.

Halpern and Bruno (1998) have proposed a model of codon evolution (HB

hereafter) that allows each site in the protein to have its own set of amino acid

preferences .  The model is based on the biologically intuitive approach of treating

substitution rates as a function of both a mutational processes and selection.

Mutations are proposed according a single nucleotide model (in their paper they used

HKY).  All of the sites in the protein use the same model parameters to describe the

occurrence of mutations.  Whether or not a mutation becomes fixed is determined by

the fitness of the resulting codon compared to the fitness of the original codon.  By

assuming time-reversibility and weak selection (s<<1), Halpern and Bruno developed

a way to infer the fixation probability of a mutation from codon A to codon B from

the equilibrium frequencies of the codons.  Assuming that codon bias is the result of

uneven nucleotide usage (not selection), the equilibrium frequency of a codon can be

calculated from the frequency of the amino acid that it codes for and the nucleotide

frequencies.  Halpern and Bruno fit their model to 74 viral sequences using rough

estimates of amino acid frequencies.  Their procedure for estimating amino acid

frequencies was to count the number of times each amino acid arises on a phylogeny,

add a small number of pseudocounts to the total for each amino acid (whether that

amino acid is observed at that site in the sequence or not), and then normalize so that
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the frequencies sum to one.  The purpose of the pseudocounts is to avoid overfitting

the data.  They showed through simulations that single nucleotide based distance

corrections severely underestimate long distances, but a distance correction based on

the HB model performed well.

I have re-implemented the HB model in a program that, if given a tree, can

infer maximum likelihood estimates of all of the parameters of the model.  Because of

the large number of parameters that must be estimated the model must be fit to an

enormous data set to give reliable parameter estimates (this is why Halpern and

Bruno opted to approximate the frequencies and use pseudocounts).  I have fit the

model to a tree of 1610 unique mammalian cytochrome b sequences.  Treating the

parameter estimates as a reasonable first approximation, the model can be used to

simulate data which are much more complex and realistic than data generated in

previous simulation studies.  Furthermore the data from HB model simulations can be

analyzed at the nucleotide, or amino acid level.  This presents an opportunity to

contrast these levels of analysis in a single simulation study.
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Chapter 2 – Model Inference

Overview

The HB model provides a framework for generating simulated data  that is

much more complex than the models routinely used to analyze phylogenetic data, and

a basis for comparing amino acid analyses to DNA based analyses.  Simply choosing

an appealing model of sequence evolution does not make a simulation study

worthwhile.  The model must be distinct enough from previously used models so that

new insight can be gained, and it must be biologically plausible for it to be relevant to

systematists.  The HB model meets both of these criteria.  For a parameter-rich

model, such as this one, an exhaustive sweep over all of the possible parameter space

is not feasible.  The parameters must be fit to real data in such a way that the model

represents a reasonable approximation of the true evolutionary process.  The

challenges of fitting the model to real data involve finding an appropriate data set and

developing software to find the maximum likelihood estimate of the parameters in a

reasonable amount of time.

An appropriate data set is one that is likely to match the assumptions of HB

model and has enough data to allow for inference of  the parameters.  The HB model

is far too complex for an analytical solution to be possible, so the inference of the

parameters must be done heuristically, using numerical optimization techniques.  The

model presents several computational problems that are not issues for simpler models

of sequence evolution.  In this chapter I will discuss and justify the criteria I used for

choosing a real data set, and then describe the implementation of the model into

software.

Description of Parameters

The HB model requires the specification of parameters describing mutation

and selection. I implemented the model with a GTR mutational model.  This requires

8 parameters (three base frequencies, and parameters for the rate of AC, AG, AT, CG,

and CT mutations relative to the GT mutations).  As with other maximum likelihood
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models, branch lengths must be estimated.  For an unrooted tree with n taxa there are

2n-3 branches.  Finally one must infer 19 amino-acid equilibrium-frequencies for

each triplet in the DNA sequence.  If the sequence length (in number of codons) is k,

the total number of parameters, p, that must be estimated is :

p= 5 + 2n + 19k

Clearly the HB model is much more complex than the GTR family of models (for

which the number of parameters is simply 5 + 2n).  By considering the number of

parameters in relation to the total amount of data (n times k) it is evident that the

addition of taxa to the problem provides a better ratio of data to parameters than the

addition of more sites.  It was vital to find a data set containing a large number of

taxa.

The difficulty of an estimation problem is clearly affected by the number of

parameters that must be inferred, but how these parameters interact with each other is

also very important. For example, when using the GTR family of models, it is often

quite difficult to obtain robust estimates of the proportion of invariant sites in a

sequence and the shape parameter which describes the distribution of rates among

variable sites.  These parameters interact with each other strongly because it is

possible to explain the same data characteristics (excess of constant sites) by

modeling the sites as invariant or modeling extreme rate heterogeneity so that some

sites are evolving very slowly.  The fact that the branch lengths must also be

estimated aggravates the problem.  For many datasets there is a wide range of

acceptable values for these parameters, because if you constrain the proportion of

invariant sites to be higher than the maximum likelihood estimate of its value,

increasing the values of the shape parameter will largely compensate and a similar

score will be obtained (see Figure 1.1).

Many of the parameters of the HB model do not strongly interact with each

other.  The mutational model affects all of the sites in the molecule, so the description

of the mutational process is potentially conflated with selection.  Fortunately,
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whenever the state of a character is a fourfold-degenerate codon the third base

position is evolving neutrally, so the mutational parameters alone control its behavior.

This does not mean that the amino acid frequency parameters do not affect the

mutational parameters at all, but there is a large portion of the data that allows the

effects of mutation and selection to be separated from one another (selection acting at

levels other than the amino acid level is ignored in the present implementation).  The

amino acid frequencies at one site influence the frequencies at other sites only

through indirect effects (via causing changes in the mutational and branch length

parameters).  Because each site has a relatively minor effect on the estimates of the

branch lengths and mutational parameters, the problem of fitting amino acid

frequency parameters to data is almost like k separate 19 parameter optimization

problems.  In other words, the limited scope of the effects of most of the parameters

makes the model easier to fit to real data and results in less variance than a model

with an equivalent number of parameters but with more interaction between

parameters.

Most model fitting is done during the process of phylogenetic inference, and

the phylogeny that is used can have an effect on the model parameters (though the

effect seems to be modest for parameters not directly related to the rate of evolution,

see Yang et al. 1995).  As mentioned above, adding taxa to the problem is the most

promising way of getting enough data to estimate robustly the parameters of the HB

model.  Unfortunately the problem of finding a phylogeny gets much more difficult as

the number of taxa increases, because the number of possible trees grows quickly

with the number of taxa.  Given the great computational demands of the HB model it

is not feasible to conduct simultaneous model fitting and phylogenetic inference in a

maximum likelihood framework.  For this study the phylogeny must be treated as if it

were known.  Thus it was important to find a data set for which there was broad

agreement on a large portion of the phylogeny.
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The last criterion was to find a gene for which the process of evolution is

likely to be stationary because the HB model does not allow variation in the

parameters across the tree.  If the data set had radically different base frequencies or

the evolution of the gene was characterized by dramatic changes in the constraints on

different residues (or changes in function), the fit of the parameters to the data might

be dominated by artifacts of poor model fit.

Cytochrome b Sequences

The mammalian cytochrome b gene (henceforth, simply called “cytochrome

b”) fits the criteria of being a conserved gene that is well sampled, from a group that

is fairly well understood, and for which there is not strong heterogeneity in base

frequencies.  I downloaded all of the mammalian cytochrome b sequences in

GenBank that were at least 1000 bases in length (the full length of the gene is around

1140 bases in most mammals).  After removing sequences that were identical to

another sequence in the data set and removing all sequences with frameshifts or

premature stop codons (in an attempt to exclude pseudogenes incorrectly identified as

mitochondrial cytochrome b), the data consisted of 1610 sequences.  Some species

were sampled multiple times, but the identical sequences were culled out, so there

was some information about the evolution of the gene in every sequence.  The

taxonomic coverage of mammals in the cytochrome b data set is extraordinarily good

for many groups.  Chiroptera is conspicuously under-sampled (with representatives of

only one genus included), and a few of the less species-rich orders of mammals

(Pholidota, Dermoptera, Afrosoricdae, and Scandentia) are not represented at all.

Rodents, cetartiodactyls, primates, carnivores, and marsupials are all well represented

in terms of total number and inclusion of their major constituent groups.  Birds are

also well sampled for cytochrome b, but they were not examined in this study (in fact,

Hastad and Bjorklund used avian cytochrome b genes as the basis of a heterogeneous

model to study the performance of parsimony and distance methods on relatively

small trees).  Birds were not considered in this study because the total number of
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avian and mammalian cytochrome b sequences was so large that inference of

parameters would have been extremely slow.  Rather than select some sequences

from each group, I elected to concentrate on the mammalian sequences in the hopes

that assumptions of the HB model (namely stationarity) would be less likely to be

violated when sequences from only one of the groups were used.

Cytochrome b is a mitochondrial gene that codes for part of the electron

transport chain.  The protein is constrained by several interactions with other proteins

in the cytochrome bc1 complex and the need to bind to two heme groups.  The crystal

structure of the complex, with cytochrome b at its center, has been determined to high

resolution through X-ray crystallography (Zhang et al., 1998).  The incorporation of

structural information in the form of separate models for different secondary

structural regions, or the a priori identification of amino acid residues that interact

with each other, is an exciting prospect, but beyond the scope of this study.

Phylogenetic Inference of Mammalian Cytochrome b

To infer the fit of the HB model a tree is required. The phylogeny of mammals

has been the focus of a great deal of research, so the cytochrome b data did not have

to provide all of the information used in constructing the tree.  The strategy that I

employed was to provide constraints on relationships between taxa, and then perform

parsimony searches on the cytochrome b data set.  The enormous size of the data set

made thorough searches unwieldy.  Instead I performed a series of fast bootstrap

searches.  Groups that had strong bootstrap support in one search were constrained in

the next search.

Initially the searches involved only the stepwise addition of taxa, with no

branch swapping.  As more of the tree became constrained more thorough searching

was feasible, and I moved to subtree pruning and regrafting (SPR) swapping, and

then to tree bisection reconnection (TBR) swapping.  Performing simple searches are

unlikely to produce spurious support for nodes in the tree unless there is a strong bias
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in the tree produced by the stepwise addition process.  Addition sequence order was

randomized in the searches to limit the effect of this bias.

Because cytochrome b is notoriously unreliable for deep relationships, it was

important that those relationships be constrained.  Delimiting the major groups of

mammals has been contentious in the past but there is broad support for most of the

major orders (Rodentia, Lagomorpha, Primates, Carnivora, Perissodactyla,

Tubulidentata, Proboscidea, Sirenia, Hyracoidea).  Many of the recent disputes about

higher level mammalian relationships are not relevant to this dissertation because the

members of the groups have not been sequenced for cytochrome b.  For example, the

order Insectivora has undergone dramatic changes, namely being split into

Dermoptera, Macroscelidea, Scandentia, Eulipotyphla, and Afrosoricidae.  Only

Eulipotyphlan and one Macroscelid insectivores are sampled for cytochrome b.

Molecular studies have made two apparently robust changes to the groupings

that have been traditionally referred to as orders:  the inclusion of cetaceans within

Artiodactyla and the split of Insectivora (after the groups Dermoptera, Macroscelidea

and Scandentia had been removed) into Afrosoricidae and Eulipotyphla.  Because of

taxon sampling in cytochrome b, the latter of these changes was not relevant to this

study.  I constrained Cetaceans to be sister to or within Artiodactyla during the tree

searches.  The most important contribution of molecular evidence to higher level

relationships in mammals has been in the recognition of the groupings of the orders.

There is now strong support for Paenungulata (Proboscidea, Hyracoidea, and Sirenia),

Afrotheria (Afrosoricidae, Tubulidentata, Macroscelidea, and Paenungulata),

Laurasiatheria (Eulipotyphla, Chiroptera, Cetartiodactyla, Perissodactyla, Carnivora,

and Pholidota), Glires (the grouping of Rodentia and Lagomorpha, which had also

been proposed based on morphology), Euarchonta (Primates, Dermoptera, and

Scandentia), Euarchonta-Glires  and Euarchonta/Glires/Laurasiatheria (Madsen et al.

2001; Murphy et al. 2001).  For the orders represented in this study, these results

almost provide a completely bifurcating tree.  The relationships within Laurasiatheria
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and Paenungulata as well as the rooting of the mammal tree are still unresolved.  The

tree which provided the parameter estimates that were used in the simulation studies

was inferred before the work of Madsen et al. and Murphy et al., so the

Euarchonta/Glires  and Euarchonta/Glires/Laurasiatheria clades (which were

uncertain hypotheses until recently) were not constrained in the analyses described

below.

All of the tree searches were performed using unordered parsimony and using

a stepmatrix that assigned a weight of six to transversions and one to transitions.

Initially I conducted exploratory searches to verify that there was not strong signal in

the cytochrome b data that conflicted with the current understanding of mammalian

relationships.  These were performed with no constraints at all or with a “deep” level

constraint shown in Figure 2.1.  Note that this constraint has no structure among the

orders of eutherians, and Eulipotyphla was not constrained to be monophyletic.  As

expected the relationships inferred in the unconstrained analyses were not congruent

with the monophyly of several of the recognized orders, but none of these results

showed strong bootstrap support.     After ten searches without strong bootstrap

support for any set of unexpected relationships, a new backbone constraint of early

mammalian relationships (shown in Figure 2.2) was used.  This constraint used more

information from recent studies of mammalian systematics  (as summarized by

Waddell et al. 1999) to resolve the deep parts of the tree.

Starting after the second round of searches, the constraint tree for each search

contained the higher level relationships shown in Figure 2.1 or Figure 2.2 as well as

nodes with high bootstrap support in the previous round.  For a branch’s support to be

considered high enough to constrain in the next analyses, the bootstrap proportions

had to exceed a cutoff value in both the unordered and the transition/transversion

searches.  Table 2.1 shows the history of the searches, including the basic constraint

tree used, the cutoff for branches in the previous round to be considered well

supported enough to constrain, and the type of swapping employed.  The type of
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swapping was not always identical between the unordered and the

transition/transversion analyses, because searches with step matrices are slower and I

was attempting to keep the running times low.  It is important to realize  that the

bootstrap values in these searches may be significantly inflated in this strategy.  A

node with an asymptotic bootstrap proportion of 85% might easily have an observed

bootstrap proportion of 90% in one run, and the chances of this are obviously

increased by running multiple analyses.   As soon as a node exceeded the cutoff level

it was constrained in subsequent searches.  As more and more of the tree became

constrained, bootstrap proportions were likely to be inflated because some possible

topologies were prohibited.  Given that I needed only a point estimate of the

topology, not measures of support, this strategy seemed to be a valuable way to

include all of the data in the analysis, but not spend too much time on unrealistic trees

or rediscovering the same well-supported clades.

After the number of new nodes being constrained in each round had decreased

and the cutoff level had been lowered, 200 TBR searches were performed under

unordered and transition/transversion weighting.  The most-parsimonious tree (under

transition/transversion weighting) was chosen as the tree for model inference.  After

the topology was chosen, a misaligned region of the marsupial data was found.  There

are very few positions of ambiguous alignment in cytochrome b, because there is

almost no length variation except in the last few amino acids of the protein, and the

misaligned region only affected a few bases for a few taxa.  To verify that this

alignment problem did not strongly affect the topology, a pair of bootstrap searches

were performed with no constraints on the Marsupials.  The resulting tree, which was

used for the inference of parameters, had no differences from the previous analyses

for the clades with bootstrap support of over 50%.
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Description of the Tree Used For Inference

Although unconstrained analyses of the cytochrome b sequences failed to

reconstruct the oldest divergences in mammals which are considered strongly

supported (on the basis of other data), the molecule did seem to recover many of more

recent groups with strong bootstrap support from even the earliest analyses.  The tree

used for inference had a few unconventional (and probably unreliable) groupings, but

they typically involved deep divergences in the tree; so even if these groupings are

erroneous it is unlikely that they had a substantial effect on parameter estimates.  The

discussion below highlights the most questionable groupings, but most of the

phylogeny was in strong agreement with the current understanding of mammalian

relationships.  It is possible that a strategy of more rigorous constraints would have

produced a more reliable tree, but given that there are few uncontested relationships

such constraints are not guaranteed to be correct.  Figure 2.3 shows the relationships

between the major groups in the tree that was used for inference.

Most of the well supported groups of Marsupials relevant to this study

(Didelphidae, Caenolestidae, Peremelemorphia, and Dasyuromorphia) were

recovered.  The enigmatic Dromiciops gliroides grouped inside Diprotondotia (which

had poor taxon sampling and therefore long branches).  Didelphids were sister to the

rest of Metatheria, despite Colgan’s (1999) conclusion that the Ameridelphia

(Didelphids and Caenolestids) are sister to all other marsupials.  The placement of

Dromiciops and Didelphidae are the most troubling aspect of the Marsupial clade.

Within Dasyuromorphia, Myrmecobius was sister to the Sminthopsinae.  Planigale

fell within Sminthopsis, as found by Painter et al. (1995), but contra Blacket et al.

(1999).  Relationships within Phascogalinae differed from Armstrong (1998) only by

a change in the rooting of Antechinus.  Dasyurinae was paraphyletic with respect to

the Phascolosoricinae.
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Within rodents the following major groupings were found:  Sciuridae,

Myoxidae, Geomyidae, Heteromyidae (and the well supported grouping of

Geomyidae and Heteromyidae), Hystricognathous families, and most of Muridae.

