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During speciation, populations become spatially separated from each other by 

biotic or abiotic factors, and this leads to genetic divergence and reproductive isolation. 

Here, I study the process of speciation and the patterns resulting from this process in the 

chorus frogs (Pseudacris). I first lay the foundation for this work by constructing 

phylogenies based on molecular data. I then address broad-scale questions regarding the 

abiotic factors thought to drive speciation. I examine evolution of reproductive signals 

within a phylogenetic context, and finally, I address fine-scale questions regarding the 

completion of reproductive isolation in contact zones between recently-evolved species. 

 In chapter 1, I estimate the phylogenetic relationships across the genus Pseudacris. 

I find that several species of unclear status (regilla, cadaverina, crucifer, ocularis) belong 

to this genus, and that P. ocularis is the sister species of P. crucifer. In chapter 2, I 



 xi 

examine the phylogeography of a clade within Pseudacris, the trilling chorus frogs. I find 

support for at least nine species and delineate their geographic distributions. In chapter 3, 

I test geological and climatic hypotheses proposed to drive speciation in North American 

flora and fauna. By estimating divergence times in the trilling chorus frogs and 

correlating these divergences with timing of geologic events, I find that marine 

inundation of the Mississippi Embayment may have caused speciation in this group. 

Additionally, I find that climatic events led to reduced genetic variation rather than 

divergence within species. In chapter 4, I study the evolution of acoustic signals of all 

species of Pseudacris. Using a comparative method approach, I find that physiology-

based call variables are more evolutionarily labile than morphology-based call variables. 

In addition, I find that sympatric signals are more different than allopatric signals, 

suggesting that these frogs have partitioned the acoustic niche. In chapter 5, I examine 

evolution of reproductive isolation between two chorus frog species in sympatry. I find 

that male signals show a repeated pattern of divergence in sympatry, and that different 

axes of the signal diverge in different populations, suggesting that heterospecific overlap 

may lead to reproductive isolation among conspecific populations. I also find that female 

preferences have evolved in sympatry, suggesting that divergence in the contact zone is 

due to reinforcement. 
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Introduction 

 

Chorus frogs (genus Pseudacris) are a clade of winter-breeding hylid treefrogs 

that are widely distributed across North America. This group was the subject of 

pioneering research on speciation, particularly during the mid-1900’s. A large proportion 

of this work was done by students and collaborators in the laboratory of W. Frank Blair, 

at the University of Texas, Austin. Here, I continue this tradition with new research on 

chorus frogs. To introduce Pseudacris as a model system for studying speciation, I first 

briefly review some highlights of previous research.  

In one of the first applications of the oscillograph to frog calls, Thompson and 

Martof (1957) demonstrated that several chorus frog species differ from each other with 

respect to one or more call variables, suggesting that frog species, in general, have unique 

calls. Through laboratory observation of chorus frog reproductive behaviors, Martof and 

Thompson (1958) tested the function of the male call. They found that gravid females not 

only respond to male calls when they sexually receptive, but that they can locate the male 

based on acoustic cues alone. Littlejohn and Michaud (1959) demonstrated the 

importance of acoustic signals in premating isolation between chorus frog species. In one 

of the first female discrimination experiments, they showed that females distinguish 

between conspecific and heterospecific signals and strongly prefer conspecific calls.  
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Crenshaw and Blair (1959) provided evidence that multiple reproductive isolating 

mechanisms prevent hybridization between species. They found that in chorus frogs, 

acoustic signals are critical, but spatial separation (by habitat and calling site) is also 

important. In a further investigation of isolating mechanisms, Blair and Littlejohn (1960) 

found that male signals and female preferences for these signals prevent hybridization. 

They suggested that call divergence between species is a byproduct of ecological 

selection on body size. 

Work by Littlejohn (1960) demonstrated that frogs distinguish between 

conspecific calls and those of a non-sister species, but not between conspecific calls and 

those of the sister species. Martof (1961) showed experimental evidence that acoustic 

signals prevent hybridization. Through a series of female preference tests, he found that 

species differ in their ability to identify conspecific signals when paired with different 

heterospecific stimuli: some taxa totally ignore signals of other species while others 

confuse signals and potentially hybridize. Michaud (1962) found that hybrids can have 

intermediate calls between the parental species and females cannot distinguish the hybrid 

from the parental call in choice tests. To identify the characteristics of the signal that are 

salient to females, Martof and Thompson (1964) dissected the male call and performed a 

series of female preference tests, varying one character at a time. Their study suggests 

that frequency, duration, intensity of the call as well as call rate are important to females. 

To understand the genetic mechanisms that prevent fusion of species when 

hybridization occurs, Mecham (1965) created 13 hybrid crosses of Pseudacris species 
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and estimated hybrid viability. He found that postzygotic isolation is low for most hybrid 

combinations, at least through early larval development. He was unable, however, to 

study hybrid fitness later in the life cycle. 

After the idea of reinforcement was introduced by Dobzhansky (1940) and 

popularized by Blair (1955, 1958), researchers looked for this phenomenon in Pseudacris 

by testing for reproductive character displacement, a pattern that sometimes results from 

reinforcement (Lemmon et al. 2004). Michaud (1964) found no evidence for character 

displacement in acoustic signals of two Texas species. Working on a different species 

pair, however, Fouquette (1975) found strong evidence for acoustic character 

displacement (and no hybridization) in a contact zone through the Florida panhandle. 

Interestingly, in a contact zone further west (Louisiana and Mississippi), a genetic study 

by Gartside (1980) demonstrated a high frequency of hybridization and low call 

differentiation between the same two species. Gartside (1980) suggested that a possible 

reason for this geographic disparity is that ecological conditions are more favorable to 

hybrids in the western zone compared to the eastern zone. No further work was done at 

this contact zone. 