Muridae was monophyletic with the exception of Tachyoryctes splendens, a

fossorial rodent from Africa that has been placed (along with other African and Asian

species that were not in this data set) into the family Rhizomyidae.  Tachyoryctes was

sister to Zapus trinotatus, the only Dipodid in the data set.  This grouping is

questionable; for this study Zapus should probably be sister to Muridae with

Tachyoryctes as the basal Murid (R. Adkins, personal communication).  Within

murids the expected groups - the Arvicolinae, Cricetinae, Gerbellinae, Otomyinae,

Cricetomyinae, the South American sigmodontines, the “neotomyine” sigmodontines

(Engel et al., 1998), and a clade of “acomyines” (Dubois et al., 1999) – were

recovered.  The subfamily Nesomyinae appears to be a polyphyletic assemblage of

two clades of murids, and Murinae was paraphyletic.   As expected, Cricetinae was

sister to Arvicolinae, and the Sigmondontines were sister to this clade, although the

rooting differed from Dubois et al. (1999).

Among the Hystricognaths, the relationships were in accord with  Nedbal et

al. (1994), Catzeflis et al. (1995), Lara et al. (1996), and Lessa et al. (1998). The

present study include porcupines and Myoprocta, which were not included in those

studies. Pruning these taxa from the tree results in Bathyergidae sister to the other

hystricognaths, with Cavia sister to the Octodondoidea.  Within Octodondoidea,

Echymidae was sister to the a clade of Ctenomyidae and Octodontidae.

The relationships between the major Cetartiodactyl groups was

unconventional (and in light of strong molecular evidence probably wrong).  The

major groups Camelidae, Suiformes, Cetacea, Hippopotomidae, and Ruminatia were

found, but the well-supported relationships between these groups were not recovered

Camelidae was the basal group as expected, but instead of the group

“Whippomorpha” (Cetacea and Hippopotomidae) being sister to Ruminatia, they



20

were inferred to be sister to Suiformes and Ruminantia (although when considering

the branch lengths, the branching arrangement was close to a polytomy).   Within

these groupings the tree was quite congruent with other estimate of phylogeny.

Tragulus was the basal lineage of ruminates with Giraffidae, Cervidae,

Moschidae, and Bovidae all recovered.  All of the well supported groups in Bovidae

found by Matthee and Davis’s (2001) analysis based on four nuclear genes and three

mitochondrial genes were found.  As with other molecular phylogenies, the

Odontoceti were inferred to be paraphyletic (contra morphological evidence), but the

Mysteceti were monophyletic.  Relationships were within Delphinids were very

similar to those found by LeDuc et al. (1998, using the same cytochrome b seqences).

The major groups within Carnivora were found.  Herpestidae was sister to

Felidae and this clade was sister to the Arctoidea.  Canidae, Mustelidae, Mephitids,

Pinnipeds, and Ursidae were all monophyletic.  Questionable results include the

failure to reconstruct a monophyletic Procyonidae and the placement of the enigmatic

Ailurus fulgens as sister to Ursids (see Flynn et al. 2000).

Finding Maximum Likelihood Estimates of the Model Parameters

Even assuming that the tree is known, the fitting of the Halpern Bruno model

to the cytochrome b data is an enormous computational task.  The problem amounts

to a simultaneous maximization of 10,369 parameters given approximately 1,800,000

nucleotides.  Clearly the maximization is beyond the scope of analytical techniques,

so numerical optimization following Powell (1964) was employed.  In this technique,

a point is scored, and then the optimal value of each parameter is determined by

maximizing the function along a line.  Initially, the direction of each line is simply an

change in one parameter with no change in the other independent parameters.

Multiparameter directions can be added to speed the approach to the optimum.

Fortunately approximations are available for all of the parameters, so that the

starting point for the inference is far from random.  To obtain starting values of the

mutational parameters the tree was scored in PAUP* (Swofford) under the HKY
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model with gamma-distributed rate heterogeneity.  After one week of computation,

the inference seemed to be making only slight changes to branch lengths (based on

the parameter iteration log and the rate of change of the likelihood), and the run was

terminated.  This analysis also provided starting points for the branch lengths.  For the

7,144 amino acid frequency parameters, an initial approximation was developed in

which the amino acid’s frequency was equal to the proportion of the tree that was

inferred to have that amino acid (ancestral character states were inferred using the

parsimony criterion).  The proportion was determined by weighting each branch by

its branch length (using the HKY+gamma branch lengths).

At most sites in the data set at least one of the twenty amino acids was absent.

This greatly simplified the parameter optimization.  If an amino acid was never

observed and none of its codons are mutationally between two amino acids with non-

zero frequencies, then the amino acid was assumed to have a maximum likelihood

estimate of zero.  This simplification was a very important component of the

optimization because it greatly reduced run time in two ways.  First, amino acids with

assumed zero frequencies represent parameters that do not need to be optimized.

Second, the number of states for a site without a particular amino acid is reduced by

the number of triplets that code for that amino acid.  The computational time of

maximum likelihood inference on a tree generally scales as the square of the number

of states (at each node the calculation involves multiplying the probability of going

from each of the n states in the ancestor to each of the n states in the descendant times

the conditional likelihood of the tree below the descendant).  The time needed to

calculate the n by n matrix of probabilities is usually negligible compared to the n-

squared multiplications involving the matrix.  For the HB model each site has a

different model, so for each branch on the tree the probability matrix must be

calculated for each amino acid.  The calculation of the probability matrix from the

eigenvalues and eigenvectors of the model and the branch lengths scales as the cube

of the number of states.  The inference program spent approximately 95% of its time
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in the function which calculates the probability matrix, so this step was clearly the

rate limiting step of the inference.

Because the HB model is a codon model (with the stop codons disallowed) the

number of states can be as high as 60.  In the extreme case of a site that is fixed for an

amino acid with only two codons, the maximum likelihood estimate of the frequency

of that amino acid is guaranteed to be one.  By assuming this from the start, 20

parameter optimizations are avoided and every time the site is scored (as it must be

when mutational parameters or branch lengths are changed) the computation takes

approximately 1/27,000 the time (because the number of states is reduced 30 fold and

the rate limiting step scales with the cube of the number of states).

Branch length optimization is traditionally achieved by sweeping over the tree

and optimizing each branch in isolation.  The Newton-Raphson single parameter

optimization strategy works well, but requires the calculation of the first and second

derivatives of the likelihood with respect to the branch length.  This calculation is

possible under the HB model, but it involves the calculation of three matrices.  The

run time of each of these calculations scales as the cube of the number of states.

Because the HB model has a much larger number of states than the “standard”

nucleotide models, even after removal of amino acids with an empirical frequency of

zero, this step is likely to be costly.  Instead optimization of each branch followed

Brent’s (1973) method of linear optimization, which tries to find the optimum by

repeatedly fitting a parabola to the known values and moving to the apex of the

parabola.  This method only requires the calculation of the probability of change

matrix.

After four rounds of parameter optimization, branch length optimization was

performed.  In subsequent rounds the decision of whether to optimize branch lengths

or model parameters was made by repeating whichever technique provided the larger

increase in likelihood score the last time it was performed.  Figures 2.4 and 2.5 show

the increase in likelihood and decrease in the magnitude of change in the parameters
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over the 38 rounds of optimization.   Optimization was stopped when the change in

Ln likelihood was less than 0.05 following a full round of parameter optimization.

Undoubtedly the likelihood would have continued to improve, but the shape of the

optimization curve (Figures 2.4 and 2.5), indicates that further computation time is

probably unwarranted given the rate at which the likelihood and parameter values are

changing in the last stages of the optimization.

Program Requirements

The entire parameter optimization procedure took approximately two months

of computational time on a 677 MHz G4 processor with 512 megabytes of physical

RAM.  Much of the challenge of writing the software involved minimizing the

memory requirements.  Use of virtual memory or other  techniques of storing

information on the hard disks as opposed to in physical memory, dramatically

increases run times.  To avoid using such techniques many data structures shared

workspaces for calculations.  Despite these efforts the program still required

approximately 440 MB.

Likelihoods for individual sites on a tree of 1610 taxa can easily become too

small to store in primitive C/C++ datatypes.  This problem, known as underflow, was

avoided by multiplying the conditional likelihood of each tip by a constant factor (a

separate multiplier was used for each site, based on preliminary calculations).  In

some optimization rounds, during the pass down the tree which calculates the

likelihood, checks were made to assure that at least one of the conditional likelihoods

for a character state was 50 decimal places above the cutoff for the loss of precision

due to underflow.  The scaling procedure seemed to work well for this inference, but

may not be a robust way of dealing with underflow in software in which many trees

must be evaluated.
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Chapter 3 – Simulations – Four-taxon Tree

Overview of Simulations

The type of tree on which data are simulated can radically alter the

conclusions from a simulation study.  An obvious example of this phenomenon is the

case of long-branch attraction.  Felsenstein (1978) described a tree that will positively

mislead parsimony (Figure 3.1a).  Stochastic homoplasy leads to convergence

between the two taxa that are at the ends of long branches, known as long-branch

attraction.  Simulations of the trees of this general shape typically show likelihood

and distance-based criteria dramatically outperforming parsimony, because those

methods are able to recognize the presence of long branches, and account for their

effects.  A slightly different tree (Figure 3.1b) has the two taxa with long branches

being sister to each other.  Simulations based on extreme versions of this tree will

reach the opposite conclusion.  In these cases parsimony’s interpretation of every

shared character as a phylogenetic signal helps it, because the noise in the

evolutionary process agrees with the true phylogenetic signal.  Parsimony will

reconstruct the true tree with less data than is required by maximum likelihood

methods.

Clearly, it is necessary to interpret the results of a simulation in the context of

the experiment and try to steer clear of conclusions such as “parsimony is better than

likelihood” (or the opposite), on the basis of simulations from one type of tree.  Many

phylogenetic methods have biases in favor of one topology compared to another; if

the model tree in a simulation agrees with a method’s bias, it is easy to interpret the

result as the method performing well (Bruno and Halpern, 1999).

To avoid spurious conclusions that arise from only examining one type of

tree, I have performed four simulation experiments using the HB model, fit to

cytochrome b sequences, as a data generator.  The first experiment is the most

thorough in terms of methods and models examined.  It is a replicate of the studies of

Huelsenbeck and Hillis (1993), Gaut and Lewis (1995), and Huelsenbeck (1995a,
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1995b) on four-taxon trees.  A study of a group of contrived sixteen-taxon trees was

designed to test the discriminatory power of likelihood, parsimony, and distance-

based approaches.   The third experiment is based on a 228-taxon tree examined by

Hillis (1996) to study large-scale phylogenetics.   Finally, trees generated under a

random branching process, the Yule process, were examined as a way of looking at

large trees in a wide range of tree shapes.

Four-taxon Trees

Unrooted four-taxon trees and rooted three taxon trees, have played a

prominent role in the history of systematic theory.  Exhaustive tree searches can be

performed (so the results are not clouded by uncertainty as to how well the particular

tree searching routine is solving the problem of finding a tree that satisfies the

optimality criterion).  Every biological tree that is inferred can be reduced to a series

of four-taxon statements, in which the leaves of the tree are no longer always

observed taxa, but might instead be reconstructed ancestors.  Quartet methods take

this rationale to the extreme by breaking every problem into four taxa sets, computing

a phylogeny for each of these quartets, and then assembling a full tree.  Thus, four-

taxon trees could be considered the fundamental problem in phylogenetics.

Huelsenbeck and Hillis (1994) simplified the parameter space of the four-

taxon tree problem by constraining two non-sister terminal branches to be one length

and the other three branches on the tree to be a separate length.  This allows a large

range of trees to be examined by covering just two parameters  (Figure 3.2).  The

lower left corner of the parameter space is the easiest tree shape to correctly infer,

with all of the branches being short and the total amount of noise being low.  As one

moves to the right on the graph the amount of phylogenetic signal (length of the

internal branch) increases, but noise also accumulates.  Moving up the graph, noise

spuriously uniting two taxa increases, with no increase in the amount of signal.  The

upper left corner is the most difficult, representing the tree that Felsenstein described
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for which parsimony is positively misleading.  Huelsenbeck and Hillis studied the

performance of a variety of methods over this parameter space when the model of

evolution used to generate the data was quite simple.  Their general conclusions were

that most methods performed quite well, with the exception of UPGMA and Lake’s

method of invariants.  Gaut and Lewis, repeated these simulations, but inferred trees

using maximum likelihood.  They concluded that maximum likelihood also

performed well over most of the parameter space, and seemed fairly robust to

violations of the assumptions of the model of evolution.  Huelsenbeck extended his

study with Hillis by investigating maximum likelihood and a wider range of distance-

based approaches.  He found that maximum likelihood techniques outperformed all

other methods investigated, but the differences between maximum likelihood and

distance-based approaches was not huge when distances were corrected using model-

based methods.

I have repeated these simulations using the Halpern/Bruno model fit to

cytochrome b data.  The only difference in the simulations other than the model of

evolution, was the way that branch lengths were specified.  Previous workers

expressed branch lengths in the expected percent divergence between the sequence on

one end of the branch and the sequence on the other end.  This has the advantage that

when methods are examined from 0% divergence up to 75% divergence, the entire

range of possible parameter values has been covered.  There are two disadvantages to

this parameterization scheme.  First, this way of expressing branch lengths is not

commonly used in any other part of phylogenetics.  In most contexts, model-based

branch-length estimates are expressed in the expected number of changes per site.

Other than just being more common, this description is easier to apply to a wide range

of models (when base frequencies are not equal the maximum percent sequence

divergence is not 75%, and so each model has its own maximum value making

branch lengths in expected percent sequence divergence hard to compare between

models).  Second, it is easier to extrapolate from branch lengths expressed in



27

expected changes per site.  This number should be roughly correlated with the branch

length when expressed in time; so if one were interested in the performance of a

method when the divergences were twice as old, doubling the branch length should

provide the answer.  This is valid if branches are expressed in changes per site, but

not if they are in percent sequence divergence.  A side effect of this, is that though the

previous studies cover branch length space exhaustively, the visual impression is that

long branches (those over 50 % divergence, for example) occupy a fairly small part of

parameter space.  However if the results are plotted as a function of the expected

number of changes per site with an arbitrary (but large) maximum such as 5.0, then

the majority of parameter space is made up of long branches.  Clearly systematists

would try to sample taxa such that enormous branch lengths are avoided, but when

presenting simulations, it seems preferable to choose axes that do not magnify or

minimize regions of parameter space.  I varied branch lengths from 0.05 expected

changes per site up to 1.0 expected changes per site in twenty steps.  With two branch

lengths being varied, there were a total of 400 simulation conditions.  One hundred

replicate data sets were produced for each condition for a total of 40,000 simulations.

DNA Analyses - Parsimony

Because scoring of four-taxon trees is relatively fast, a large number of

methods could be examined on these simulated data sets.  I examined DNA

parsimony using three different weightings schemes:  unordered parsimony,

weighting transversions 1.8 times more than transitions (based on an estimate of the

instantaneous transition to transversion rate ratio), and using an asymmetric

stepmatrix based on the instantaneous rate matrix inferred from one simulated data set

using the GTR model of sequence evolution (this analysis will simply be referred to

as weighted parsimony).

DNA Analyses - Maximum Likelihood

Nucleotide-based maximum likelihood techniques were investigated by

implementing GTR with rate heterogeneity.  A full process of model selection was
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not done, because of time constraints.  Subsequent comparison of the HKY model of

sequence evolution to the GTR model indicate that only 58 of the 40,000 replicates

would have preferred HKY to GTR (based on a likelihood-ratio test assuming that the

test statistic follows a chi-squared distribution), thus it is unlikely that insufficient

attention to model selection seriously affected the results (although there are a

number of models of complexity intermediate between the GTR model and HKY, and

these models were not tested).  For analyses of the simulated data sets, I used

likelihood-ratio tests to select the preferred model of among-site rate variation.  If

both types of rate heterogeneity (the GTR+Γ+I model) provided a statistically better

fit than either type of rate heterogeneity by itself then both were used, otherwise

whichever one parameter model provided a higher likelihood was used.  Using this

methodology 52 replicates preferred both types of rate heterogeneity, 14,973

preferred the gamma rate correction only, and the rest (24,975 replicates) preferred

the assumption of a class of invariant sites.  These likelihood analyses are referred to

as the preferred model analyses.  Analyses using only gamma rates and using only

invariant sites for all replicates were also collected in the process of model testing.

Surprisingly the analyses simply assuming invariant sites performed slightly better

than using the likelihood-ratio test to select which model was preferable.

Rate heterogeneity can also be dealt with by dividing the data into a priori

classes of characters that are assumed to have different rates.  For coding sequences,

such as those being simulated in this study, an obvious choice of partitions was the

three codon positions; the name GTR plus site-specific rates will be used to refer to

analyses in which a rate of evolution was inferred for each of the codon positions (all

sites within that category were assumed to follow that rate).

DNA Analyses - Distance Methods

Distance-based approaches were studied when the distances were altered by a

GTR-based correction for multiple hits.  Among-site rate variation is known to affect

distance estimates, but when estimating pairwise distances, it is not possible to
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estimate rate heterogeneity across sites.   Fitch-Margoliash and minimum evolution

criteria were examined using a correction based on a gamma distribution of rates,

with the shape parameter estimated by maximum likelihood from the most

parsimonious tree.  To avoid conflating the results of distance approaches with errors

introduced from parsimony or by simply assuming gamma rates, the popular

minimum evolution  criterion (ME hereafter) was also studied using the GTR model

with the rate heterogeneity correction that was selected as the preferred model (as

described above).  For this model the rate heterogeneity parameters were estimated

from the true tree (as opposed to the most parsimonious tree).

When accounting for rate variation across sites by using the invariant sites

correction, some proportion of sites is essentially removed from the data matrix.

Which sites are removed can affect the analyses so the preferred model distance

corrections were done two ways:  removing constant sites of a particular base in

proportion to that base’s frequency in the whole data matrix, and removing constant

sites from each base by that base’s frequency among just the constant sites.  These

two approaches are referred to ME-all and ME-constant respectively.  In many

simulation studies there would be no basis for expecting a difference between these

two approaches, but in the HB simulations the frequencies of the bases at constant

sites are not the same as the base frequencies for rapidly evolving sites.  The main

reason for this effect is that selection maintains some bases because of the amino acid

for which they code.  Highly constrained amino acids are unlikely to change, and they

are also immune to mutational pressure.  Third base positions, on the other hand, are

rarely constant sites, and mimic the mutational base composition biases much more

closely.  This property is also true of the real mammalian cytochrome b sequences

which have much more extreme base composition bias in the third base positions than

in the other two.
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Amino Acid Analyses - Parsimony

Analyses of amino acid sequences were conducted using parsimony and

maximum likelihood techniques.  Four amino acid weighting schemes were used for

parsimony: unordered, PAM1, PAM250, and a mutational distance matrix.

Unordered analyses simply assume that any amino acid changes into any other amino

acid at an equal rate.  PAM matrices are widely used by molecular biologists in

protein alignments.  These matrices are based on replacement rates of one amino acid

by another as inferred by comparing many pairs of homologous proteins (Dayhoff,

1978).  The PAM1 matrix can be viewed as the most appropriate matrix for very

similar proteins.  Different members of the PAM family useful for more divergent

protein sequences can be created by treating the amino acid replacement as a Markov

process, and raising the matrix probabilities of change for the PAM1 matrix to an

arbitrary power (the branch length).  The PAM matrices are usually used as log–odds

matrices of costs of any particular replacement.  In this context they differ only

slightly from stepmatrices used in phylogenetics: different amino acids have different

mutabilities and this implies that there is cost associated with not changing state.  To

produce a matrix for use in standard phylogenetic analysis, I scaled subtracted the

diagonal element of each row from every other element in that row (to remove any

penalty for no change, but keep the same relative costs of replacements), and then

forced the matrix to obey the triangle inequality.  I did this for the PAM1 and

PAM250 matrices and used them as stepmatrices in parsimony.  Finally, I examined

the performance of a stepmatrix designed to assign costs of amino acid replacements

based on how many nonsynonymous mutational steps are required to change from

one amino acid to another.  This type of matrix was originally proposed by

Felsenstein, as the ProtPars option in his PHYLIP software package.  Synonymous

changes are assumed to happen so quickly that they can be ignored; for instance it

takes three mutations to change from a codon for histidine (CAY) to a codon for

methionine (AUR), but this amino acid replacement receives a cost of only two,
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because the third position change can be a synonymous change if the mutational

pathway goes through leucine (CUN).  I modified Felsenstein’s matrix so that it

applies to the vertebrate mitochondrial genetic code.

Amino Acid Analyses –Maximum Likelihood

Maximum likelihood analyses of amino acid sequences were done

using PAML (Yang).  Given the short sequence length of the simulations (376 amino

acids), complex models, such as REV, are not practical.  I examined the performance

of the proportional model which requires the estimation of 19 free parameters (the

amino acid frequencies).  The rate of substitution is assumed to be proportional to the

destination amino acid’s frequency.  The other model I studied was the mitochondrial

mammalian reversible model (mtMammREV), which is simply a general reversible

model of amino acid replacement, but the rate parameters are assumed instead of

being inferred.  The values of the parameters come from Adachi and Hasegawa’s

(1996) analysis of entire mammalian mitochondrial genomes.  This matrix is

suggested when there are not enough data to infer the values of all of the parameters

of the REV model.  A slight modification of the mtMammREV model involves the

estimation of amino acid frequencies as free parameters, but retains Adachi and

Hasegawa’s rate multipliers for the substitution types.  I scored trees under both

incarnations of the mtMammREV model, and report the result of the preferred model

(based on likelihood-ratio tests) as the empirical model of amino acid evolution.

Only 101 of the 40,000 replicates preferred the more complex model of treating the

amino acid frequencies as free parameters.  Both the proportional and the empirical

models of evolution were implemented using gamma-distributed rate heterogeneity

(approximated by eight discrete categories).

Four-taxon Results

Figure 3.3 shows the performance of the 16 methods over the entire range of

parameter space.  There was substantial variance in performance with maximum

likelihood on nucleotides sequences (GTR with invariant sites) preferring the true tree
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on 91.5% of the 40,000 replicates while one version of minimum evolution (using

GTR corrections with the preferred model of rate heterogeneity and proportions of

invariant sites to be removed estimated by the base frequencies from all sites) only

preferred the true tree 68.9% of the time.  Figures 3.4-3.20 show the performance of

each method graphically, with black squares indicating replicates in which the true

tree was found in 95 or more of the 100 replicates.  When the percentage of correct

replicates was less than 95% the box is shaded with a color according to the scale

above each graph (pure red represents 0% correct).  Replicates in which the true tree

was found <33% of the time (worse than guessing) are outlined in white.  In the

following discussion statistical significance is judged by comparing the total number

of replicates that were correctly inferred.  General conclusions such as evaluations of

parsimony vs. maximum likelihood are always based on comparisons of the best

version of each of the methods (with the exception of the GTR method, in these cases

GTR with the preferred rate heterogeneity model was used instead of using invariant

sites because the latter model was not originally considered to be a method to be

investigated).  Giving a method partial credit for tree topologies with identical scores

alters the results very little (mainly boosting the performance of the unordered

parsimony methods).

DNA – Parsimony Methods

The results of this study pertaining to parsimony are qualitatively similar to

previous work.  The use of stepmatrices dramatically increases the number of times

the true tree is inferred (Figures 3.5 and 3.6 compared to Figure 3.4).  While

parsimony methods do remarkably well over most of the parameter space, the

performance drops off sharply as trees begin to resemble those described by

Felsenstein.  The four-taxon simulations under the Halpern-Bruno model once again

confirm that under Markov models of sequence evolution (even complex ones),

parsimony is quite robust over a wide range of conditions, but also very susceptible to

long-branch attraction.
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Parsimony makes no attempt to detect long branches or weigh the possibility

of change along a branches according to the branch’s length.  Whether this is a

damning fault depends on whether branch lengths “exist” as evolutionarily

meaningful parameters.  In other words, if the probability of change at one site along

a branch is completely uncorrelated to the probability of change at another character

along that branch, then parsimony is justifiable as a maximum likelihood estimator of

the phylogeny (Tuffley and Steel, 1997).  The simulations performed in this

dissertation assume that branches have a meaningful length – a parameter that

correlates strongly with the probability of change at every of site in the molecule.

When branch lengths become important parameters (because they vary dramatically

from branch to branch) parsimony can fail spectacularly.

One could argue that even though the HB model is very complex the true

evolutionary process is much more complex and really resembles the “no common

mechanism” model described by Tuffley and Steel, and the only reason parsimony

fails is because the simulations have an unrealistic set of branch lengths that apply to

every site.  If the no common mechanism model were true, then the branch lengths

inferred from one set of characters should be uncorrelated with the branch lengths

inferred from a second set of characters.  This is an empirical question, but the

Tuffley/Steel model seems unlikely to be realistic for molecular sequence data sets in

which the amount of evolutionary time is a rough correlate of the probability of

change for most characters.  Figure 3.21 shows the correlation between branch

lengths estimated from  the even numbered characters of the real cytochrome b

sequences in artiodactyl species and the branch lengths estimated from the odd

numbered characters (the tree used is believed to be the maximum likelihood estimate

of the topology, the model of evolution used during the inference of branch lengths

was GTR with gamma-distributed rate heterogeneity and invariant sites with all

parameters estimated from the full data set).  Clearly the branch length estimates are
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highly correlated indicating that it is reasonable to perform simulation of molecular

sequences assuming there is a shared branch length for all sites.

DNA – Maximum Likelihood Methods

Analyses of nucleotide sequences using the GTR model of sequence evolution

with rate heterogeneity outperformed all other approaches.  While the comparison of

likelihoods to select a model of rate heterogeneity did produce a method (Figure 3.7)

that outperformed parsimony and distance methods, simply using invariant sites

(Figure 3.9) to deal with variation in rates performed better than any other method.

Modeling rate variation by a priori categories was also effective, but worse than

using gamma rates or invariant sites only (see Figure 3.10).  It may seem

counterintuitive that the less biologically motivated methods of dealing with rate

variation appear more powerful, but apparently there is enough variation in rates

among each codon position, that simply treating each category as having a separate

rate is too restrictive.

It is very encouraging that the GTR models are performing well in a

simulation in which the data are generated under a model that violates virtually every

assumption of the model.  Clearly the model is quite robust to violation of its

assumptions, however there are several important caveats.  First the Halpern/Bruno

model, while complex is still an oversimplification of evolution.  It assumes

stationarity, and the lack of selection for different codons may cause the evolution of

the third base positions in the model to evolve in a way that is unrealistically similar

to the assumptions of GTR.  In fact, approximately one third of the third base

positions are evolving under GTR in the HB model because at some sites the only

amino acids that occur have fourfold degenerate codons so there is never any

selection on the third base position.

Figure 3.22 compares the performance of maximum likelihood to parsimony.

For much of the parameter space there is no discernible difference between likelihood

and parsimony.  In accordance with theory and previous simulation studies,
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likelihood is outperforming parsimony for trees near or inside the “Felsenstein zone.”

Unlike previous studies, the superiority of maximum likelihood does not hold for the

most extreme cases of long-branch attraction.  Despite the fact that maximum

likelihood is not outperforming parsimony over the entire parameter space, these

simulations provide little reason to support a parsimony tree over a maximum

likelihood tree.  There are some indications that parsimony may be slightly

outperforming likelihood when all of the branches are long, but this effect is clearly

very small if it is real.  The converse is not true; there are clearly tree shapes for

which maximum likelihood, even under an unreasonably simplistic model,

significantly outperforms parsimony.  Whether these relatively rare regions of

parameter space are enough justification for workers to invest the time required for

likelihood tree searches depends on one’s view of what are biologically reasonable

branch lengths.

Although the GTR models are performing well over most of the parameter

space, they are failing dramatically on trees with extreme long-branch attraction

problems.  In fact, maximum likelihood under the GTR model with gamma-

distributed rate heterogeneity and invariant sites is inconsistent for tree topology

estimation when data are generated under the HB model on the most extreme tree

examined (three branch lengths of 0.05 and two branch lengths of 1.0).  Consistency

proofs are difficult for the GTR model with rate heterogeneity, so this conclusion

comes from an approximation to infinite data.  The expected proportions of all of the

data patterns can be calculated for any tree.  A data set was produced with all 256 of

the possible data patterns for four taxa.  Character weights proportional to the

expected frequency of that data pattern in an infinite sample are applied to each

pattern, and maximum likelihood scores of the three tree topologies are estimated.

GTR with rate heterogeneity preferred the wrong tree under this approximation to

infinite data.  This was true for analysis of the whole simulated sequence, or when the

data patterns were calculated for each of the base positions separately.  This method
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is an approximation because PAUP* will only accept integer weights for characters in

likelihood analyses, so there is some rounding error.  By assigning large weights to all

of the data patterns, the rounding error for any single data pattern was limited to a

maximum of 1.5e-06.

It has long been recognized that the consistency of maximum likelihood

requires that the assumptions of the model of evolution be met, so the inconsistency

of GTR with rate heterogeneity is not shocking, but it was not a foregone conclusion

either.  Going into this study it was entirely unclear whether the simple nucleotide

models incorporated enough information about the nucleotide substitution process,

that they would correctly estimate the tree over the entire range of trees examined in

this study.  The minimum internal branch length was 0.05, which equates to

approximately 55 changes that could potentially provide phylogenetic signal.  The

long branches on the inconsistent tree were certainly quite long (1.0 expected changes

per site), but the topology is not impossible to infer.  This is not a case of branches

being so long that no method could possibly succeed.  To demonstrate this I have

inferred the tree topology under the Halpern/Bruno model on a few of the simulated

data sets from the extreme Felsenstein zone trees.  I supplied all of the parameters to

the model, so this method of inference is not a realistic option, but the true tree is

recovered in about 70% of the replicates.  This probably represents an upper bound

on the performance of any method on these simulations, but it is clearly far better

than a method could do by chance.  I have also simulated data on the same tree but

under a GTR model with gamma-distributed rates and invariant sites.  The parameter

values were selected to mimic the difficulty of the cytochrome b sequences as much

as possible (same length with model parameters inferred from a large Halpern/Bruno

simulated tree).  Under these simulations GTR with rate heterogeneity infers the tree

correctly in 76 out of 100 replicates (when data were simulated on the Halpern/Bruno

model for this tree, the best GTR implementation only recovered the true tree seven

times under these conditions).  These results indicate that the poor performance of the
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methods in the extreme Felsenstein zone is not due to branches being so long that all

of the synapomorphies are lost.

The source of the maximum likelihood errors on these extreme cases appears

to be underestimation of branch lengths.  Cursory examination of the data pattern

produced by the Halpern/Bruno model indicates that the non-homogeneity of the

model can have serious effects on the abundance of data signals that the GTR models

are using to detect long branches.  Under the Halpern/Bruno model some sites have

such extreme biases that they are essentially two state characters (often with one state

being much more common than the other).  Which two states are present depends on

the particular site in the protein.  The implications of this are that the sequences

saturate much below 75% sequence divergence, and when the true distance is long it

is dramatically underestimated by the GTR models.  This underestimation of branch

lengths makes it difficult for the model to account for all of the homoplasy in the

extreme Felsenstein zone simulations, and the models interpret the homoplasy as true

signal.  Ways to address this problem will be proposed in Chapter 7.

DNA – Distance Approaches

The results of the distance analyses (Figures 3.11-3.14) stand in stark

contrasts to the maximum likelihood results, even in cases in which the model of

evolution is the same for the two approaches.  Figure 3.23 compares the performance

of maximum likelihood and distance using GTR with the preferred model of rate

heterogeneity (invariant sites are removed according to the base frequencies in the

constant sites).  For the distance analyses the rate heterogeneity parameters are being

estimated from the true tree, which amounts to an unfair advantage for the distance

methods (when conducting a real analyses, an investigator would have to use some

method of guessing which tree’s parameter to use).  There is a large portion of

parameter space for which distance methods perform fairly well, but in most cases

they are worse than maximum likelihood.  In seven of the 400 conditions, distance

methods recovered the true tree in one more of the 100 replicates than likelihood; in
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sixteen conditions both methods were identical; and in the other 377 conditions

maximum likelihood did better (for one set ML recovered the true tree 58 times more

than ME).  There seems to be much more variance in the quality of the answers given

by the distance approaches, so that even under conditions far from the Felsenstein

zone (conditions for which the distance methods are almost certainly consistent), the

number of errors is much higher than likelihood.  In fact the distance methods are

performing worse than weighted parsimony methods under most conditions (Figure

3.24); the exceptions are in the cases of moderate long-branch attraction.  Neither

method does as well or better than the other over the entire parameter space studied.

This makes deciding between the two difficult.  Judged on the size of parameter space

in which parsimony performs better and the fact that weighted parsimony gets the

true tree right significantly more times (based on performance over the entire

parameter space), parsimony appears more robust and/or powerful than distance

methods.

In Huelsenbeck’s (1995a) study of inference methods on similar trees when

data were generated under the simple Kimura two-parameter and Jukes-Cantor

models, the performance of distance methods was almost identical to that of

maximum likelihood methods.  Huelsenbeck concluded that maximum likelihood

techniques were superior, but the difference between methods was clearly much more

similar than in the simulations which I have done.  Like maximum likelihood

techniques, distance approaches are consistent when the assumptions of the models

are met.  My results indicate that there can be a surprisingly large difference in

robustness.  Yang (1994) and Huelsenbeck (1995b) also report simulations in which

maximum likelihood was more robust to ignoring important parameters, such as base

frequency bias or a bias in favor of transitions, than methods which relied on

corrected distances only.  Those results were compelling but only compared very

simple models.  My results show that even when using the full GTR distance

correction accounting for rate heterogeneity, model violations such as non-
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independence and non-homogeneity can have a much more dramatic effect on

distance corrections than maximum likelihood implementations of the model.

The cause of the difference in performance between maximum

likelihood and distance methods probably arises from two sources of information.

When producing a corrected distance matrix, the characters for all of the taxa but two

are ignored.  Ancestral sequences are not inferred, so character conflict is not detected

and explicitly dealt with.  It is common to try to minimize the effect of distance errors

by downweighting problematic distances (long distance estimates), but using

reconstructed ancestors to detect disagreement in pairwise distance is not presently

done.  Another advantage that maximum likelihood has over distance methods, is that

a character’s evolution over the entire phylogeny can be used to inform the algorithm

about the rate of a character.  Distance methods can accommodate rate heterogeneity

by adjusting the expected sequence divergence for any given branch length, but when

two sequences differ at a site, no attempt is made to estimate that character’s rate and

use the rate to inform the distance estimate (this is done implicitly in maximum

likelihood implementations of gamma rate heterogeneity – the rate is not inferred as a

parameter, but for a character that is evolving very quickly for most of the phylogeny,

the likelihood term from the fast rate category will dominate the likelihood of that

character).

Amino Acid – Parsimony

The debate over which level of analysis is most appropriate for coding DNA

sequences has been hard to study.  Clearly there can be useful information in

synonymous changes, particularly when closely related taxa are being examined.

Despite the information lost in translating data into amino acid sequences, there are

arguments for doing so.  If non-synonymous changes occur more slowly, they may be

less susceptible to homoplasy, and translating sequences into amino acids may

significantly increase the signal to noise ratio in the data.  A similar line of argument

stresses that the large number of states for amino acids may make convergence rarer
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(although given that not all amino acid pairs are one mutational step apart, it is not

reasonable to assume a Cavender-Farris style model of any state changing to any

other state at the same rate, and the structure imposed by the code undoubtedly

increases the chance of amino acid level homoplasy).  If general rules about amino

acid evolution can be inferred, then models of amino acid evolution may be better

equipped to discriminate homoplasy from true signal.