Despite the fascinating early work on chorus frogs, for some mysterious reason, 

speciation research on this system basically ceased after 1980, though behavioral research 

continued on the spring peeper (Pseudacris crucifer; e.g., Wilczynski et al. 1984; 

Schwartz 1987; Schwartz and Gerhardt 1998) and pacific chorus frog (P. regilla; e.g., 

Brenowitz and Rose 1994; Alder and Rose 1998; Rose and Brenowitz 2002) and some 
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ecological research continued (e.g., Caldwell 1987; Hensley 1993; Smith and Van 

Buskirk 1995; Wente and Phillips 2003). One possible explanation for this may be that 

taxonomic work stalled before this date, due to the difficulties of delineating species 

based on morphology alone. As molecular techniques were developed, genetic work by 

Hedges (1986) and a combined genetic/morphology study by Cocroft (1994) helped to 

clarify some of the coarse-scale phylogenetic problems (e.g., by placing “Hyla crucifer” 

into Pseudacris) but left extensive ambiguity with respect to the morphologically-similar 

“Pseudacris nigrita group”, which includes most species that were the subject of these 

early speciation studies. Of course, without clear understanding of phylogenetic 

relationships, it is not possible to determine whether the organism under study is a single 

species or multiple species. This is a major obstacle for speciation researchers, who may 

have chosen other systems to avoid the taxonomic mess.   

With the hope of again generating excitement for evolutionary research on 

Pseudacris, below I present coarse-scale phylogenetic relationships among chorus frogs 

(Chapter 1) and detailed phylogeographic data concerning positions of contact zones 

among taxa (Chapters 2 and 3). I then build on this phylogenetic foundation through 

speciation studies of broad-scale patterns of acoustic signal evolution across the genus 

(Chapter 4) and fine-scale investigation of the evolution of premating isolation in a 

specific contact zone (Chapter 5). This work answers some long-standing questions, but 

raises far more new ones, thus opening the doors to a whole new generation of 

evolutionary research on chorus frogs.  
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Chapter 1 

Phylogenetic Relationships of the North American Chorus Frogs 

(Pseudacris: Hylidae)* 

 

 

Abstract: We examined phylogenetic relationships of the North American chorus frogs 

(Pseudacris: Hylidae) from 38 populations using 2.4kb of 12S and 16S mtDNA to 

elucidate species relationships and examine congruence of previous phylogenetic 

hypotheses.  Parsimony, maximum likelihood, and Bayesian phylogenies are consistent 

and reveal four strongly supported clades within Pseudacris: 1) A West Coast Clade 

containing regilla and cadaverina, 2) a Fat Frog Clade including ornata, streckeri, and 

illinoensis, 3) a Crucifer Clade consisting of crucifer and ocularis, and 4) a Trilling Frog 

Clade containing all other Pseudacris.  Explicit hypothesis testing using parametric 

bootstrapping indicates that previous phylogenetic hypotheses are rejected by our 

sequence dataset.  Within the Trilling Frog Clade, brimleyi and brachyphona form the 

sister group to the Nigrita Clade: nigrita, feriarum, triseriata, kalmi, clarkii, and 

maculata.  The Nigrita Clade shows geographic division into three clades: 1) populations 

of maculata and triseriata west of the Mississippi River and Canadian populations, 2) 

southeastern U.S. populations of feriarum and nigrita, and 3) northeastern U.S. 

populations of feriarum, kalmi, and triseriata.  We find that subspecific epithets for 

crucifer (crucifer and bartramiana) and nigrita (nigrita and verrucosa) are uninformative, 
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therefore we discourage recognition of these subspecies.  Pseudacris regilla, cadaverina, 

ocularis, and crucifer are maintained in Pseudacris. 

 

*Significant portions of this chapter have been previously published as Moriarty and 

Cannatella, 2004. Molecular Phylogenetics and Evolution 30: 409–420. 

 

1.1 INTRODUCTION 

A substantial component of our knowledge of animal behavior, ecology, and 

evolution is derived from studies of North American treefrogs (family Hylidae) (e. g., 

Andersson, 1994; Ryan, 2001; Gerhardt and Huber, 2002).  Insight into the origin of 

behaviors and evolution of traits requires a phylogenetic framework.  However, our 

understanding of the relationships among North American hylid frogs remains ambiguous 

despite the availability of some morphological, molecular, and behavioral data for 

phylogeny estimation (Hedges, 1986; Cocroft, 1994; Da Silva, 1997).   

Although most hylids are tropical, there is a significant Holarctic radiation (the 

extra-tropical North American and Eurasian regions).  The Nearctic (extra-tropical North 

American) component of this radiation includes Hyla (tree frogs; 10 species), and two 

endemic genera Acris (cricket frogs; 2 species) and Pseudacris (chorus frogs; 15 species).  

Prior to 1975, overall similarity of morphology or advertisement calls was used to justify 

taxonomic groupings of Pseudacris and other Holarctic hylids.  Maxson and Wilson 
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(1975) first incorporated a phylogenetic perspective into Holarctic hylid systematics in 

their use of microcomplement fixation data from albumins.  Hedges (1986) transferred 

Hyla crucifer, H. cadaverina, H. regilla, and Limnaeodus ocularis to Pseudacris, based 

primarily on an allozyme phylogeny.  Later, Cocroft (1994) combined Hedges (1986) 

allozyme data with a suite of morphological characters in a total evidence analysis of 

Pseudacris.  He concluded that the transferral of crucifer, cadaverina, and regilla to 

Pseudacris was unnecessary, and returned these species to Hyla.  Most recently, after 

including two additional morphological characters to the Cocroft (1994) dataset, Da Silva 

(1997) returned these species to Pseudacris, noting that their phylogenetic position was 

consistent with placement in either genus.   