Parsimony analyses of amino acid sequence were greatly improved through

the use of stepmatrices (Figures 3.16 – 3.18 versus Figure 3.15), just as nucleotide-

level parsimony analyses were improved through the use of stepmatrices.  The PAM1

based matrix resulted in the best performance followed by the matrix based on the

number of mutational steps between amino acids (the ProtPars matrix) and the

PAM250  matrix.  The PAM matrices were derived from comparisons of nuclear-

encoded proteins, many of which were globular cytosolic enzymes.  Despite the fact

that cytochrome b is a mitochondrial-encoded transmembrane protein, the PAM

weights of the amino acid replacements are more informative than simply considering

the minimum number of mutations required to change from one amino acid residue to

another.  The relatively short branch lengths (branch lengths ranged up to 1.0

expected nucleotide changes per site) may explain why the PAM1 matrix

outperformed the PAM250 matrix in these simulations.

Amino Acid – Maximum Likelihood

Maximum likelihood implementing the model of amino acid evolution based

on Adachi and Hasegawa’s fit of the reversible model to mammalian mitochondrial

sequences was the most effective way to analyze the simulated protein data.  This

model performed significantly better than any amino acid parsimony weighting

scheme.  As with the DNA based approaches, the difference is most noticeable in

cases for which long-branch attraction is the cause of the incorrect tree being

preferred (Figure 3.25); however for the protein sequences there is a larger area of

parameter space for which maximum likelihood techniques do noticeably better than
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parsimony methods.  This may reflect the fact that the model of Adachi and

Hasegawa is more appropriate for analysis of the cytochrome b sequences than the

PAM matrix or the fact that there are few informative changes at the amino acid level

so explicit modeling of branch lengths is necessary to increase the power of

phylogenetic methods.

The proportional model of amino acid evolution (the analog of the nucleotide

F81 model), on the other hand was slightly worse than parsimony using the PAM1

matrix.  Models of amino acid exchangeability such as the work of Dayhoff or

Adachi and Hasegawa, ignore heterogeneity in the forces of evolution across sites.

Such heterogeneity is present in the simulated data, but the deviations from the

“rules”  assumed from the empirical models must be relatively unimportant compared

to infomation gained by making generalizations about the patterns of amino acid

change because the homogeneous weighting systems dramatically improve the

performance of parsimony and likelihood.

Amino Acid vs. DNA Analyses

Whether the data were analyzed under the parsimony criterion or using

maximum likelihood, DNA-based methods recovered the true tree more than amino

acid approaches.  Figures 3.26 and 3.27 compare the performance of the two levels of

analysis for each criteria.  There is some indication that amino acids are less

susceptible to long-branch attraction (amino acid methods do better than their DNA

counterparts in the Felsenstein zone trees), but for most problems the loss of

information involved in translating the sequences appears to hinder phylogenetic

reconstruction. Interestingly, it does not appear that the internal branches are so short

that amino acid methods are failing because there is not any true signal; when all of

the branches are 0.05 expected nucleotide changes per site, amino acid methods get

the tree right in over 95% of the trials.  Instead it appears that as other branches

lengthen, the noise in the amino acid sequences is able to overwhelm the lower

amount of phylogenetic signal more easily. All conclusions of simulation studies are
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contingent upon whether the data generator produces reasonable data or biases the

results in some way; the poorer performance of amino acid methods could result from

the selection of cytochrome b as the choice of molecules to base the Halpern/Bruno

model on.  Cytochrome b is quite conservative at the amino acid level, so it, or

models based upon it, might be expected to be poor candidates for amino acid

methods.  Fitting parameters of the Halpern/Bruno model with maximum likelihood

may exacerbate this problem.  Maximum likelihood has a tendency to overfit data.  In

this context an amino acid with a true frequency that is low, but not zero, could be

missed in the mammalian sequences that have been collected.  The result is that the

maximum likelihood estimate of its frequency will probably be zero, and the amino

acid will never occur in the simulated data sets, leading to a further reduction in the

number of states in an amino acid analysis.
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Chapter 4 – Simulations – Sixteen-taxon Tree

Although there is active research into methods based on solving the

phylogeny problem by breaking the full data set up into quartets of taxa, most applied

systematists are interested in building trees for larger numbers of taxa.  This presents

a problem for simulations studies, because an exhaustive coverage of tree shapes (in

terms of topological shapes and branch lengths) quickly becomes impossible.  While

four-taxon studies may provide important insights into how well methods

discriminate between signal and noise, it is probably unwise to extrapolate from small

trees to make general conclusions about the relative merits of methods.  To address

large problems in phylogenetics I have performed three other simulations experiments

focussing on the performance of DNA based tree inference: one on contrived sixteen-

taxon trees, one from a tree shape inferred from real sequences, and one using a

random process to generate trees.

Contrived trees can be useful because they allow the study of tree shapes that

are thought to be difficult; thus differences between methods are easier to detect.

Phylogenetic methods have been verified enough from experimental studies,

simulations, and first principles, that most systematists would concede that there is a

broad range of trees for which most known methods would correctly estimate the true

tree.  Further study of these trees is probably unwarranted.

One criticism of the shape of four-taxon trees discussed in the previous

section, is that the branch lengths are quite extreme in many cases.  For all points that

are not on the diagonal of the graph of parameter space, it is not possible to root trees

and produce a tree that is consistent with the molecular clock.  For any rooting

position at least one of the terminal branches with the length determined by the two-

branch-length parameter, will be equal in age to a terminal whose branch length is

determined by the three-branch-length parameter.  For the upper left and lower right

corners of the parameter space that I examined, this implies a twenty-fold change in
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rate for sister taxa.  While a strict molecular clock provides a poor fit for most genes

in relatively divergent taxa, twenty fold differences in rate are probably uncommon.

Another objection to the four-taxon simulations is in the Felsenstein zone

there are only two long branches.  Long branches in a tree can be a significant source

of noise because of stochastic convergence.  In the four-taxon case, the noise is

concentrated in favor of one particular incorrect topology, but in larger trees there

may be many long branches so the noise may not lead to the attraction of any two

particular long branches.  So the four-taxon trees may be unrealistically difficult.

Description of the Sixteen-taxon Trees

To address these two criticisms, I developed a parameterization of symmetric

sixteen-taxon trees.  To simplify parameter space, the trees in this simulation are

ultrametric (branch lengths are picked so that they are compatible with a molecular

clock).  The problem can be thought of as inferring the phylogeny of four groups of

organisms, each of which has four members sampled.  Two of the groups are “old”,

meaning that there last common ancestor was close to the root of the tree, and two are

young.  Two parameters control the branch lengths of the tree, as shown in Figure

4.1.  The branch lengths within the young groups and the length of the branch that

creates the deepest split in the tree (dividing the tree into two groups of eight) are kept

constant for all of the simulations.  The total age of young clades are held such that

there are 0.03 expected changes per site from the most recent common ancestor of the

young clade to the tip.  The central branch of the tree is always 0.04 expected changes

per site, this is roughly the same amount phylogenetic signal that was present in the

shortest internal branch in the four-taxon simulations.

One parameter (along the horizontal axis of Figure 4.1 and the graphs

presenting the results later) controls the depth of the root.  As this parameter

increases, the root moves deeper in time, but the length of the branch leading from the

root to the old clades does not change (so the most recent common ancestor of each

old clade and the root of the entire tree both become older).  Large values of this
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parameter lead to greater disparity between the age of the young clades and the old

groups, creating a mixture of long and short internal branches.  To maintain

ultrametricity, the speciation times within the old groups are spread out evenly (the

time between the most recent common ancestor of the group and the first split in the

group equals the time between the first split and the second split and equals the time

between the second split and the present).  The second parameter does not change the

age of the root, but does change the relative ages of the old and young clades by

increasing the length of the branch leading to the older clades.  As one moves away

from the middle of the graphs, the older clades become more similar in age to the

younger group.  Along the diagonal of the parameter space all four groups are

identical in age, and there is no potential for long-branch attraction between any two

particular clades.

The sixteen-taxon simulations are more coarse-grained than the four-taxon

study.  Moving along the horizontal axis the age of the root changes from 0.07

expected changes per site to 0.97 expected changes per site in nine steps of 0.1

changes per site.  Similarly as one moves one step away from the horizontal axis, the

time of the origin of the old group moves 0.1 expected changes per site closer to the

present.

The trees are based on the same properties that make Felsenstein zone trees

hard to infer for parsimony and the “Farris” zone trees more difficult for likelihood.

In one set of simulations, shown above the horizontal axis, the two young groups are

most closely related.  In these Farris zone simulations, the two longest internal

branches are sister to each other.  In this case, noise along these branches may help

methods get the right tree “by accident” because convergence along the long branches

agrees with the true phylogenetic signal.  In the other set of simulations, shown as the

lower triangle, each young group is sister to an old clade, so if homoplasy spuriously

unites the internal branches, the incorrect grouping will be obtained.  In both cases
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there are other long branches in the tree, specifically the basal branches in the old

clades, so homoplasy should not be concentrated on just two branches.

Methods Examined

Four methods of phylogenetic inference were examined: unweighted

parsimony, maximum likelihood using the GTR model with rate heterogeneity,

neighbor-joining, and minimum evolution (both based on distances corrected using

the GTR model with maximum likelihood estimates of parameters).  The parsimony

and maximum likelihood searches were performed using the SPR branch swapping

algorithm from a random-addition-sequence stepwise-addition tree.  The minimum

evolution searches were also implemented with SPR-branch-swapping, but the

starting tree was the neighbor joining tree.  Because of the computational expense of

likelihood techniques, searches were done with the parameters of the model set to the

values inferred from the most parsimonious tree.  The values of the rate heterogeneity

parameters were used in the distance corrections.  In cases in which more than one

tree was returned by a method (this occurred a few times under the parsimony

criterion), the first tree found was selected for comparison to the model tree.

Results

The sixteen-taxon simulation was designed to test the methods on their

relative power for inferring deep structure of the tree.  I had anticipated that the four

groups (two old clades and two young clades) would be correctly inferred by all

methods over most of parameter space, and that differences would emerge in the

relative ability of methods to infer correctly the deepest split in the tree.  In both the

Farris zone trees and Felsenstein zone trees, there are two symmetrically positioned

old clades and two young clades.  Because of the symmetry I have combined the

results of both old groups into one category, and done the same for the young clades.

Thus, the results are presented in terms of probability of recovering: the deep split in

the tree, the old groups, the young groups, and the internal structure within the young

and old clades.  The structure within each of the clades was a pectinate subtree, so
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there are two internal branches to infer:  one separating the two sister taxa from the

rest of the tree (referred to as the 1-2 branch), and the other separating three taxa

within the clade from the rest of the tree (referred to as the 1-2-3 branch).

Table 4.1 presents the performance of each of the four methods examined for

each branch in the tree.  Methods that appear in the same cell were not significantly

different from each other.  In cases in which there were significant differences, the

methods are sorted with the left columns containing the best methods.  Significance

was judged using a likelihood-ratio test with the percentage of replicates in which a

branch was correctly inferred treated as a binomial probability.  The alpha level was

adjusted for the 48 comparisons (6 pairwise comparisons of methods on eight types of

branches).  Because the percentage of times a branch was correctly inferred over the

entire parameter space does not give all of the information about performance, I have

plotted the performance in each of the 100 different conditions examined. Figures

4.2-4.8 graphically depict the performance of each of the four methods for each of the

type of branch in the tree.  The same color scheme was used for the sixteen-taxon

study as was used in the four-taxon results.  To display more clearly the differences

between methods over the parameter space, Figures 4.9-4.15 show the relative

performance of methods:  the number of times one method recovered a clade in a

certain simulation condition minus the number of times a contrasting method

recovered that clade.  In these figures white indicates that the performance was

identical for two methods.

A cursory examination of the results reveals that it was not the case that most

of the clades, except the deepest split in the tree, were reconstructed by all of the

methods.  In fact only one grouping (the monophyly of the four taxa in each of the

young clades) was recovered with very high accuracy by all methods.  The most

closely related pair of taxa in the old clade (Old 1-2 branch) were also recovered in

the vast majority of cases.  Failure to reconstruct the four basic groups in these

simulations make interpretation of the results for any particular branch less obvious.



48

The simulations can still be informative, but it is important to remember that one

taxon being out of place on an inferred tree can cause that replicate to fail to recover

several branches.

As in the four-taxon simulations, maximum parsimony proved to be a

remarkably robust method.  In fact it performed best in terms of the total number of

branches missed (summed over all replicates and all conditions), or number of times

the entire tree was reconstructed.  Maximum likelihood was the next best method

when judged by the total number of branches, followed by neighbor joining then

minimum evolution.

Recent Branches

The internal structure within the young clade was the part of the tree for which

parsimony most clearly outperformed the other methods.  In almost all replicates, all

of the methods correctly recovered each of the young clades.  Given the low

divergence within the group, it is unlikely that any method incorrectly inferred the

unrooted topology of the four taxa within the young clades.  It appears that maximum

likelihood and distance methods had trouble correctly rooting this subtree, while

parsimony almost always recovered both branches within the clade (young 1-2, and

young 1-2-3 Figures 4.2, 4.3, 4.9 and 4.10).  This performance may be due to

parsimony’s bias toward uniting long branches (in this case, the longest branch in the

subtree leads to the basal member of the clade and in the true tree this long branch is

connected to the long branch uniting the young clade to the rest of the tree).

Intermediate Branches

While parsimony performed better than the distance methods for virtually

every branch in the tree, the contrast between parsimony and maximum likelihood is

more complex.   As mentioned above parsimony recovered more of the recent

structure of the tree (the internal structure of the young clade).  On branches of

intermediate depth (the internal structure of the old clades), the methods were not

significantly different based on the entire parameter space.  On the old 1-2-3 branch
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(Figure 4.6 and 4.13) parsimony appears more sensitive to long branches combined

with a large disparity between the ages of the clades (right portion of the graph near

the middle of the graph, which is this simulation study’s equivalent of the extreme

Farris and Felsenstein zones), while likelihood is failing more when the ages of the

clades are even.  Along the diagonal the old clade is not actually older than the young

clade, and likelihood is presumably having difficulty rooting the subtree as discussed

above in the context of the young clade.

Deep Divergences

Maximum likelihood is outperforming parsimony on the oldest divergences in

the tree (recognizing the old clades as groups, and inferring the deepest split in the

tree), but the difference is not enormous (Figures 4.7, 4.8, 4.14 and 4.15).

Interestingly maximum likelihood is correctly inferring the deepest divergence in the

tree more than parsimony whether the internal structure of the tree mimics the

Felsenstein zone or the Farris zone, although no method is reliably inferring deep

branches in the extreme parts of parameter space (and the difference between the

methods is more pronounced in the Felsenstein zone like trees).

Distance Methods

As was the case for the four-taxon tree simulations, distance methods

performed worse than parsimony or likelihood.  Unlike the four-taxon study, there is

no region of parameter space in which distance methods outperform parsimony.

Neighbor joining does slightly better than minimum evolution at recovering every

branch in the tree.

Obviously distance methods rely critically on the distance correction that is

used.  While the GTR model with rate heterogeneity is favored over other single

nucleotide models, based on likelihood scores of trees under different models, this

model is not necessarily the best for correcting distances.  Steel and Penny (2000)

have shown that p distances may be preferable to corrected distances when the tree is

ultrametric.  Discussion of the performance of distance methods using less parameter
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rich models will be postponed until Chapter 7.  In these simulations the performance

of distance methods was dramatically improved by using p distances.  The results

from the GTR model with rate heterogeneity are presented because this is the favored

model under standard model-selection criteria, and, entering an analysis, many

researchers are unlikely to assume ultrametricity (which happens to be valid in these

simulations).

Conclusions

The conclusions of the sixteen-taxon study are quite similar to those of the

four-taxon study.  Overall performance appears lower, but this is largely the result of

at least one branch on the tree (the deep divergence) being very short and surrounded

by much longer branches.  In essence there were many fewer trees that were easy in

the sixteen-taxon simulation.  Parsimony seems to be remarkably robust.  Maximum

likelihood using the standard single-nucleotide models improves reconstruction of

deep nodes, but the improvement over parsimony is not enormous.  In this simulation

there are indications that maximum likelihood may perform worse than unweighted

parsimony for some branches.  Unfortunately it is not clear whether this performance

is due mainly to a failure of maximum likelihood, or a bias in parsimony.  Distance

methods implementing the same model as maximum likelihood behave notably

different and worse than likelihood or parsimony, and neighbor joining outperformed

minimum evolution searches over most of the parameter space.
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Chapter 5 - Simulations - 228 Angiosperm Tree

In 1996, Hillis reported what is probably the most astonishing result from a

phylogenetic simulation study.  Using Kimura’s two-parameter model with rate

heterogeneity (gamma-distributed rates with a shape parameter of 0.5), he simulated

data onto a tree taken from a parsimony analysis of 228 sequences from a wide

diversity of angiosperms.  Surprisingly, very simple methods, such as unweighted

parsimony stepwise addition searches performed quite well.  The full tree was

recovered without error with just 5000 bases of data (after branch swapping), despite

the fact that the model tree had great heterogeneity in branch lengths, including some

very short internal branches.  To demonstrate that this result was robust, he

lengthened all of the branches on the tree to ten times their length as inferred on the

real data and repeated the simulations.  The longer tree was actually easier to infer,

based on comparing the number of branches missed as a function of the number of

bases simulated.  Hendy and Penny (1989) had suggested, from theoretical studies

and analysis of small trees, that the addition of taxa may make some phylogenetic

problems easier to analyze.  Later simulations studies have also shown that addition

of taxa can help avoid problems associated with long-branch attraction (Graybeal

1998, but also see Poe and Swofford 1999), but the high profile of Hillis’ study and

its large impact on the field make it the most obvious choice of a simulation study to

replicate.