As defined in the 1960–70s, chorus frogs (Pseudacris sensu stricto) are broadly 

distributed from the southern tip of Florida to northern Canada and from the east to west 

coasts of North America (Conant and Collins, 1998).  Pseudacris occur in a variety of 

habitats from hardwood forests, to plains, to mountainous regions.  These frogs 

congregate to breed in late winter and early spring, primarily in temporary bodies of 

water and disperse to woodlands and prairies for the remainder of the year (Kramer, 

1973; Kramer, 1974; Stebbins, 1985; Conant and Collins, 1998).  One characteristic of 

chorus frogs is their preference for cold weather breeding.  Choruses may form shortly 

after the ice thaws from breeding pools (Whitaker, 1971).  The mating season tapers off 

as nighttime temperatures rise and the breeding of other hylids commences (Conant and 

Collins, 1998).   
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Because chorus frogs are morphologically conservative, taxonomic confusion at 

the subspecific level has been common (Neill, 1949; Mittleman and List, 1953; Schwartz, 

1957; Chantell, 1968a; Platz and Forester, 1988; Platz, 1989).  Until recently the 

subspecies of triseriata (t. feriarum, t. kalmi, t. maculata, and t. triseriata; fide Schwartz, 

1957) were treated as part of a wide-ranging polytypic species.  Platz and Forester (1988) 

and Platz (1989) elevated the four subspecies to specific level based on differences in 

advertisement calls.  These taxonomic changes have been controversial, in part because it 

is unclear whether call variation is clinal or differences in calls are used as prezygotic 

isolating mechanisms for species recognition. 

Presently, Pseudacris includes 15 species: brachyphona, brimleyi, cadaverina, 

clarkii, crucifer (two subspecies, c. crucifer and c. bartramiana), feriarum, illinoensis, 

kalmi, maculata, nigrita (two subspecies, n. nigrita and n. verrucosa), ocularis, ornata, 

regilla (seven subspecies, r. cascadae, r. curta, r. hypochondriaca, r. pacifica, r. palouse, 

r. regilla, r. sierra), streckeri, and triseriata (Harper, 1939a; Smith, 1951; Schwartz, 

1957; Jameson et al., 1966; Platz and Forester, 1988; Platz, 1989; Da Silva, 1997; Collins 

and Taggart, 2002; Conant and Collins, 1998; Duellman, 2001).  Pseudacris illinoensis 

was recognized as a full species by Collins and Taggart (2002) without discussion, and 

kalmi is recognized by some workers as a subspecies of feriarum (Crother, 2001).  

Although we arbitrarily treat these units as species, our use of this taxonomy should not 

be taken as agreement with this action (see Discussion). 
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The goals of this study are multifold.  1) We resolve persistent ambiguities in 

Pseudacris phylogenetic relationships using 2.4 kb of mitochondrial DNA sequence data.  

We utilize rapidly evolving mitochondrial genes because these markers have been shown 

to facilitate resolution of phylogenetic relationships among closely related taxa (Shaffer 

and McKnight, 1996; Burbrink et al., 2000; Burbrink, 2002).  2) We reanalyze the 

Hedges (1986) allozyme dataset using allele frequency information and test the 

congruence of this and several other previous phylogenetic hypotheses with our sequence 

data.  3) We incorporate multiple exemplars of species spanning broad geographic areas 

and include all currently recognized or disputed species of Pseudacris (sensu lato).  

Inclusion of multiple populations of Pseudacris species is extremely important because 

the monophyly of many currently recognized taxa in this genus has not been established.  

Our study represents the first to include multiple populations of Pseudacris species in a 

genus-level phylogenetic analysis.  Our results provide a phylogenetic context for 

ongoing studies of signal evolution and speciation in these frogs.   

 

1.2 MATERIALS AND METHODS 

Taxa. We sampled 38 populations of Pseudacris in the United States and Canada 

(Supplemental Data 1.1), which encompassed all 23 species and subspecies of Pseudacris 

(except 5 of the P. regilla subspecies sensu Jameson et al., 1966).  Widespread taxa were 

sampled from multiple populations; collection permits were obtained from all relevant 

states.  Tissue samples were frozen in liquid nitrogen or immersed in tissue buffer, then 
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stored at –80
o
 C.  Based on information from previous phylogenetic analyses (Hedges, 

1986; Cocroft, 1994), Hyla chrysoscelis, H. andersoni, and H. eximia were chosen as 

outgroups.  Most specimens are deposited in the Museum of Natural History, University 

of Kansas and the Texas Memorial Museum, University of Texas, Austin (Supplemental 

Data 1.1). 

DNA amplification and sequencing. DNA was extracted from liver and muscle tissue 

using the Qiagen DNeasy! kit.  Eight primers were used to amplify a 2.4kb region 

spanning the 12S, tRNAval, and 16S rRNA mitochondrial genes via polymerase chain 

reaction: 5’ to 3’ 12Sm GGCAAGTCGTAACATGGTAAG (designed in our lab) and 

16Sa ATGTTTTTGGTAAACAGGCG (modified from #87 in Goebel et al., 1999); 16Sc 

GTRGGCCTAAAAGCAGCCAC (designed in our lab) and 16Sd 

CTCCGGTCTGAACTCAGATCACGTAG (modified from #95); 16Sh 

GCTAGACCATKATGCAAAAGGTA (#76) and 12L1 

AAAAAGCTTCAAACTGGGATTAGATACCCCACTAT (#46); tRNAphe-L 

GCRCTGAARATGCTGAGATGARCCC (#30) and tRNAval-H 

GGTGTAAGCGARAGGCTTTKGTTAAG (#73).  Samples were purified under the 

QIAquick Gel Extraction protocol.  Sequencing reactions were done with the same 

primers listed above, using the ABI Big Dye terminator ready-mix.  Sequencing was 

performed on an ABI 3100 PRISM™ sequencer (Applied Biosystems Inc.).   