Hillis’ results were surprising in light of the large number of four-taxon

simulation studies (Huelsenbeck and Hillis 1993, Huelsenbeck 1995).  While

phylogenetic methods performed well over a large range of parameter space, there

were combinations of branch lengths that made it very difficult for parsimony (and

other mehods) to reconstruct a branch correctly.  Merely extrapolating from the

number of bases that it took to infer a single internal branch with high probability

seemed to imply that a huge amount of data would be needed to reconstruct the 225
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internal branches of the angiosperm tree.  If the probability of reconstructing each

branch were 0.95, and the branches were treated as independent, then the full tree

would only be recovered one time in 100,000 trials.  Even if the probability of getting

each single branch were 0.99, there would only be a 10% chance of getting all 225

branches correct.  Reconciling Hillis’ results with these calculations can be done by

realizing that it is not correct to treat the probabilities of reconstructing different

branches on the same tree as independent (correctly inferring one branch greatly

increases the chance of getting a nearby branch too), and that one character can serve

as a synapomorphy for several branches on a large tree.

Traditionally systematists have placed a high value on homoplasy-free

characters and finding objective ways of coding character states so that the characters

are likely to be free of homoplasy.  DNA sequence characters are prone to frequent

changes and cannot be coded in such a way that homoplasy is avoided.  Hillis’ study

showed that it was possible to reconstruct a large trees from relatively noisy

characters. In fact, if one simulates homoplasy-free binary characters on the

angiosperm tree, the number of characters needed to recover the tree would be larger

than in his simulation in which homplasy is allowed (data not shown).  Whether these

results are robust to the use of a more complex model for data generation is an

interesting and open question.  Gamma-distributed rate heterogeneity in Hillis’

original work leads to some characters evolving with a high rate and, hence, a

considerable amount of homoplasy.  This type of simulation also produces a few

characters that change very slowly and tend to have very little convergence or

parallelism.  While Hillis showed that his conclusions were not strongly sensitive to

the particular branch lengths used, it is not evident if the results were contingent on

the pattern in which homoplasy accumulates (i.e., the model of evolution).

I have replicated Hillis’ study by simulating the data based on the

parameterized version of the HB model.  I simulated data on the empirical branch

lengths (which I will refer to as the short tree) as well as a tree with branches ten
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times longer than the empirically based estimates (the long tree).  To vary the amount

of data available to the inference methods, I concatenated independently simulated

data matrices.  Hillis’ study covered up to 5000 bases of simulated sequences.  I

studied performance on one, two, four, eight, and sixteen copies of the simulated data.

Thus the lengths of the sequences covered varied from 1128 to 18,048 bases.  For

each set of conditions 100 replicate data sets were simulated and analyzed.

Hillis found that unweighted parsimony performed slightly better than

neighbor joining.  I tested the performance of unweighted parsimony, neighbor

joining, and minimum evolution.  For the distance methods, distances were corrected

using the GTR model with estimates of the gamma shape parameter and the

proportion of Invariant sites provided by maximum likelihood estimates from one

simulated data set (because maximum likelihood estimates from each replicate would

be too computationally intensive).  Parsimony was investigated under three search

strategies:  one stepwise addition search using a random addition sequence, one SPR

search keeping one tree from a random addition sequence stepwise addition tree, and

one SPR search starting from the model tree.  Minimum evolution was implemented

as one SPR search from the neighbor joining tree and one SPR search starting from

the true tree.

Starting searches from the true tree is a heuristic tool to help determine

whether branches of the true tree are missed because of an inefficient search strategy

(poor solution to the optimality criterion) or whether the cause of failure is a result of

the optimality criterion favoring an incorrect topology (this strategy was suggested to

me by T. Warnow, personal communication).  Such searches can be informative but

difficult to interpret correctly.  They represent a first order approximation of an upper

bound on how well the optimality criterion might  perform if the search could be done

exhaustively.  They do not represent how the criterion would perform in an

exhaustive search because it is possible that a tree exists that is topologically less

similar to the true tree but has a better score under the optimality criterion.  Searches
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from the true tree do not provide a strict upper bound on the performance of a method

because it is sometimes possible to find a topology which has a better score and is

closer to the true tree (in fact this happened three times in parsimony searches in the

current study).  The utility of starting a search from the true tree is to help assess how

reasonable it is to expect a method to perform better if more intensive searching were

performed.

It is interesting to note that, in Hillis’ study, simulations on the larger of the

two trees resulted in sequences that look biologically implausible.  He states (1996):

“Under these conditions, the average character is changing 23.6 times across the tree,

and because of rate heterogeneity among sites, some characters change many more

times.  At these high rates of evolution, many of the terminal sequences are so

dissimilar that no biologist would recognize them as homologous.”  The implication

seems to be that the sequences are much more divergent than sequences regularly

used in phylogenetic analysis.  The branch lengths of the tree under this model result

in a root to furthest tip distance of about 0.9 expected changes per site.  While this is

undoubtedly a long branch, this level of divergence is displayed within mammals for

the cytochrome b gene.  In fact, based on the branch lengths inferred under the HB

model, within Murid rodents there are taxa that exceed this level of divergence.

When data are simulated on the long tree under the HB model, the result is sequences

whose homology no biologist would question.  Plausible looking sequences under

these branch lengths result from a more biologically realistic spatial arrangement of

conserved sites and the lack of any sites evolving at extremely high rates.

The branch lengths for the long tree simulation are clearly within the realm of

plausible sequence evolution for genes that have been used in phylogenetics.  As

mentioned earlier, cytochrome b evolves quickly (at the third base postions), and

many researchers (myself included) would question its usefulness for deep

relationships.  I do not wish to argue that sequences with these rates of evolution

should be used for reconstruction of trees, but, by using a more complex simulator, it
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is apparent that divergent sequences do not always stand out as random or hopelessly

distant.

Results

Figures 5.1 - 5.6 show the results for each method.  In each case the results for

the tree with empirically based branch lengths are shown in blue and the results from

the long tree are shown in red. The mean of the 100 replicates is shown as a solid

line; the dashed lines indicate 95% confidence limits.  The Y axis is the percentage of

the 225 internal branches in the model tree that were recovered by the method.  The

x-axis displays the number of copies of the cytochrome b modeled genes

concatenated together.

Discussion of Parsimony Results

Stepwise Addition

The performance of stepwise addition on the smaller of the two trees is very

similar to the results given by Hillis (see Figure 5.1).  The tree is not recovered quite

as accurately, despite the much longer sequence lengths used in this study, but clearly

stepwise addition is doing a remarkably good job at inferring the tree, attaining a

mean reconstruction success of over 95% with four copies of the simulated genes and

over 98% when sixteen genes are simulated.  For the longer tree, the results for

stepwise addition searches are qualitatively different from those seen when data is

simulated under a simple model like K2P.  The performance of the algorithm is

dramatically worse than the performance on the shorter tree.  With one copy of the

gene, on average fewer than 63% of the branches were estimated correctly.  Even

with the full 18,000 bases of simulated datam, the performance only improves to

about 81% of the tree being correctly inferred.

Parsimony Searches

On the smaller tree, branch swapping does not dramatically affect the

performance of parsimony but helps a small amount (Figure 5.2).  Most of the

branches that were missed in the stepwise addition search are not due to the use of a
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quick approximate solution to the parsimony optimization problem, instead they

represent examples of the optimality criterion favoring a tree that does not contain a

branch found in the true tree.  More thorough searching noticeably improves the

performance for short sequence lengths, but for simulations with eight or more gene

sequences, the differences between stepwise addition and a search with branch

swapping are slight.  Given enough data the stepwise addition algorithm is quite

efficient at producing a good estimate of the most parsimonious tree for these

simulations.  Searches started from the true tree performed slightly better than starting

from a random addition sequence stepwise addition tree (Figure 5.3).  The

improvement from starting a search at the true tree was most noticeable for short

sequence lengths.

Branch swapping had a profound effect on the performance of parsimony

when the data were simulated on the larger tree.  In this case stepwise addition

searches performed poorly, but after more thorough searches the performance on the

long tree was only slightly worse than the performance on the short tree.  With 16

genes simulated, about 97% of the true tree was recovered.  Once again searches from

the true tree did only slightly better than searches from a stepwise addition tree.  On

real data sets for this number of taxa the preferred topology usually changes

substantially when branch swapping is done, so it is not surprising that there is a

dramatic difference between the stepwise addition tree and the tree after an SPR

search.  For simulations with one copy of the gene branch swapping resulted in a tree

with, on average, 44 more correct branches.  For longer sequences, the effect was

smaller, but still substantial (about 36 more true clades were identified by the SPR

search).  Hillis’ conclusion that a great amount of phylogenetic signal can be

recovered from rapidly evolving sequences (if the tree is densely sampled) is robust

to simulations based on much more complex models of evolution.
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Neighbor Joining

In Hillis’ study on the smaller tree, neighbor joining performed slightly worse

than stepwise addition.  Hillis did not discuss the performance of distance methods on

the long tree, but I have replicated his simulation and verified that neighbor joining

performs well on the long tree with 5000 simulated bases (data not shown).

Qualitatively both neighbor joining and stepwise addition exhibited the same pattern:

remarkably high accuracy with reasonably long sequences.   Using the HB model to

generate sequences, the two methods gave similar results (Figure 5.4).  On the shorter

tree, neighbor joining appears to be slightly outperforming stepwise addition (better

mean performance for all of the sizes of data sets examined).  On the longer tree,

neighbor joining appears to be performing slightly worse than stepwise addition, but

neither method is doing well.

Minimum Evolution

Minimum evolution searches were performed by SPR branch swapping from

the neighbor joining tree.  For the unweighted parsimony criterion, branch swapping

slightly improved performance on the small tree.  This was not the case with

minimum evolution.  Minimum evolution searches resulted in trees that were no

better than the neighbor joining tree in terms of topological distance to the true tree

(Figure 5.4).  This result is not surprising given that neighbor joining did quite well

on the trees, so there was little room for improvement.  However, on the longer trees

the quick heuristics performed poorly, and yet estimates of the minimum evolution

tree were actually worse than the neighbor joining tree in most cases.  The minimum

evolution criterion also performed poorly when the searches were started from the

true tree (Figure 5.6), in fact the final trees from these searches were almost identical

in terms of distance from the true tree.  This indicates that the poor performance of

minimum evolution is unlikely to be the result of cursory searches for the minimum

evolution tree.
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These results are surprising in light of the common tendency to view neighbor

joining as simply a starting point for more intensive searches.  In these simulations

neighbor-joining seems to be detecting more signal than the minimum evolution

criterion, and searching hurts performance more than it helps.  Also remarkable is the

dramatic difference between the distance-based approaches and parsimony on the

longer tree.  The four-taxon studies indicate (and it has been noted elsewhere) that

distance methods can perform poorly when the evolutionary distances are large, but

results from simulations studies done with simple models of evolution have not

shown as great a difference between distance and parsimony methods as observed

here.  Nei and Kumar (2000) point out that all methods perform similarly when

divergence is low (less than 0.025 changes per site), which is undoubtedly true.  They

assert that pairwise divergences between taxa of greater than 1.0 are “biologically

unreasonable,” presumably meaning that phylogenetic analyses should not be

performed on such sequences.  As mentioned above, the divergences considered in

this set of simulations is within the divergence of one group of rodents.  The long tree

simulations seem to agree with Nei and Kumar’s assessment that phylogenetic

analysis using distance approaches is unreliable for this level of divergence, but

parsimony is still performing remarkably well on this tree indicating that

phylogenetic analysis in general is not hopeless.  Of course these conclusions are

based on GTR distances with two types of rate heterogeneity.  While there is enough

information in the data to support this model in the maximum likelihood framework,

it is possible that other distance corrections (for instance a method based on non-

synonymous changes only) would improve distance analyses.

Angiosperm Tree Final Thoughts

It is tempting to claim that these simulations show that parsimony will

be a powerful tool for inferring phylogenies of large numbers of taxa even when the

data are generated by a very complex process and that these simulations provide

striking examples of a performance gap between parsimony and the commonly used
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nucleotide distance methods.  Other than the caveats that are appropriate for all

simulations using this model of sequence evolution, it is also important to consider

possible biases that arise from the tree shape.  The topology of the tree and branch

lengths were inferred using parsimony.  This may constitute a substantial bias in favor

of parsimony.

Parsimony seems to be more susceptible to long-branch attraction than other

methods, but this does not appear to be a large problem on this tree.  This could

indicate that the conditions that lead to long-branch attraction are rare in real trees, or

it could be the result of using parsimony to infer the original tree.  If there had been a

pair of long branches separated by a short internal branch in the real tree, it is

plausible that the branch attraction occurred in the  analysis of the real data, so that

the two long branches were united in the model tree used in this study.  Rannala et al.

(1998) inferred a different tree from the same data using UPGMA and used this tree

as a basis for simulations; parsimony performed well on this topology but required

much more data to reach high accuracy than it did on the model tree inferred from

parsimony.

Similarly the branch lengths estimates for this model tree were based on

parsimony inferences of the number of changes.  Parsimony will underestimate the

total number of changes on the tree, and may tend to push changes from terminals to

the internal branches (there is no parsimony signal for a polytomy; so if two sister

branches happen to display a parallelism, the change will be inferred to have occurred

on the internal branch uniting them).  This method of estimating branch lengths also

puts a limit on the smallest non-zero branch length on the tree (essentially the

smallest length is one divided by the total length of the 18S sequences).

These imperfections and biases probably have little effect on Hillis’ main

conclusion that large trees with remarkably short branch lengths can be inferred from

reasonable sequence lengths.  The importance of Hillis’ paper and its conclusions

made it an obvious choice of a study to replicate using the Halpern/Bruno model,
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however, because I am also interested in comparing the performance of parsimony

and distance methods on large trees, it is more important for me to avoid any possible

bias in favor of parsimony.   Thus I have conducted a final set of simulation studies

using randomly generated trees.



61

Chapter 6 – Simulations – Randomly Generated Trees

The study of tree shapes is an exciting but difficult area of phylogenetics.  A

fuller understanding of the shape (topology and branch lengths) of trees would

provide insight into the processes of speciation, extinction, and molecular evolution

(particularly the rate of molecular evolution and how it changes over time).  The field

is still in its infancy because there are very imposing barriers to drawing robust

conclusions about biological tree shapes.  First, there is a very large amount of

variance in the tree shape produced by any reasonable model of speciation and

extinction; the probability density functions of these models are fairly flat over

topology space.  This means that it is difficult to decipher which model best fits the

real data unless a large number of trees are examined.

Another impediment to the field is the fact that we cannot witness the tree

without error, instead we must infer it from analysis of the species.  Inference of the

tree can be a source of error and bias.  The shapes of inferred trees will be affected by

the taxon sampling performed by the systematist.  Usually not all of the extant species

in a group are included in a phylogenetic study, and the included taxa are not a

random sample of the whole group.  Geography, previous taxonomy, and levels of

divergence of interesting traits can affect which taxa are used and cause the data set to

be non-random.  Even if the sampling were complete (or random) topological biases

in the algorithms used to construct phylogenies can lead to a biased set of trees

(Huelsenbeck and Kirkpatrick, 1996).  Given that there is no consensus on the most

appropriate distribution of tree shapes or the best models to use for tree generation, I

have generated random tree shapes under a very simple pure-birth process with

complete sampling (see Rannala et al. 1997 for a discussion of the effect of

incomplete sampling on the shapes of birth-death trees and the difficulty of

phylogenetic inference on these trees).  The tree generation process that I used is most

similar to that of Bininda-Emonds et al. (2000)
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Tree Generation

Trees were created using the assumptions of the Yule, or pure-birth, process

(Yule, 1924).  These trees are ultrametric, meaning that the root tip to branch length is

the same for all taxa.  Because the constancy of the molecular clock is doubtful for

moderately divergent taxa, the branch lengths were modified away from

ultrametricity.  There are three parameters relevant to the process of tree generation

used in this experiment:  the root to tip age of the tree, the mutation rate, and the

variation in the rate of molecular evolution.  The trees are produced in a four step

process:  creation of a Yule tree, scaling of the tip to root age, changing branches by

allowing the relative mutation rate to vary, and scaling the tree by a mean mutation

rate.

Yule trees can be generated easily with the following algorithm:

1. Start the tree with two lineages sharing a common ancestor with a branch

length of zero from the ancestor.

2. Calculate the time until the next speciation event by assuming the waiting

time follows an exponential distribution with a mean of the reciprocal of the number

of lineages.

3. Add the waiting time to the lengths of all of the terminal branches.

4. Randomly pick a lineage to speciate (this tip becomes a parental node and

two sister lineages are created with branch lengths of zero from this parent node).

5. Repeat 2 –4 until the desired number of taxa are obtained.

When the process is completed the most recent two species will be separated

by branches of length zero.  The time until one more speciation event was calculated,

and a new branch length was calculated as a uniform random variable over the range

zero to this next speciation time.  The new branch length was added to all of the

terminal branches.
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The Yule process generates ultrametric trees, but the tip to root branch length

is not the same for all of the trees generated.  Because the scale of the problem can

have a profound impact on the efficiency of phylogenetic analyses, I scaled all of the

Yule trees in a given simulation set to have the same tip to root length.  Thus the

speciation model was provided a variety of topologies and relative branch lengths, but

the overall “age” of the simulated clades was kept constant.

The molecular clock is not universally acceptable, and the degree of

ultrametricity can severely affect the performance of phylogenetic methods.  So

deviations from a clock can be studied in a parametric way, I allowed the relative

mutation rate to vary over the tree using a parameter, r, to quantify the rate of

evolution of the rate of evolution (following Thorne et al. 1998).  The rate of

evolution at the end of a branch is a found by multiplying the rate at the beginning of

the branch by a lognormal variate.  This number is calculated by taking e (the base of

the natural logarithm) to a power which is a random number drawn from a normal

distribution with mean of 0 and a variance equal to the branch length multiplied by r.