Sequence Alignment and Phylogenetic Analyses. Contiguous sequences from eight 

overlapping fragments were constructed in Sequencher 4.1 (GeneCodes Corp.).  All 
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regions were sequenced in both directions with three exceptions: 1) a 300 bp region 

between the 16Sc and 16Sh primers (16 samples), 2) a 100-250 bp region between 

tRNAval and 12Sm primers (4 samples), 3) a 100 bp region on the 3’ side of 16Sa primer 

(2 samples). Except for P. clarkii and P. brimleyi, at least one sample for each species 

had complete double-stranded sequence.  DNA sequences were aligned using Clustal X 

1.8 (Thompson et al., 1997).  Alignments were manually adjusted to minimize 

informative sites and ambiguously aligned regions were defined as character sets for 

possible exclusion using MacClade 4.0 (Maddison and Maddison, 2000).   

Phylogenetic analyses were performed using PAUP* 4.0b8 (Swofford, 2000) 

unless otherwise noted.  Heuristic searches were executed under maximum parsimony 

(MP; Camin and Sokal, 1965) with TBR branch swapping, random addition sequence of 

taxa, and 100 replicates per search.  Characters were unordered and equally weighted for 

parsimony analyses.  Clade support was evaluated using nonparametric bootstrapping 

(Felsenstein, 1985) with heuristic searches of 1,000 replicates, and by decay indices 

(Bremer support; Bremer, 1994) using PAUP* 4.0b8.  Exclusion of all ambiguously 

aligned regions yielded no difference in tree topology and minimal change in bootstrap 

values for parsimony searches.  Thus, these regions were excluded from all further 

analyses.  Sequences are deposited with Genbank accession numbers AY291076–

AY291116. 

For maximum likelihood (ML; Felsenstein, 1981) analyses, we employed 

successive likelihood ratio tests of six nested models to determine an appropriate model 
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of evolution (Huelsenbeck and Crandall, 1997).  The likelihood ratio test indicated that 

GTR+"+I (general time reversible model with gamma distributed substitution rates and 

invariable sites; Lanave et al., 1984; Hasegawa et al., 1985; Rodriguez et al., 1990; Yang, 

1993) is the best-fitting model for these data.  For the ML analysis, we used only 36 of 

the 41 sequences used in the MP analysis above (we excluded TNHC62210, 

TNHC62216, KU290341, MVZ11452, and TNHC62208) to reduce computation time 

because these sequences were nearly identical to other sequences included in the analysis.  

Intra-clade genetic distances were calculated using a GTR+"+I correction implemented 

in PAUP* 4.0b8 (Swofford, 2000).  

Two identical Bayesian analyses were conducted using MrBayes 3.0b4  

(Huelsenbeck and Ronquist, 2001) assuming the GTR+"+I model.  The four Markov 

chains employed were sampled every 100 generations.  Analyses were run for two 

million generations and the first 1000 sampled trees (100000 generations) were discarded 

as the burn-in.  Bipartition posterior probabilities (bpp) were estimated using a consensus 

of 19000 sampled trees.  We compared these posterior probabilities from the two 

analyses using a correlation analysis to assure that the estimates were reliable.  

The allozyme dataset of Hedges (1986) was re-coded using frequency information 

to calculate Manhattan distances between taxa.  Each locus (a character) was assigned a 

user-defined step matrix in PAUP*, and each taxon was assigned a unique state for this 

character.  The cost of change from one state to another was set equal to the Manhattan 
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distance between the species (Berlocher and Swofford, 1997).  This dataset was analyzed 

under parsimony as described above. 

Our comparison of the morphological datasets of Cocroft (1994) and Da Silva 

(1997) with skeletal material indicated discrepancies, and thus we are hesitant to use 

these data without comprehensive verification of character states.  The integration of 

morphological data is relegated to a future project.   

 Hypothesis Testing. In order to test alternative hypotheses against our ML topology, we 

performed parametric bootstrap tests.  We chose to employ parametric bootstrapping 

instead of nonparametric tests, such as the Shimodaira-Hasegawa (SH) test (Shimodaira 

and Hasegawa, 1999; Goldman et al., 2000), because of the increased power compared to 

nonparametric methods (Huelsenbeck and Hillis, 1996; but see Buckley, 2002).  We 

tested four a priori (=null) hypotheses against our phylogeny: Hypothesis A: Hedges’ 

(1986) UPGMA Cavalli-Sforza tree (Fig. 1.1A), Hypothesis B: Hedges’ (1986) distance 

Wagner topology (Fig. 1.1B), Hypothesis C: the parsimony topology from our re-analysis 

of the Hedges dataset (Fig. 1.1C), and Hypothesis D: Cocroft’s (1994) parsimony 

topology (Fig. 1.1D).  We constrained the complete topology of Hypotheses A and B for 

the tests.  For Hypotheses C and D, however, the points of conflict with our MP tree were 

narrowed to two (C) and three (D) nodes with >50% bootstrap support.  Only these nodes 

were constrained for estimation of the best tree under the null hypothesis.  By minimizing 

the number of constrained nodes, rejection of the null hypothesis was made more 

difficult. 
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The parametric bootstrap generates a null distribution against which one can test a 

statistic of interest.  The test is performed as follows: 1) simulate N datasets under the 

null hypothesis using ML parameter estimates derived from observed sequence data; 2) 

for each simulated dataset, find the shortest tree under the null hypothesis and the overall 

shortest tree; 3) calculate the differences in tree lengths of the topologies in 2); 4) 

calculate the test statistic from the difference in tree length under the null hypothesis and 

overall shortest tree for the observed dataset; 5) if the test statistic falls outside the 95% 

limits of the distribution of tree length differences, the null hypothesis is rejected 

(Goldman et al., 2000).  Our methods followed those described for the parametric 

bootstrap (SOWH-test) in Goldman et al. (2000), except that we analyzed the datasets 

under parsimony rather than likelihood as implemented by Hillis et al. (1996) and 

Sullivan et al. (2000).  We used the program MacSimum written by Mark Holder to 

simulate sequence data.  