Thus the exponent is a random variable with a mean of zero, but high variance when

branches are long or when r is high.  Presumably the rate of molecular evolution

cannot be zero, and clearly it cannot be infinite.  To constrain the rate of evolution, a

ceiling of ten times the original rate and a floor of one tenth the original rate of

evolution were enforced.  This allowed a maximum rate difference of 100 fold on

different branches of any one tree.  Once the rate at the end of a branch was

calculated the relative rate of evolution for the whole branch was calculated by

averaging the rate at the beginning of the branch and at the end of the branch.  In

cases in which the rate of evolution exceeded the maximum or fell below the

minimum, the evolution of the mutation rate was reflected back into space of legal

parameter values.

After branches were modified to allow for variation in rate, the tree was

rescaled by multiplying all of the branches so that the total length of the tree (the sum
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of the branch lengths) was identical before and after accomodating lineage specific

rate variation.  This was done so that changing r would not change the size of the tree

(to decrease overlap in the effects of the r and the tree scaling parameters).  Thus r

affects the distribution of mutations across the tree as a whole, but does not affect the

total number of mutations.  Note that, older trees will have more rate changes,

because the amount of change in the rate of evoluton across a branch is determined by

r and the original length of the branch.

The final modification of the trees allowed the specification of a mutation rate

at the beginning of the tree.  Given the branch lengths and the relative rates of

evolution on each branch, specifying the mutation rate amounts to simply multiplying

each branch by a constant factor.  The mutation rate and age of the root determine

have a strong effect on the total length of the tree and hence determine the how long

the simulated trees are.

Simulation Details

With three continuous parameters governing tree construction (in addition to

the number of taxa), it was not plausible to investigate the full range of parameter

space.  The main goal of the random tree simulations was to investigate trees with a

large number of taxa to verify that the general conclusions from the smaller

simulations were robust.  Random trees were needed to ascertain whether the bias in

favor of parsimony on the angiosperm tree was leading to the disparity between the

performance of parsimony and distance methods.  Given these goals I chose a

strategy of sweeping over a relatively large portion of the space of the tree generation

parameters.  r was set to three values 0.1, 1.0, and 10.  To simplify the parameter

space, both of the tree scaling parameters, the age of the root and the mutation rate

were kept equal to each other.  Simulations were performed with these parameters set

to 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0.  Because both of the parameters were changed

simultaneously, the effect on the scale of the trees is more or less the square of the

parameters.  Hence trees with these parameters set to 0.5 are on average four times
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shorter than trees with the parameters set to 1.0.  This strategy ensured a broad range

of tree depths were covered. Note that pairwise divergences between taxa across the

root of the tree are expected to be around two times the age of the tree times the

mutation rate, so when the scaling parameters were set to 0.5 the largest pairwise

divergences were 0.5 (in terms of expected changes per site).  When the scaling

parameters were set to 1.0, the largest divergences were 2.0.  Deviations from the

molecular clock (increasing r) can increase these maximum divergences.  These trees

are divergent by most researchers’ criteria (though not dramatically longer than the

long version of the angiosperm tree investigated by Hillis).  Because it is difficult to

visualize the effects of these parameters, I have included six figures (6.1-6.6)

depicting twelve simulated trees from the most extreme parameter values used.  The

scale of the trees is not constant; the figures are included to help understand the wide

range of tree shapes that were studied.

Trees of 50 and 100 taxa were generated using the procedure described above.

Given the three values of r and the six values for the scaling parameters, there were

18 conditions examined for each number of taxa, for a total of 36 simulations

conditions.  For each set of parameters 100 trees were generated and one data set was

produced for each tree (as opposed to the previous studies in which the tree was kept

constant and replicate data sets were produced).  Each of the data sets was analyzed

using two search strategies for unweighted parsimony: ten random addition sequence

stepwise addition searches, and ten searches using SPR branch swapping from a

random addition sequence stepwise addition tree.  During the searches no more than

100 trees were retained.  At the end of each search one of the most parsimonious trees

was picked for comparison to the true tree.  Neighbor joining and minimum evolution

searches were performed using the GTR distances and rate heterogeneity, using the

same values of the gamma shape parameter (1.99) and proportion of Invariant sites

(0.475) that were used in the angiosperm tree (these values were estimated from one

simulated data set on that tree, and represent fairly robust estimates of the rate
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heterogeneity values when a large data set is fit to data from the HB model).  To

mimic the searches that were done using the parsimony criterion, the minimum

evolution searches were started from stepwise addition trees with ten searches

performed from different random addition sequences.

Simulation Results

Figures 6.7-6.12 show the mean performance as measured by the percentage

of internal branches in the true tree that were recovered by each method.  Each graph

shows the results for all four inference methods for one setting of r and all six values

of the scaling parameters.  Performance of the parsimony methods is shown in blue;

distance methods are shown in red.  The fast heuristics (stepwise addition and

neighbor joining) are plotted as dashed lines.  The best possible performance is also

plotted as a black line.  These data come from estimating the percentage of internal

branches that have at least one substitution occurring on them during the simulation.

Without a mutation along the branch, the model tree was effectively a polytomy for

that branch, rather than remove such branches from consideration (which makes it

difficult to see how many branches of this type occurred), I have simply plotted the

performance of an imaginary method that recovers every internal branch which is

long enough to have had a mutation on it.

Over the entire range of tree shapes examined there is a wide variation in

performance.  The best method on average recovers 85% of the branches on the

shortest and most ultrametric trees, while for the longest trees, the minimum

evolution is only recovering 24% of the correct branches.  In general, low values of r

and low values of the scaling parameters made the trees easier for all methods.

Perhaps unsurprisingly, given the literature on the importance thorough taxon

sampling (Hillis 1996, Graybeal 1998), the percentage of the tree that is recovered by

parsimony is relatively unaffected by the number of taxa in the analysis.  Because all

of the taxa generated by the Yule trees were included in the analysis, it is not correct

to treat the 50-taxon data sets as if they were comprised of the same trees as the 100-
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taxon trees, but with only half of the taxa included.  Instead under the parameters

used in this study, these simulations investigate whether or not a group that has

diversified into 100 species is more difficult to infer than a group that is of the same

age but with half as many species.  Adding more taxa means that there are more

speciation events in the same amount of time, so internal branches are shorter in the

100-taxon trees (compared to the 50-taxon trees with the same parameter values).

Apparently, this effect is balanced out by the improvement in the ability to infer

dense trees, such that there is essentially no difference in performance under the

parsimony criterion.  For extreme branch lengths the trees with r>0.1, distance

estimates are missing a higher percentage of branches on the 100-taxon trees than on

the 50-taxon trees.

The angiosperm simulations (on the longer tree) provide examples in which

performing branch swapping is vital to obtaining reliable trees.  Interestingly the

performance of parsimony after branch swapping was only slightly better than

stepwise addition on the randomly generated trees.   It is possible that the larger

number of taxa in the angiosperm-based tree is the factor that causes stepwise

addition to find a tree far from the most parsimonious tree, however in the random

tree simulations there is no indication that branch swapping is more important for the

100-taxon trees compared to the 50-taxon trees.

Bininda-Emonds et al. (2000) studied similar trees to infer the rates of

convergence of parsimony (how much data were required to recover the tree).  They

analyzed the ease of inference of branches in the tree and found that the depth of the

branch was a crucial determinant of how much data were need to reconstruct it.

Shallow branches (such as those uniting sister species) were quite easy to reconstruct.

The data were simulated under a K2P model with gamma-distributed rate

heterogeneity.  Replication of that study with a more complex model of data

generation would be very worthwhile.  Unfortunately, the data sets they examined

involved much larger trees (thousands of taxa), required more sequence data than the
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HB model data provide (without resorting to concatenating multiple simulations), and

a considerable investment of computational resources.  In addition to clade depth,

random tree simulations could provide information on how a variety of factors such

as the rate of evolution along a branch and branch lengths of neighboring branches

affect the probability of reconstructing a node.

Of central importance for this dissertation is whether or not the patterns seen

in the previous simulations based on the HB model are artifacts of the types of trees

examined or whether they represent robust conclusions about the performance of

methods on data simulated under the HB model.  Fortunately the most striking

conclusions from the previous simulations are also born out by the study of randomly

generated trees.  Parsimony is outperforming distance methods.  This is most

noticeable on long trees; neighbor joining is consistently producing more accurate

estimates than minimum evolution.  In fact, these patterns are true of each 36

combinations of parameters used in the study (as can be seen from the graphs in

which the order is the same and the lines never cross each other).
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Chapter 7 – Conclusions, Implications and Extensions

In the previous chapters I have described the performance of phylogenetic

methods on simulated data that are much more complex than the data used in any

previous simulation study.  The focus has been on fairly difficult tree shapes and

sizes.  In general the results indicate that the currently used methods are not as

reliable as they seem based on simulations on simple models, but they do perform

remarkably well.

Coming into this study, there was a concern that much of the apparent

advantage that model-based approaches had over simple approaches like parsimony

may be an artifact of data generation in simulations being much too simple.  This

study supplies evidence that these fears were warranted to some degree.  When the

assumptions of the model are severely violated maximum likelihood fails to recover

difficult trees shapes, such as the extreme Felsenstein zone trees, that it can reliably

reconstruct when the data conform to the assumptions of the models of evolution.

This does not imply that model-based approaches should be avoided.

Maximum likelihood based on simple single nucleotide models of evolution still

outperformed all other methods on the four-taxon trees.  The main difference between

the results of this study and simpler simulations was that the range of tree shapes in

which maximum likelihood outperformed parsimony was smaller (largely because

both methods were failing on very difficult trees).  On the sixteen taxa trees,

parsimony outperformed likelihood on two of the branches (and this may be the result

of bias) while likelihood did better on the two deep branches.

Because these simulations were based on only one gene, they do not represent

a satisfactory method of generating sequences long enough to thoroughly test recently

developed, parameter-rich approaches to phylogenetic inference.  Preliminary results

indicate that amino acid models outperform amino acid parsimony, but are not as

reliable as analyzing data at the DNA level.  When fit to data from more genes, the

HB model should provide an excellent testing ground for the very divergent
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approaches that have been suggested: codon models (Muse and Gaut, 1994; Goldman

and Yang, 1994), a wide range of amino acid models, and  covarion models (Galtier,

2000).  If the HB model parameters are allowed to vary over the tree, even non-

stationary models (Galtier and Guoy,1997) could be considered.

One of the most robust conclusions of this study was that distance methods

were performing poorly in comparison to character based approaches.  Undoubtedly

this is, to some degree, an artifact of this study focussing on trees with long branches.

Nevertheless the fact that other methods (in some cases methods assuming the same

model of sequence evolution) were performing significantly better indicates that

distance approaches have relatively low power and/or they are very sensitive to

violation of the assumptions of the model used to correct distances.  Clearly the

terminology “distance methods” is a bit misleading.  The neighbor joining method or

minimum evolution criterion are provably consistent, and they even have proven

bounds on their error (given estimates of the evolutionary distances at which the error

is below a certain threshold, they are guaranteed to recover the true tree).  Thus

failure to reconstruct the correct tree is attributable to error in the input distance

matrix, not the methods per se.  In the simulations described in the previous chapters,

the model of sequence evolution used to correct distances was chosen using

maximum likelihood techniques.  Some authors (e.g. Nei and Kumar, 2000) have

suggested that distance estimates from simpler models may outperform more complex

models, even when the latter are justified by improved fit to the data.  For three of the

simulation studies I have examined the performance of simple distance corrections.

Simple Distance Corrections

Model-based inference of a complex parameter, such as a phylogeny, is never

based on the assumption that the model perfectly describes reality.  Burnham and

Anderson (1998) provide a good discussion of how model-based inference should be

based on choosing a model that is complex enough to avoid biases associated with

ignoring important parameters but simple enough to avoid excessive variance from
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overfitting the data to too many parameters.  In this light, it is not surprising that

simple distance corrections sometimes outperform a more complex model-based

approach.  Model-based distance corrections involve estimating parameters from the

observed matrix of pairwise sequence differences and then finding a branch length

that minimizes the difference between a model’s expectation of the distance matrix

and the observed data.  As the number of parameters grows and as the sequences

become more divergent, the variance of the estimated corrected distance grows.

In this study I selected a model based on a comparison of tree-based

likelihoods of the data under different models.  This seemed reasonable because it

meant that maximum likelihood and distance techniques were making similar

assumptions, and parameters which were not justified were avoided.  Comparing

distance methods assuming equal base frequencies and only two substitution types

(K2P model) to maximum likelihood under the GTR when there is clear evidence of

unequal base frequencies seems unfair to distance methods.  Using the tree-based

likelihood of the data set may lead to overfitting of the model of distance correction.

This is because distance methods do not use as much information from the data as

likelihood approaches.  Because much of the information is lost when a matrix of

pairwise distances is constructed from character data, it is reasonable to assume that

the power to estimate model parameters accurately is reduced.  Unfortunately the

state of the field in terms of model selection for distance corrections appears to be

quite unsettled.  As opposed to objective statistically based criteria, proponents of

distance methods provide either no suggestions or loose guidelines such as:

“When 0.05<d<1.0 and the number of nucleotides examined is

 large, use the Jukes-Cantor distance unless the

transition/transversion ratio (R) is high, say, R>5.  When this

ratio is high and the number of nucleotides (n) is very large 

use the Kimura distance or the gamma distance.  However,

when the number of sequence (sic) is large and n is relatively
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small, the p distance often gives better results unless the

evolutionary rate varies extensively with evolutionary lineage”

(Nei and Kumar, 2000, page 112).

A reasonable methodology might be to use the likelihoods of the pairwise sequence

comparisons (instead of tree-based likelihoods) in the standard process of model

selection using the likelihood-ratio test statistic or Akaike Information Criterion.  This

ignores the fact that all of the pairwise distances are not independent data points, and

it also means that a model with rate heterogeneity across sites can never be preferred

(rate heterogeneity parameters are unidentifiable from pairwise distances because an

observed divergence can be explained equally well by a short branch length and no

rate heterogeneity or long branch length and strong rate heterogeneity.  Another

option would be to use a goodness of fit criterion, such as least squares, to test the fit

of the distance on the inferred tree and choose a model of distance correction only if it

produces a tree with significantly better fit.  This would involve several tree searches,

but, given the speed of neighbor joining, this is not a serious drawback.

Because there is not a widely agreed upon technique for choosing a distance

correction, and to verify that the relatively poor performance of distance methods was

not the result of my choice of model corrections, I investigated the performance of

several simple distance corrections on three of the simulations described in previous

chapters.

Four-taxon Trees

Rate heterogeneity, particularly a model with invariant sites, can greatly

increase the variance of a distance correction because in essence a portion of the data

is simply removed from consideration.  In the data presented earlier the distance

corrections employed large amounts of rate heterogeneity; when invariant sites was

the preferred form of rate heterogeneity, the estimate of the percentage of unchanging

sites was around 50%.  The first simplified model of distance correction I examined
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was a GTR distance with invariant sites, but the proportion of invariant sites was set

to 0.25.  I also tried several corrections (GTR, HKY, K2P, and JC) with no rate

heterogeneity at all as well as uncorrected distances.  Judging by the total number of

replicates in which the true tree was inferred (i.e. summing over all of the branch

lengths examined), performance was improved substantially by the use of simpler

distance corrections.  GTR with the preferred values of rate heterogeneity parameters

(based on maximum likelihood) recovered the tree in 74% of the four-taxon

simulations.  Lowering the amount of rate heterogeneity improved the performance to

79%, and ignoring rate heterogeneity resulted in the true tree being found in 81% of

the replicates.  HKY and K2P distance corrections resulted in 82% accuracy, and,

with the JC correction, the performance of minimum evolution peaked at 83%

success.  The use of simple p-distances resulted in a slight decrease to 82% recovery

of the correct tree.

Even under the most favorable conditions, minimum evolution is performing

significantly worse than weighted parsimony (which succeeded in 88% of the

replicates), but it did surpass unweighted parsimony.  The improvement seems to be

due to decreased variance (as opposed to an increase in the size of parameter space in

which minimum evolution performs well).  This conclusion is based on the fact that

improvement seems to come in regions in which distance was already doing well.  In

fact, performance in the Felsenstein zone is hurt by using only the JC correction (as

shown in Figure 7.1).  The results actually present an interesting problem for a

researcher:  overall the distance methods are working much better with simple

distance corrections on these trees, but there is actually no region in which distance

methods are outperforming weighted parsimony (see Figure 7.2).  This is in contrast

to the case of minimum evolution employing the GTR correction with rate

heterogeneity.  Under that model, parsimony dramatically outperformed minimum

evolution over much of the parameter space but did worse in the cases of long-branch

attraction (see Figure 3.24).  If one is relying on distance methods as the sole basis of
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phylogenetic reconstruction, the four-taxon simulations indicate that simpler models

are better.  On the other hand if distance methods are being used along with

parsimony (as a contrasting method to detect long branch problems that might be

misleading parsimony), the simpler models of sequence evolution may lead minimum

evolution to fail in the same ways that parsimony does.

P-distances on the sixteen-taxon tree

Use of the most simple distance estimate, the observed percentage of sites

which differ between two sequences, dramatically improved the performance of

neighbor joining on the sixteen-taxon tree.  In fact neighbor joining using simple p

distances performed better than either parsimony or maximum likelihood (based on

the total number of branches missed).  With the simple distance correction, neighbor

joining outperformed all of the other methods for all of the branches on the tree

except the recognition of the older four taxa groups and the deepest split in the tree

(maximum likelihood still performed best for these branches).  Steele and Hendy

(2000) have shown that, on ultrametric trees, there are good theoretical reasons to

expect that p-distances are preferable to complex distance corrections.  Such strong

analytical reassurances are lacking when ultrametricity cannot be assumed.  It should

also be noted that the performance of maximum likelihood would almost certainly

have dramatically improved had the assumption of a molecular clock been enforced

during the inference of these simulated data sets.

Simple Distance Corrections on the Long Angiosperm Tree

The effect of using less complex models was not examined on the short

version of the 228-taxon tree because neighbor joining was already doing quite well

on this tree.  On the long tree neighbor joining with GTR+Γ+I corrected distances

was only achieving 70% accuracy even with 16 simulated data sets concatenated end

to end.  On this tree I tried 16 other types of distance corrections including JC and

K2P (with no rate heterogeneity, just invariant sites, just gamma rate heterogeneity

and both types of rate heterogeneity), HKY (without rate heterogeneity, with
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invariant sites only and with both gamma rates and invariant sites), p-distances, and

LogDet (without rate heterogeneity and with invariant sites).  No distance corrections

did as well as the original GTR+Γ+I model for any sequence lengths above 1128

bases.  For the shortest simulated sequences there were slight improvements.  JC with

both types of rate heterogeneity recovered 62% of the tree, and JC with just gamma

rates recovered 61% of the tree.  These were the only two methods to do better than

the original the GTR+Γ+I model (which recovered 60% of the tree).  All other

corrections performed worse.  Neighbor joining using p-distances was a strikingly

poor estimator of phylogeny; on average, the use of p-distances would have resulted

in the loss of between 15 and 30 branches compared to reconstructions based on

distance analyses using the more complex model of evolution.

Conclusions on the Use Simple Distance Corrections

The wide range of effects of using simple distance corrections these three

simulations studies underscores the need for clear criteria for determining what model

to use.  This study offers another example for which simple corrections perform well

on ultrametric trees.  When a molecular clock cannot be assumed, the situation is less

clear.  The general conclusions about distance methods in relation to other

phylogenetic approaches are not an artifact of the GTR+Γ+I corrections employed

being inappropriate.  The general guidelines provided by Nei and Kumar (2000) do

seem to capture many of the important factors that affect the performance of the

distance corrections, but they are too vague to serve as a final answer to the problem.

Implications for Model Improvement from the HB Simulation

In addition to giving information about the overall performance of methods,

the HB simulations have allowed me to examine the deficiencies of current models.

A benefit of the likelihood approach is that new models can be proposed and then

objectively evaluated.  Below I will discuss two simple modifications to the GTR

model, that were inspired by examining why maximum likelihood failed to

reconstruct the extreme Felsenstein zone trees.
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Deficiencies of GTR model

The GTR model with rate heterogeneity, probably the most widely used

model for maximum likelihood inference, was inconsistent with respect to the tree

topology estimation under some conditions.  When two non-sister terminal branches

had a length of 1.0 and the other three branches had a length of 0.05, the “long-branch

attraction tree” was inferred.  The branch lengths of the true tree, when estimated

from infinite data by the GTR+Γ+I model were quite different from the true branches.

The long terminal branches are inferred to have a length of 0.51 instead of 1.0, the

shorter terminal branches are overestimated (length 0.063 instead of 0.05), and the

internal branch is estimated to be 0.011 (as opposed to 0.05).  This tree is a fair

approximation of the distance between the short branch taxa (pairwise divergence of

0.137 instead of 0.15), but all of the divergences involving the taxa at the end of long

branches are dramatically underestimated.  The result of this is the expected

frequency of homoplasy uniting the long branch taxa is underestimated.

Properties of the frequency of data patterns, also known as the spectrum, have

been explored by Hendy and Penny(1993) and others.  For example the Hadamard

conjugation uses the observed data to produce a corrected spectrum which takes

multiple hits into account. By examining the spectrum of the GTR+Γ+I model when

it is attempting to explain data generated under the HB model one can determine what

tree and parameter values would be inferred by the GTR+Γ+I model.   I have

compared the spectra produced by the HB and the GTR+Γ+I models in a heuristic

context, as a tool in model development.  Figures 7.1, 7.2 and 7.3 show the technique

that I have used to visualize the model spectra.

When trying to match data generated by the HB model on the Felsenstein

zone tree described above, GTR produces a spectrum with an excess of sites in which

all four taxa have A and sites in which all taxa are C, but an insufficient number of

constant sites with G or T.  Taken alone this would imply that the frequency of G and

T in the GTR model should be increased and the frequencies of C and A should be
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lowered.   Clearly the frequencies of other patterns would also be affected by this

change of parameters. In particular decreasing the frequency of C in the model would

not only decrease the frequency of constant sites with C, it would also decrease the

number of patterns in which three taxa have C and the other  taxon has a different

base.  The spectra reveal that while GTR is producing too many sites in which all

bases have C, it is not predicting enough sites in which three taxa have a C and the

other one has a T or G.  The maximum likelihood estimate of the base frequency is a

compromise between opposing data partitions (some of which “want” a higher

frequency of C and others which would “prefer” a lower value for the frequency of

C).

The frequencies of the constant patterns are the largest deviations between the

spectra of the two models.  This reflects the fact that there are different base

frequencies for variable bases compared to constant bases in the HB model.  The

mutational forces in the HB model fit to cytochrome b produce extremely skewed

base frequencies (53.7% A, 26.4% C, and 3.9% G).  These forces dominate the third

base positions where selection is weakest (in fact codon selection is ignored in the

model, so selection is often absent in the third base positions).  This means that there

is a large group of variable sites with base frequencies determined entirely by the

mutational forces.  At first and second base positions, however, any base can be

preserved through the action of selection.  This results in a large number of constant

sites with base frequencies unrelated to the frequencies in the quickly evolving sites.

This phenomenom is not simply an artifact of the HB model.  In the real cytochrome

b sequences, the average of the empirical base frequencies of first and second base

postitions are 24.4% A, 25.1% C, 17.7% G, and 32.9%T; at the third base position the

frequencies are radically different (40.4% A, 34.9% C, 3.2% G and 21.4% T).

A Fast Heterogeneous Model of Sequence Evolution

A modification to the GTR model might allow it to effectively address this

complication of sequence evolution – simply add a set of base frequencies for the
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constant sites which are independent of the frequencies at the variable sites.  This

simple alteration to GTR+I might effectively deal with an aspect of sequence

evolution that is probably common in regions where there is heterogeneity in the

force of selection.  Such a model (GTR+I+IF, for Invariant Frequencies) would only

require three additional independent parameters.  Furthermore, the model would not

be much slower to implement than currently applied models.  The inference of three

new parameter (which might strongly interact with the branch length and rate

heterogeneity parameters), would slow down maximization of the likelihood, but the

calculation of the likelihood for a given set of parameter values would take no longer

than current models.  The GTR+I model is nested within a GTR+I IF model, so

model selection could be done with either the likelihood-ratio test statistic (which

requires nesting of models), or the Akaike Information Criterion (which does not).

Distance-based methods currently allow the user to remove a proportion of

invariant sites based on either the empirical frequencies of the bases or the

frequencies of the bases in constant sites only.  For the HB simulations, removing

constant sites based on their frequency in constant sites produced significantly better

trees.  This implies that a generalization of the model to likelihood methods might

result in an appreciable difference in performance.  It may seem paradoxical that

adding parameters that only affect the expectation of the number of constants sites of

each base could have a profound effect on phylogenetic inference.  After all, these

sites do not contain signal supporting one phylogeny over the other.  Nevertheless,

correctly estimating the number of sites which are invariant during evolution, can

have profound effects on estimates of branch lengths, and therefore the total amount

of homoplasy.

An Approximation of Heterogeneous Selection Pressures

Comparison of the spectra of the GTR+Γ+I model to that HB model reveals

other conflicts in the expectated frequency of data patterns.  These conflicts might not
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be adequately addressed by allowing different base frequencies for a class of

Invariant sties versus the class of sites which are free to evolve.

When summing the frequencies of all patterns in which the two taxa with

short branches differ from each other, there is very little discrepancy between the

frequency predicted by the HB model and the frequency predicted by the GTR model.

However, the GTR model underestimates the frequency of patterns in which a taxon

with a short branch has a base which differs from that found in one of the taxa with a

long branch.  This would imply that the long branches leading to the divergent taxa

are not long enough (which is true).  The reason the maximum likelihood estimates of

the branch lengths are not longer in the GTR model is revealed when one considers

patterns in which the two long branch taxa differ from each other.  The frequency of

this type of data is much lower in the HB model spectrum than is expected by the

GTR model.  This is not due to constant sites (the total frequency of constant sites is

approximately correct).  Particularly striking are the frequencies of the twelve data

patterns which are parsimony informative characters supporting the long-branch

attraction topology.  The expected frequency of all of the characters is dramatically

underestimated by the GTR model.

A plausible explanation for the huge excess of misleading homoplasy is the

fact that many nucleotide sites are effectively two or three state characters in the HB

model.  For example, although over the entire data set the frequency of A is high,

there are some variable sites which never mutate to A.  In one codon almost all taxa

code for asparagine (AAY), with a minority having aspartate (GAY); the third base

position has a parsimony length of 199 steps on the tree used from inference but no

taxon has an A or G at this position.  This character would be inferred to have a high

rate of evolution by a GTR model, but the amount of convergence would be

dramatically understimated.  Examination of the spectra indicates that these types of

data patterns account for a great deal of the failure of the GTR model to match the
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data generated by the HB model, so ways to incorporate these patterns should be a

high priority.

Halpern and Bruno’s approach to this problem was the drastically

heterogeneous model implemented in this dissertation, but for the purposes of

phylogenetic inference simpler models which only approximate the effects of

heterogeneity may be more feasible.  An intriguing possibility is to build a family of

matrices which are only slightly more parameter rich than the GTR models but which

recognize that the “favored” base can vary from site to site.  Using the Halpern and

Bruno approach, selection can be separated from mutation so that GTR mutational

rate parameters form one part of the model.  As opposed to inferring a site specific

residue frequency (as in the HB model), three parameters describe the degree of

selective preference throughout the sequences.  The parameters reflect how skewed

the base preferences are at each site.  They try to capture whether selection usually

favors one dominant base and three rare bases or a more even distribution of base

frequencies.

There are 24 possible rank orders for the frequency of the bases at a site

because any of the four bases can be the most common, any of the remaining three

can be the second most common, and either of the other bases can be the third most

common base.  Given values for the mutational rate parameters and the equilibrium

frequency of the dominant base, the equilibrium frequency of the second most

common base, and the equilibrium frequency of the third most common base, 24

models can be generated which encompass all possible rank orderings.

The order of base preferences for each site in the sequence is not known a

priori, so it is unclear which of the 24 models should be applied to a given site.  There

are several ways to address this problem.  One approach would be to choose

whichever of the 24 models results in the highest likelihood for a given site.  This

effectively treats the model choice as another parameter to be estimated.  Such a tact

would generate many fewer parameters than the HB model, but it would still be very
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parameter rich and therefore slow and prone to overfitting the data.  A second method

would take the likelihood of any site to be the mean likelihood of that site based on

each of the models.  This is similar to how the likelihood is calculated when gamma-

distributed rate heterogeneity is approximated using discrete categories, however the

approach is much more justifiable for rate heterogeneity because the discrete

categories are created by approximating a distribution whose shape is determined by

an inferred parameter.  The rate categories are created so that a site has an equal a

priori probability of belonging to any of the categories.  In the case of the rank

preferences model, there is little reason to believe that the 24 model categories will be

found in equal proportions.  The most powerful way to address the problem may be to

estimate the proportion of sites in each of the 24 categories and then calculate the

likelihood of each site as the weighted mean over all categories.   This would require

23 additional parameters to be estimated.  All of the approaches would be at least 24

times slower than a GTR likelihood calculation.

It is hard to imagine a model similar to this rank preferences model

performing well on data sets with few taxa.  The only way robust estimates of the

preferences of different sites for different bases can be assessed is if there is enough

data to distinguish between similarity of sequences at a site due to phylogenetic

inertia and similarity due to selective constraint.  Nevertheless, such models may

become powerful tools for deeper level phylogeneties of genes which are well

sampled.  As the sixteen-taxon simulations presented earlier suggest, old branches in

the tree may require methods that do a good job of accounting for long branches.

Several obvious modifications of the approach described above might be useful.  The

distinction between the third most frequent base and the fourth might be unimportant;

setting these two frequencies equal to each other leads to a family of 12 models with

only two parameters controlling the frequencies of the two most common bases.  It is

conceivable that in many sites two bases are almost equally common and the other

two considerably rarer so that only two preference classes need to be created (leading
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to six models).  Perhaps most important would be the creation of one additional

category that is free of selective constraint, to account for the potentially large group

of sites that reflect the forces of mutation only.

It is possible that neither the rank preferences model nor the invariant

frequency model suggested here will prove helpful on real sequences.  However,

based on the data patterns which the GTR model is failing to explain, both models

seem to be worth pursuing.

A Final Result Relevant to Model Building for Phylogenetic Inference

Molecular systematics is experiencing a burst of new model development.  In

particular there is a trend toward parameter rich models that try to specifically address

a widening range of forces of molecular evolution.  One of the exciting aspects of the

Halpern Bruno model is its distinction between mutation and fixation, opening up the

possibility of building more explicit population genetics assumptions into the models

of sequence evolution.  This could make tree inference more robust or powerful

(although neither of those outcomes is guaranteed by the adoption of more complex

models) and will almost certainly make molecular phylogenetics much more relevant

to the fields of molecular evolution and population genetics.  Models such as the GTR

model with gamma-distributed rate heterogeneity fundamentally treat the different

aspects of molecular evolution as nuisance parameters.  For example rate

heterogeneity can interfere with robust phylogenetic estimates.  The application of

gamma distribution to modelling this process was an enormous advance in

systematics, but the use of a gamma distribution is not interesting to an evolutionary

biologist studying the reasons for rate variation in sequences.  It is difficult to

incorporate biological knowledge into such a non-mechanistic model of evolution or

get useful biological information out of the results.  As the models used by

phylogeneticists become more mechanistic, there is an increased interest in the values

of parameters (as opposed to a sole focus on the inferred topology).
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It is relatively easy to add a term to a model which is designed to estimate the

effects of some force of molecular evolution.  Unfortunately, if the overall model is a

gross oversimplification of the real process of evolution (as phylogenetic models

generally are), there is the potential that each of the terms in the model reflects a

complex mix of forces that create the observed sequence patterns.  A simulation

based on the HB model provides an interesting cautionary example of how seemingly

unrelated parameters in models of evolution can interact and lead to spurious

conclusions.

In their review of amino acid and codon models, Yang et al. (1998) note that

on a data set of 20 mammalian mitochondrial genome sequences, the REV model fits

the data significantly better than the REV0 model.  Both models are very general

models of amino acid evolution.  The difference between the two is that the REVO

model disallows changes between amino acids whose codons are not one mutational

step away from each other.  Yang et al. state that the comparison of the two models

“constitutes a test of the hypothesis that amino acid (codon) substitutions proceed in a

stepwise manner, with each step involving a change at only one codon position.”

Their rejection of REV0 is intriguing because it indicates an important role for an

unusual type of non-independence of the nucleotide substitutions.  They do note that

“possible factors [leading to interdependence of substitutions] are mutations affecting

more than one nucleotide site, compensatory nucleotide substitutions, and selective

pressures at the DNA level.”  This hypothesis test, while not the focuse of their paper,

is a good example of a new application of phylogenetic models with surprising

implications for how gene sequences evolve.

While the REV and REV0 models are quite general, they do assume that

molecular evolution is homogenous across the sequence.  The most obvious type of

signal that would cause an analysis to reject REV0 in favor REV are the presence of

sites in which some species have an amino acid two mutational steps away from the

amino acid found in other species and no taxon with any of the intermediate amino
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acids is observed (despite the fact that, at other sites in the molecule, the intermediate

amino acids interchanges with each of the other two amino acids).  While mutations

affecting multiple sites would be one way to explain this pattern, another explanation

is that, at some sites in a protein, amino acids that are not mutationally adjacent are

preferred, but, when an intermediate amino acid is found, the protein does not

function well.  This type of pattern can be produced by the HB model.

To test if the heterogeneous amino acid preferences of the HB model are

strong enough to result in REV0 being rejected, I simulated data using the HB model

onto the tree used by Yang et al.  To mimic the amount of data they used, I simulated

multiple copies of the cytochrome b gene.  Despite the fact that amino acid evolution

occurs in a stepwise fashion in the version of the HB model that I simulated under (no

multiple mutations or other unusual nucleotide-level non-independence is modelled),

REV0 was rejected in favor of REV on the simulated data set.  It is possible that

multiple mutations or a similar form of non-independence is responsible for the

rejection of REV0 in Yang et al.’s study, but it is interesting that a seemingly very

different phenomenon (heterogeneous selection pressures across sites) can be

mistaken for evolution not proceeding in a stepwise manner.  The example

underscores the need for caution when using very simple models to infer the

evolutionary processes responsible for the patterns that we see in sequences.
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Branch Best Method(s) Second Group Third Group Worst

Young Clades
MP (100%)
ML (100%)
NJ (100%)
ME (98%)

Young 1-2 MP (98%) ML (85%) NJ (59%) ME (48%)
Young 1-2-3 MP (91%) ML (62%) NJ (57%) ME (49%)
Old Clades ML (84%) MP (74%) NJ (65%)

ME (64%)
Old 1-2 MP (99%)

ML (98%)
NJ (87%) ME (83%)

Old 1-2-3 ML (90%)
MP (87%)

NJ (66%) ME (61%)

Deep (Felsenstein) ML (51%) MP (38%) NJ (34%)
ME (32%)

Deep (Farris) ML (46%) MP (42%) NJ (32%)
ME (32%)

Table 4.1
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Figure 1.1

A contour plot of the likelihood surface showing the interaction of the estimate of the

proportion of Invariant sites (pinvar) and the shape parameter (α) of the gamma

distribution of rates across variable sites.  The maximum likelihood estimate of the

parameters marked by a dot at a pinvar=0.4 and α=1.15.  The contour line

encompasses all values that would not be rejected using a likelihood-ratio test when

compared to the maximum likelihood value.  If either  pinvar or the α is fixed, the

other parameter has only moderately sized confidence intervals.  Because of their

strong interaction, if neither is known a wide range of values (0.06<pinvar<0.475 and

0.45 < α <3.4) are plausible.     
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Figure 2.4

A plot of the Ln Likelihood of the HB model fit to the cytochrome b sequences in

blue and the change in the parameters in red both as a function of the round of

parameter optimizaton for all 38 rounds of optimization.  The change in parameters

was quantified as the Euclidean distance in parameter space moved in the course of a

round.  Triangles indicate rounds in which model parameters were changed.  The

circles indicate rounds of branch length optimization.
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Figure 2.5

A plot of the Ln Likelihood of the HB model fit to the cytochrome b sequences in

blue and the change in the parameters in red both as a function of the round of

parameter optimizaton for the last 28 rounds of optimization.  The change in

parameters was quantified as the Euclidean distance in parameter space moved in the

course of a round.  Triangles indicate rounds in which model parameters were

changed.  The circles indicate rounds of branch length optimization.
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      A             B

Figure 3.1

Tree A is the Felsenstein zone tree for which many  methods are inconsistent.