 

1.3 RESULTS 

Phylogenetic Relationships. After exclusion of ambiguous nucleotide regions, 2333 

characters were included in the phylogenetic analyses; 625 of these sites were variable 

and 519 were parsimony informative.  Parsimony analysis resulted in 504 equally 

parsimonious trees of length 1407 (CI=0.55, excluding uninformative characters and 

RI=0.83).  The large number of trees is due to very short branch lengths of P. nigrita, 

feriarum, kalmi, and clarkii, maculata, and triseriata. Four major clades of Pseudacris 
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are identified: 1) the West Coast Clade, regilla and cadaverina; 2) the Fat Frog Clade, 

ornata, streckeri, and illinoensis; 3) the Crucifer Clade, ocularis and crucifer; and 4) all 

other Pseudacris (Fig. 1.2).  Species in the last group produce trilled calls only and thus 

will be referred to as the Trilling Frog Clade. 

Maximum likelihood analysis under the GTR+"+I model resulted in a topology 

with lnL = -10264.31767 ("-shape parameter with four discrete rate categories = 

0.672558; proportion of invariable sites = 0.505709; nucleotide frequencies:  A = 

0.352462, C = 0.214354, G = 0.179525, and T = 0.253660).  The ML topology, which is 

consistent with the parsimony tree, offers better resolution.  The Crucifer Clade is sister 

to the Trilling Frogs.  The Fat Frogs form the sister group of the Crucifer + Trilling Frog 

Clades.  The West Coast Clade is the sister-group to remaining ingroup species (Fig. 1.2).  

A majority-rule consensus of 19,000 trees from the Bayesian analysis revealed the same 

topology as the maximum likelihood search.  Bipartition posterior probability values 

(bpp) are shown on the likelihood tree in Fig. 1.2.  Comparison of these values from the 

parallel Bayesian runs using a correlation analysis indicated that these estimates of 

branch support were reliable (r
2
=0.99).  

Within the Trilling Frogs, the clade of brimleyi + brachyphona is the sister group 

to a clade containing clarkii, nigrita, triseriata, maculata, feriarum, and kalmi.  We refer 

to the latter group as the Nigrita Clade (Wright and Wright, 1949; Smith and Smith, 

1952).  The wide-ranging Nigrita Clade shows geographic division into two lineages 

divided by the Mississippi River.  The eastern Nigrita Clade includes nigrita nested 
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within populations of feriarum, kalmi, and triseriata (as their distributions are currently 

delineated), such that feriarum is paraphyletic with respect to nigrita (Fig. 1.2)  The intra-

clade genetic distance for the eastern Nigrita Clade is 0.09–4.00%.  In the western 

Nigrita Clade, clarkii is nested within populations of triseriata and maculata.  The intra-

clade genetic distance for the western Nigrita Clade is 0.04–0.54%.  This western clade 

includes U.S. populations and Canadian populations both east and northwest of the Great 

Lakes (Fig. 1.3). 

 Re-analysis of Allozyme Data. Our re-analysis of the Hedges (1986) allozyme dataset 

resulted in >50% bootstrap support for 2 of the 4 basal clade relationships for Pseudacris 

described above (the Fat Frog and Trilling Frog Clades; Fig. 1.1C).  Although this 

analysis places ocularis and crucifer as sister taxa, the bootstrap proportion for this clade 

is only 19.  In addition, ocularis and crucifer fall within the Trilling Frog Clade.  The Fat 

Frog group forms the sister to all other Pseudacris, though this relationship is poorly 

supported.  This topology does not show brimleyi and brachyphona as sister taxa. 

 Comparisons to Alternative Hypotheses. All four null hypotheses outlined in Fig. 1.1 

were rejected.  The two topologies of Hedges (1986, Fig. 1.1A and 1.1B) and the 

topology of Cocroft (1994, Fig. 1.1D) are rejected at p<0.002.  The tree from the 

Manhattan distance analysis of the Hedges (1986, Fig. 1.1C) dataset is rejected at 

p<0.014 (Fig. 1.4).  Overall, the reexamined phylogenetic hypotheses based on 

allozymes, or allozymes combined with morphological and behavioral data, are largely 

incongruent with the mtDNA dataset. 
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1.4 DISCUSSION 

Species Relationships. The sister–group relationship of P. crucifer and ocularis is a 

novel finding.  Because of certain advertisement call and morphological features, the 

relationship of these species to other hylid frogs has long been debated, even at the 

generic level (Harper, 1939b; Mittleman and List, 1953; Delahoussaye, 1966; Chantell, 

1968a; Gaudin, 1974; Hardy and Borroughs, 1986; Hedges, 1986; Anderson, 1991; 

Cocroft, 1994; Da Silva, 1997).  Although the two species have differentiated with 

respect to morphology (ocularis has undergone miniaturization relative to other 

Pseudacris) and advertisement calls (crucifer produces a frequency sweep whereas 

ocularis produces a complex call consisting of a sweep followed by a trill), this study 

strongly supports (bootstrap value 93%, bpp 100) the inclusion of both taxa in Pseudacris 

sensu stricto (Fig. 1.2).  The existence of the other three major clades (the Fat Frogs, the 

West Coast Clade, and the Trilling Frogs) was suggested by earlier workers (Cocroft, 

1994; Da Silva, 1997; Fig. 1.1D). 

Within the Trilling Frogs, the sister-group relationship of P. brimleyi and 

brachyphona is rather unexpected given that the two are morphologically dissimilar.  The 

eastern coastal plain species brimleyi phenotypically resembles the narrowly sympatric 

feriarum more than it does the Appalachian brachyphona.  However, advertisement calls 

of brimleyi and brachyphona are very similar; both have very rapid trills compared to 

other members of the Trilling Frog group (Brandt and Walker, 1933; Brandt, 1936; 

Hoffman, 1983; Highton and Hedges, 1995; E. Moriarty unpubl. data).  Based on Hedges 
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(1986) phylogenetic hypothesis, Highton and Hedges (1995) speculated that similarity in 

calls of the two species was due to convergence.  Thus they rejected an alternative 

hypothesis that brimleyi and brachyphona possess an ancestral call type relative to other 

members of the Trilling Frog Clade.  In our phylogeny, the basal position which brimleyi 

and brachyphona occupy with reference to other Trilling Frogs supports, rather, their 

"ancestral call type" hypothesis. 

The paraphyletic “Pseudacris triseriata species complex”, consisting of feriarum, 

triseriata, kalmi, and maculata (sensu Schwartz, 1957; Platz and Forester, 1988) ranges 

from Florida to northwestern Canada.  Members of the triseriata complex form a subset 

of the Nigrita Clade (Fig. 1.2) and have traditionally been grouped together because they 

resemble each other morphologically more than they resemble other members of the 

Nigrita Clade.  This complex exhibits morphological variation (relative tibia to body 

length ratios are large in the southeast and small in the northwest), behavioral shifts 

(jumping vs. "scooting" escape strategy in long-legged vs. short-legged frogs), and 

variation in advertisement calls across its range (Schmidt, 1938; Smith and Smith, 1952; 

Smith, 1956; Platz and Forester, 1988; Platz, 1989; Joshua Rest, unpubl. data; Moriarty 

and Berendzen, unpubl. data).  Historically, taxa in the triseriata complex have been 

distinguished mainly by tibia/body length ratios (Smith and Smith, 1952; Smith, 1956), 

but also by several other morphological and advertisement call characters (Harper, 1955; 

Chantell, 1968b; Platz and Forester, 1988; Platz, 1989).  Geographic boundaries between 

species are poorly defined due to the apparent broad sympatry and lack of clearly 

diagnostic characters (Smith and Smith, 1952; Smith 1956; Platz and Forester, 1988; 



 

 23 

Platz, 1989).  Although there is substantial genetic, behavioral, and morphological 

variation across the range of the triseriata complex, three things are unclear: 1) How 

many lineages the complex contains, 2) how extensive reproductive isolation among 

lineages is, and 3) where the boundaries of these lineages lie.   

Previous phylogenetic studies of Pseudacris did not sample western populations 

of the triseriata complex (Hedges, 1986; Cocroft, 1994; Da Silva, 1997).  Our broader 

population sampling allowed us to detect at least two major lineages within the complex, 

which are apparently separated by the Mississippi River.  The exception is the P. 

feriarum population from the west side of the river in Jonesboro, Arkansas (Craighead 

Co.), which is part of the eastern lineage.  Prior to the Wisconsin stage of the Pleistocene, 

the Mississippi flowed west of Crowley’s Ridge, upon which this population is situated.  

During the early Wisconsin the channel shifted to its current position on the eastern side 

of the ridge (Blum et al., 2000).  Although the Jonesboro population was recently 

separated from eastern Pseudacris, it retains affinities with the eastern lineage.  This 

pattern is also found in rat snakes (Elaphe obsoleta group) from Craighead Co, Arkansas.  

Although this population is situated on the west side of the Mississippi River, it is a 

member of the eastern clade (Burbrink, 2000).  More extensive sampling in the region is 

needed to assess the effect of this alluvial system on the phylogeography of other 

vertebrates. 

Pseudacris nigrita and clarkii are nested within the eastern and western triseriata 

complex lineages, respectively. These members of the Nigrita Clade border the 
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geographic range of the triseriata complex. P. nigrita lies to the south and clarkii to the 

west (Conant and Collins, 1998). The presence of these species in the Nigrita Clade 

makes the triseriata complex paraphyletic. 

With regard to interactions among eastern Nigrita Clade members, Fouquette 

(1975) found evidence for character displacement in advertisement calls between P. 

nigrita and feriarum populations in a zone of sympatry (Alabama, Florida, and Georgia).  

Therefore gene flow between species may be restricted due to evolution of premating 

isolating mechanisms.  However, at the far western extent of the sympatric zone between 

nigrita and feriarum (Louisiana and Mississippi), Gartside and Dessauer (1980) 

examined allozyme allele frequencies and discovered substantial hybridization between 

species.  These studies suggest that Pseudacris species may develop disparate 

reproductive interactions at different areas of contact.   

The western lineage of the Nigrita Clade contains all populations of P. maculata, 

clarkii, and most populations of triseriata.  The position of the clarkii sequence 

(bootstrap value 100%) may be explained by either incomplete lineage sorting or by gene 

introgression via hybridization.  Pseudacris clarkii and feriarum have been reported to 

call syntopically in breeding pools (Texas), and although hybrids have been produced in 

the laboratory, they are found very rarely in nature (Lord and Davis, 1956; Lindsay, 

1958; Michaud, 1962; Michaud, 1964).  Some evidence from female preference studies 

indicates that female clarkii and feriarum prefer conspecific male calls when presented 

with a choice between clarkii and feriarum, suggesting that advertisement calls have 
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diverged sufficiently to create a premating isolating mechanism between species 

(Michaud, 1962; Michaud, 1964; feriarum discussed as nigrita).  Thus, although 

extensive hybridization between clarkii and feriarum seems improbable, broader 

population and gene sampling will be necessary to discriminate between this and the 

hypothesis of incomplete lineage sorting following divergence of these species.   

Our results do not concur with the range limits of several Nigrita Clade members 

(triseriata complex: feriarum, kalmi, maculata, and triseriata) as currently delineated 

(Smith and Smith, 1952; Smith, 1956; Platz and Forester, 1988; Platz, 1989; Conant and 

Collins, 1998).  There do appear to be several mitochondrial lineages within the 

contiguous distributions of these taxa, specifically, a northeastern group (Maryland, 

Michigan, and Kentucky), a southeastern group (Louisiana, Arkansas), and a western 

U.S./Canadian group (Colorado, Kansas, New Mexico, and Ontario, Canada).  At this 

time our geographic sampling is not broad enough to delimit the borders of these 

lineages. Therefore, taxonomic recommendations resulting from a finer-scale 

phylogeographic analysis of the Trilling Frog Clade will be discussed elsewhere. 