The long branches cause two non sister terminals to be inferred as each

other’s closest relative.  Tree B is the Farris zone tree, which is correctly

inferred by parsimony with very little data, but requires more characters to be

inferred correctly by distance or likelihood approaches.
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Figure 3.2

The paramter space of the four taxon simulations.  The vertical axis is the two-branch

length.  The horizontal branch is the three-branch length.  Approximate tree shapes

for each of the corners are shown.  Branch lengths between 0.05 and 1.0 expected

changes per site were considered.
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Figure 3.3

A bar graph of the number of times the true tree was recovered by each of the

methods over the whole four taxon parameter space.  The total number of replicates

was 40,000.  Distance methods are shown in red, DNA parsimony methods in  blue,

DNA-based likelihood methods in black, Amino acid parsimony methods in yellow,

and amino acid likelihood methods in green.

Methods Ranked by Number of Correct Replicates

0

5000

10000

15000

20000

25000

30000

35000

40000

D
N

A
 P

ar
s 

U
no

rd

D
N

A
 P

ar
s 

T
iT

v 
W

ei
gh

ts

M
E

 G
am

m
a

A
A

 P
ar

s 
U

no
rd

M
E

 C
on

st
an

t

D
N

A
 P

ar
s 

G
T

R
 W

ei
gh

ts

FM
 G

am
m

a

A
A

 P
ar

s 
PA

M
25

0

A
A

 P
ar

s 
W

ei
gh

te
d

M
E

 A
ll

A
A

 P
ar

s 
PA

M
1

A
A

 M
L

 P
ro

po
rt

io
na

l 

G
T

R
 M

L
 S

ite
 S

pe
c.

 R
at

es

A
A

 M
L

 E
m

pi
ri

ca
l 

G
T

R
 M

L
 P

re
f M

od
el

G
T

R
 In

va
ri

ab
le

 S
ite

s

# 
o

f 
T

im
es

 t
h

e 
T

ru
e 

T
re

e 
w

as
 R

ec
o

ve
re

d



97

Figure 3.4
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Figure 3.5
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Figure 3.20
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Figure 3.21
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Figure 3.22

A contrast of DNA-based weighted parsimony and maximum likelihood using GTR

with preferred rate heterogeneity made by subtracting the number of successes by one

method from the number of successes by the other method across the paremeter space

shown in Figure 3.2.  The maximum value is 100 (shown in deep blue), the minimum

value is –100 shown as deep red.  White indicates equivalent performance.
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Figure 3.23

A contrast of DNA minimum evolution and maximum likelihood (both using the

GTR model with preferred rate heterogeneity) made by subtracting the number of

successes by one method from the number of successes by the other method across

the paremeter space shown in Figure 3.2.  The maximum value is 100 (shown in deep

blue), the minimum value is –100 shown as deep red.  White indicates equivalent

performance.
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Figure 3.24

A contrast of DNA minimum evolution (using the GTR model with preferred rate

heterogeneity) and DNA-based weighted parsimony made by subtracting the number

of successes by one method from the number of successes by the other method across

the paremeter space shown in Figure 3.2.  The maximum value is 100 (shown in deep

blue), the minimum value is –100 shown as deep red.  White indicates equivalent

performance.
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Figure 3.25

A contrast of amino acid parsimony (PAM1 matrix) and amino acid likelihood (using

the mtMammREV model) made by subtracting the number of successes by one

method from the number of successes by the other method across the paremeter space

shown in Figure 3.2.  The maximum value is 100 (shown in deep blue), the minimum

value is –100 shown as deep red.  White indicates equivalent performance.
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Figure 3.26

A contrast of amino acid weighted parsimony (PAM1 matrix) and DNA weighted

parsimony made by subtracting the number of successes by one method from the

number of successes by the other method across the paremeter space shown in Figure

3.2.  The maximum value is 100 (shown in deep blue), the minimum value is –100

shown as deep red.  White indicates equivalent performance.
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Figure 3.27

A contrast of amino acid likelihood (mtMammREV model) and DNA-based

maximum likelihood (GTR model with preferred rate heterogeneity) made by

subtracting the number of successes by one method from the number of successes by

the other method across the paremeter space shown in Figure 3.2.  The maximum

value is 100 (shown in deep blue), the minimum value is –100 shown as deep red.

White indicates equivalent performance.
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Figure 4.2
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Figure 4.3
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Figure 5.1

Performance of unordered-parsimony stepwise-addition on the short and long

versions of the 228 taxon tree shown in red and blue respectively as a function of

simulated sequence length (number of genes simulated).  95% confidence limits are

shown as a dashed line.  Performance is measured as the percentage of thetrue tree’s

internal branches present in the inferred tree.
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Figure 5.2

Performance of unordered-parsimony SPR-searches from a stepwise-addition tree on

the short and long versions of the 228 taxon tree shown in red and blue respectively

as a function of simulated sequence length (number of genes simulated).  95%

confidence limits are shown as a dashed line.  Performance is measured as the

percentage of thetrue tree’s internal branches present in the inferred tree.
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Figure 5.3

Performance of unordered-parsimony SPR-searches from the true tree on the short

and long versions of the 228 taxon tree shown in red and blue respectively as a

function of simulated sequence length (number of genes simulated).  95% confidence

limits are shown as a dashed line.  Performance is measured as the percentage of

thetrue tree’s internal branches present in the inferred tree.
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Figure 5.4

Performance of neighbor joining on the short and long versions of the 228 taxon tree

shown in red and blue respectively as a function of simulated sequence length

(number of genes simulated).  95% confidence limits are shown as a dashed line.

Performance is measured as the percentage of thetrue tree’s internal branches present

in the inferred tree.

Neighbor Joining

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

0 2 4 6 8 1 0 1 2 1 4 1 6

Number of Genes Simulated

%
 

o
f 

T
ru

e
 

T
re

e
 

R
e

c
o

v
e

re
d



139

Figure 5.5

Performance of minimum evolution SPR-searches from a neighbor joining tree on the

short and long versions of the 228 taxon tree shown in red and blue respectively as a

function of simulated sequence length (number of genes simulated).  95% confidence

limits are shown as a dashed line.  Performance is measured as the percentage of

thetrue tree’s internal branches present in the inferred tree.
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Figure 5.6

Performance of minimum evolution SPR-searches from the true tree on the short and

long versions of the 228 taxon tree shown in red and blue respectively as a function of

simulated sequence length (number of genes simulated).  95% confidence limits are

shown as a dashed line.
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Figure 6.1

Twelve examples of 50 taxon tree shapes (scale is not constant) generated by the

modified Yule process using scaling parameters = 0.5 and rho=0.1.
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Figure 6.2

Twelve examples of 50 taxon tree shapes (scale is not constant) generated by the

modified Yule process using scaling parameters = 0.5 and rho=1.0.
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Figure 6.3

Twelve examples of 50 taxon tree shapes (scale is not constant) generated by the

modified Yule process using scaling parameters = 0.5 and rho=10.0.



144

t0

t47

t6

t42

t39

t2

t15

t3

t36

t48

t24

t32

t49

t22

t9

t19

t25

t34

t21

t13

t7

t16

t33

t14

t27

t17

t5

t26

t44

t28

t10

t29

t12

t37

t43

t41

t38

t20

t35

t45

t46

t18

t1

t31

t11

t40

t30

t23

t8

t4

t0

t10

t36

t27

t42

t49

t33

t41

t38

t17

t45

t25

t30

t9

t28

t48

t3

t32

t31

t16

t29

t20

t4

t22

t47

t6

t24

t43

t19

t2

t12

t13

t23

t26

t8

t46

t21

t1

t35

t5

t14

t34

t39

t37

t44

t11

t18

t7

t40

t15

t0

t35

t32

t25

t24

t3

t11

t22

t7

t39

t19

t41

t43

t38

t12

t13

t31

t17

t6

t30

t45

t5

t26

t34

t28

t42

t36

t29

t18

t1

t47

t14

t23

t40

t20

t4

t33

t9

t16

t2

t15

t49

t21

t48

t44

t37

t10

t27

t46

t8

t0

t45

t11

t42

t22

t30

t8

t35

t49

t26

t4

t47

t37

t31

t41

t3

t43

t13

t36

t14

t2

t32

t40

t23

t24

t39

t16

t18

t38

t5

t27

t19

t6

t28

t12

t17

t15

t7

t25

t48

t46

t29

t33

t10

t34

t1

t44

t21

t9

t20

t0

t22

t40

t44

t37

t30

t36

t19

t14

t34

t26

t7

t35

t41

t12

t4

t33

t10

t31

t9

t42

t5

t18

t47

t11

t8

t16

t46

t13

t39

t3

t27

t49

t21

t48

t20

t38

t24

t28

t45

t15

t6

t2

t23

t25

t17

t29

t43

t32

t1

t0

t33

t25

t48

t3

t39

t21

t11

t2

t41

t34

t1

t42

t9

t24

t12

t13

t20

t45

t23

t4

t43

t7

t27

t32

t36

t30

t28

t40

t29

t8

t38

t17

t44

t5

t35

t37

t22

t10

t31

t47

t16

t18

t15

t6

t46

t49

t19

t14

t26

t0

t3

t45

t33

t37

t42

t29

t44

t6

t9

t22

t2

t38

t32

t1

t8

t21

t40

t30

t36

t15

t31

t20

t18

t49

t48

t25

t11

t26

t4

t13

t12

t16

t19

t7

t43

t41

t5

t17

t23

t28

t35

t27

t10

t47

t46

t14

t39

t34

t24

t0

t34

t25

t5

t26

t38

t21

t32

t16

t6

t33

t45

t46

t10

t4

t23

t29

t14

t2

t36

t41

t22

t49

t1

t42

t39

t3

t15

t31

t35

t12

t11

t43

t19

t13

t24

t8

t9

t37

t20

t17

t47

t27

t28

t30

t18

t40

t48

t44

t7

t0

t48

t10

t43

t7

t9

t21

t13

t16

t45

t5

t29

t1

t15

t32

t33

t31

t42

t26

t30

t47

t25

t8

t37

t19

t12

t49

t20

t4

t46

t6

t24

t11

t39

t18

t36

t22

t35

t2

t23

t28

t44

t17

t41

t3

t34

t27

t40

t14

t38

t0

t12

t7

t47

t13

t39

t44

t19

t41

t32

t20

t11

t34

t35

t45

t30

t18

t29

t15

t2

t21

t10

t36

t48

t46

t42

t16

t3

t1

t14

t37

t27

t25

t9

t8

t23

t49

t6

t5

t22

t28

t40

t24

t4

t17

t33

t31

t43

t38

t26

t0

t2

t45

t19

t36

t8

t47

t11

t27

t42

t3

t35

t43

t22

t4

t26

t25

t24

t12

t40

t7

t38

t28

t5

t1

t33

t46

t10

t31

t21

t6

t13

t29

t44

t30

t41

t37

t20

t15

t49

t23

t16

t14

t48

t34

t9

t39

t17

t18

t32

t0

t27

t34

t26

t8

t20

t21

t40

t12

t41

t10

t15

t29

t18

t22

t9

t24

t38

t39

t45

t43

t37

t47

t23

t11

t5

t42

t48

t13

t28

t35

t49

t16

t44

t2

t3

t14

t7

t25

t30

t4

t36

t6

t1

t31

t33

t19

t17

t32

t46

Figure 6.4

Twelve examples of 50 taxon tree shapes (scale is not constant) generated by the

modified Yule process using scaling parameters = 1.0 and rho=0.1.
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Figure 6.5

Twelve examples of 50 taxon tree shapes (scale is not constant) generated by the

modified Yule process using scaling parameters = 1.0 and rho=1.0.
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Figure 6.6

Twelve examples of 50 taxon tree shapes (scale is not constant) generated by the

modified Yule process using scaling parameters = 1.0 and rho=10.0
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Figure 6.7

Performance of parsimony searches (solid blue), parsimony stepwise addition (dashed

blue), neighbor joining (dashed red) and minimum evolution (solid red) on 50-taxon

trees generated under with rho=0.1 and plotted over all 6 scaling parameter settings.

Performance is measured as the percentage of thetrue tree’s internal branches present

in the inferred tree.  The black line indicates the best possible performance.
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Figure 6.8

Performance of parsimony searches (solid blue), parsimony stepwise addition (dashed

blue), neighbor joining (dashed red) and minimum evolution (solid red) on 50-taxon

trees generated under with rho=1 and plotted over all 6 scaling parameter settings.

Performance is measured as the percentage of thetrue tree’s internal branches present

in the inferred tree.  The black line indicates the best possible performance.
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Figure 6.9

Performance of parsimony searches (solid blue), parsimony stepwise addition (dashed

blue), neighbor joining (dashed red) and minimum evolution (solid red) on 50-taxon

trees generated under with rho=10 and plotted over all 6 scaling parameter settings.

Performance is measured as the percentage of thetrue tree’s internal branches present

in the inferred tree.  The black line indicates the best possible performance.
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Figure 6.10

Performance of parsimony searches (solid blue), parsimony stepwise addition (dashed

blue), neighbor joining (dashed red) and minimum evolution (solid red) on 100-taxon

trees generated under with rho=0.1 and plotted over all 6 scaling parameter settings.

Performance is measured as the percentage of thetrue tree’s internal branches present

in the inferred tree.  The black line indicates the best possible performance.
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Figure 6.11

Performance of parsimony searches (solid blue), parsimony stepwise addition (dashed

blue), neighbor joining (dashed red) and minimum evolution (solid red) on 100-taxon

trees generated under with rho=1 and plotted over all 6 scaling parameter settings.

Performance is measured as the percentage of thetrue tree’s internal branches present

in the inferred tree.  The black line indicates the best possible performance.
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Figure 6.12

Performance of parsimony searches (solid blue), parsimony stepwise addition (dashed

blue), neighbor joining (dashed red) and minimum evolution (solid red) on 100-taxon

trees generated under with rho=0.1 and plotted over all 6 scaling parameter settings.

Performance is measured as the percentage of thetrue tree’s internal branches present

in the inferred tree.  The black line indicates the best possible performance.
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Figure 7.1

Figure 7.1 Performance of minimum evolution with a JC model correction of

distances over the parameter space shown in Figure 3.2.
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Figure 7.2

Contrast of minimum evolution with just a JC model correction to weighted

parsimony made by subtracting the number of successes by minimum evolution from

the number of successes by parsimony over the parameter space shown in Figure 3.2.

Blue areas represent conditions in which parsimony is doing better than minimum

evolution.
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Figure 7.3

The spectrum of the HB model from the four taxa trees described in the text.  The size

of the circle is proportional the frequency of a particular data pattern. The true tree is

( ( 1 , 2) , (3 , 4) ), where 1 and 4 are the taxa on the ends of long branches.  In the

figure there are 16 columns and sixteen rows.  The DNA bases are coded as A=0,

C=1, G=2, and T=3.  To determine the bases for a particular circle in the graphs count

the columns starting with the left most column as zero until you reach the column

with the desired circle in it.  The column number modulo 4 (the remainder when you

divide the column number by 4) codes for the base of taxon 2.  The column number

divided by 4 and rounded down codes for the base of taxon 3.  Similarly the states of

taxon 1 and 4 are determined by the row number (the top row is 0). The row modulo

4 is the state for taxon 1, and the row number divided by 4 and rounded down is the

code for the state of taxon 4.
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Figure 7.4

The spectrum of the GTR + G+ I model fit to an infinite sample of the spectrum

shown in Figure 7.3.  The size of the circle is proportional the frequency of a

particular data pattern. The true tree is ( ( 1 , 2) , (3 , 4) ), where 1 and 4 are the taxa

on the ends of long branches.  In the figure there are 16 columns and sixteen rows.

The DNA bases are coded as A=0, C=1, G=2, and T=3.  To determine the bases for a

particular circle in the graphs count the columns starting with the left most column as

zero until you reach the column with the desired circle in it.  The column number

modulo 4 (the remainder when you divide the column number by 4) codes for the

base of taxon 2.  The column number divided by 4 and rounded down codes for the

base of taxon 3.  Similarly the states of taxon 1 and 4 are determined by the row

number (the top row is 0). The row modulo 4 is the state for taxon 1, and the row

number divided by 4 and rounded down is the code for the state of taxon 4.
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Figure 7.5

The difference between the two spectra shown in Figure 7.3 and 7.4  White circles

indicate that GTR +G+I predicts too few of the pattern, Grey circles indicate the

pattern is too common in the GTR+G+I spectrum.
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