Phylogeographic Considerations. The Mississippi River has contributed to genetic 

divergence in many vertebrate groups (Burbrink et al. 2000; Austin et al. 2002; Burbrink, 

2002; Leache and Reeder, 2002).  Geographic division observed within the Nigrita Clade 

is consistent with these studies.  Burbrink (2000) found that morphological variation in 

color pattern was not useful for distinguishing mitochondrial lineages of rat snakes 

(Elaphe obsoleta group).  Rather, these characters may have evolved multiple times 
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within the clade during adaptation to local ecological conditions on both sides of the 

Mississippi River.  Similarly, morphological variation (particularly of tibia/body length 

ratios) within chorus frogs from the southeastern to the northwestern part of their range 

may be the product of local selective pressures.  Thus, previous attempts to delineate 

ranges of species or subspecies of the Nigrita Clade may have been confounded rather 

than helped by use of these characters.  Molecular evidence suggests instead that major 

breaks among chorus frog lineages occur along river drainages and other geographic 

barriers. 

A surprisingly low amount of genetic variation is found in western Nigrita Clade 

populations (0.04–0.54%) relative to eastern populations (0.09–4.00%; Fig. 1.2, compare 

likelihood tree branch lengths).  A similar pattern has been observed for painted turtles 

(Chrysemys picta), tiger salamanders (Ambystoma tigrinum), and snapping turtles 

(Chelydra serpentina) (Shaffer and McKnight, 1996; Starkey et al., 2003; H.B. Shaffer, 

pers. comm.).  Based on a paleoclimatology model of Bartlein et al. (1998), Starkey et al. 

(2003) postulated that after recession of the most recent glaciers, a period of extreme 

aridification (approx. 14,000 years ago) in the western and north central parts of the U.S. 

may have eliminated aquatic turtle species and amphibians from these regions.  

Following the aridification event, aquatic taxa were able to recolonize these areas rapidly, 

and the low genetic variation in western and central regions reflects this recent expansion.  

Our data from the Nigrita Clade support this proposition.  However, this hypothesis must 

be tested more rigorously using a greater number of populations and individuals. 
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Austin et al. (2002) described three major mitochondrial lineages within 

Pseudacris crucifer (eastern, central, and western lineages).  Following glaciation, the 

eastern lineage (east of the Appalachian Mountains) expanded northward into Canada 

and west around the north side of the Great Lakes into SW Ontario (between Lakes 

Erie/Ontario and Lake Huron), into northwestern Ontario, and into Minnesota and 

Wisconsin.  Along the corridor of SW Ontario, the eastern crucifer lineage contacted a 

deeply diverged central crucifer lineage.  The eastern lineage also contacted a western 

crucifer lineage on the west side of Lake Michigan.  In contrast, within the Nigrita Clade, 

it appears that the western clade expanded its range northward into Canada.  Our limited 

data suggest that the western and eastern Nigrita Clades may connect through the same 

corridor as P. crucifer lineages in SW Ontario and/or E Ontario.  The contact zones of 

Nigrita Clade lineages on the south side of the Great Lakes cannot be determined from 

our data; however, we are currently conducting a broader phylogeographic study to 

identify these contacts.  

Status of Subspecies. Collins and Taggart (2002) elevated Pseudacris streckeri 

illinoensis to species status without discussion.  Populations of P. illinoensis are restricted 

to a narrow region in the sandhill prairies of northeastern Arkansas, southeastern 

Missouri and southern Illinois (Smith, 1951; Conant and Collins, 1998).  These 

populations are separated from the much broader range of P. streckeri by approximately 

150 miles.  Our trees indicate that P. streckeri is paraphyletic with respect to P. 

illinoensis.  Smith (1951) suggested  that P. illinoensis represents relict populations of the 

broader-ranging ancestor of these two taxa.  He postulated that this ancestor and other 
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prairie species once occupied a wider and more easterly range during expansion of the 

prairie peninsula approximately 4000 years ago; with the recession of the peninsula and 

growth of forests, many prairie species such as P. streckeri (now considered P. 

illinoensis) survived only in small pockets of suitable habitat (Smith, 1957).  Under this 

scenario, the position of the illinoensis sequences, nested within streckeri sequences, is 

not surprising.  Although our population samples are limited, the character evidence for 

paraphyly is strong.  At least eight synapomorphies have a CI of 1.0, and a deletion with 

a CI of 1.0, unite the sequence of streckeri from Kansas with the two sequences of 

illinoensis.   

However, a tree based on mitochondrial genes alone is not sufficient to address 

the complex issues surrounding the recognition of taxonomic species.  The question of 

whether streckeri and illinoensis have differentiated sufficiently in allopatry to merit 

status as different species deserves further study.  Female choice experiments are useful 

for addressing the question.  If female illinoensis and streckeri consistently discriminate 

calls of their own species from those of heterospecific males, this would suggest that calls 

may have diverged enough between populations to serve as premating isolating 

mechanisms between species.  This information would provide support for the action of 

Collins and Taggart (2002) in designating illinoensis and streckeri separate species.  Data 

from nuclear genes would also be desirable.  

In contrast to the illinoensis/streckeri example, the subspecies ranges of 

Pseudacris crucifer (bartramiana and crucifer) and P. nigrita (verrucosa and nigrita) are 
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contiguous (Brady and Harper, 1935; Harper, 1939a).  Recognition of the subspecies P. 

crucifer bartramiana and P. nigrita verrucosa renders the nominate subspecies of each 

species paraphyletic.  Our intraspecific samples are not extensive; however, given the 

data at hand and in agreement with Austin (2002), we do not find the maintenance of 

subspecies for P. crucifer and P. nigrita necessary or informative. 

Taxonomy. Of any single Pseudacris species, the taxonomic position of P. ocularis has 

perhaps been most puzzling to systematists (for detailed 19
th

 century taxonomic history, 

see Harper, 1939b).  The species was transferred from Pseudacris to Hyla by Harper 

(1939b) based on external morphology and behavioral characters.  Mittleman and List 

(1953) erected a new monotypic genus, Limnaeodus, for ocularis because of substantial 

osteological differences between ocularis and other hylids.  However, they maintained 

that ocularis either shares an immediate common ancestor with Pseudacris or is a direct 

offshoot of the group.  Lynch (1963), Chantell (1968a), and Gaudin (1974) found 

additional skeletal characters to support recognition of Limnaeodus.  The latter two 

studies suggested, instead, that ocularis is more closely related to Acris than Pseudacris. 

Anderson (1991) recommended placement of ocularis in Hyla based on karyological 

evidence.  This arrangement  was not well accepted. 

The sister species of ocularis, Pseudacris crucifer, has also been shuffled among 

genera.  Using evidence from a review of morphological, and molecular, and behavioral 

studies, Hardy and Borroughs (1986) named a new genus for crucifer, Parapseudacris, 

and transferred the species from Hyla.  This action was widely ignored.  Based on an 
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allozyme phylogeny, Hedges (1986) moved Hyla crucifer, H. regilla, H. cadaverina and 

Limnaoedus ocularis to Pseudacris.  He justified his action in part by pointing out that 

these species share features such as a cold-weather breeding season, a round or ovoid 

testis, and a black pigment covering on the testis.  In contrast, other hylids in North 

America are warm-weather breeders, and have a white (unpigmented) and elongate testis. 

The phylogenetic analyses of Cocroft (1994) and Da Silva (1997) are consistent 

with Hedges (1986) transferral of crucifer, regilla, cadaverina, and ocularis to a 

monophyletic Pseudacris. Our tree provides strong support for the monophyly of the 

genus including these taxa.  Given that most checklists and field guides (Stebbins, 1985, 

is an exception) follow Hedges' taxonomy, we continue it here. 

In summary, our study supports the taxonomic arrangement of Hedges (1986), in 

recognizing cadaverina, crucifer, and ocularis, and regilla as members of a monophyletic 

Pseudacris.  We find the taxonomic status of illinoensis to be ambiguous, and 

recommend further study of its relationship to streckeri.  Finally, we suggest use of 

specific names only for populations of nigrita and crucifer. 
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Supplemental Data 1.1. Specimens used in molecular analyses.  Museum collections are 

abbreviated as follows:  TNHC = Texas Natural History Collection, University of Texas, 

Austin; MVZ = Museum of Vertebrate Zoology, University of California, Berkeley; UTA 

= University of Texas, Arlington; KU = University of Kansas. The R. Highton and ECM 

tissue samples do not have voucher specimens. 
 

Species  Sample/ 

Voucher 

Number 

GenBank 

Accession 

Collection Locality 

Pseudacris triseriata KU224560 AY291090 Douglas:Kansas (NE) 

Pseudacris triseriata KU224558 AY291092 Cheyenne:Kansas (NW) 

Pseudacris triseriata KU289219 AY291091 Berrien:Michigan 

Pseudacris triseriata ECM K2 AY291088 Kingman:Kansas (S central) 

Pseudacris triseriata KU224630 AY291089 McKinley:New Mexico 

Pseudacris triseriata TNHC62324 AY291081 Frontenac, Ontario: Canada (SE) 

Pseudacris ornata KU288911 AY291104 Liberty:Florida 

Pseudacris ornata TNHC62183 AY291105 Aiken:South Carolina 

Pseudacris ornata TNHC62178 AY291106 Barbour:Alabama 

Pseudacris crucifer crucifer KU288677 AY291102 Linn:Kansas 

Pseudacris crucifer crucifer KU 290341 AY291101 Lac Seul, Ontario:Canada (NW) 

Pseudacris crucifer crucifer TNHC62210 AY291099 Barbour:Alabama 

Pseudacris crucifer crucifer TNHC62216 AY291100 Barnwell:South Carolina 

Pseudacris crucifer bartramiana TNHC62369 AY291103 Ocala:Florida 

Pseudacris streckeri KU289036 AY291107 Harper:Kansas 

Pseudacris streckeri TNHC62317 AY291108 Travis:Texas 

Pseudacris illinoensis TNHC62346 AY291110 Scott:Missouri 

Pseudacris illinoensis TNHC62351 AY291109 Clay:Arkansas 

Pseudacris clarkii KU289035 AY291093 Chautauqua:Kansas 
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Pseudacris feriarum KU289227 AY291084 Calloway:Kentucky (W) 

Pseudacris feriarum R. Highton 

71747 

AY291096 Lincoln:Kentucky (central) 

Pseudacris feriarum TNHC62265 AY291085 East Baton Rouge:Louisiana 

Pseudacris feriarum TNHC62255 AY291086 Craighead:Arkansas 

Pseudacris kalmi KU289235 AY291087 Kent:Maryland 

Pseudacris maculata KU290342 AY291082 Lac Seul, Ontario:Canada (NW) 

Pseudacris maculata KU224624 AY291080 Gunnison:Colorado (central) 

Pseudacris maculata KU224625 AY291083 Archuleta:Colorado (SW) 

Pseudacris nigrita nigrita MVZ11452 AY291077 Scotland:North Carolina 

Pseudacris nigrita nigrita TNHC62201 AY291078 Barbour:Alabama 

Pseudacris nigrita nigrita TNHC62208 AY291076 Barnwell:South Carolina 

Pseudacris nigrita verrucosa TNHC62364 AY291079 Brevard:Florida 

Pseudacris brimleyi TNHC62337 AY291094 Pitt:North Carolina 

Pseudacris brachyphona TNHC62303 AY291095 Tallapoosa:Alabama 

Pseudacris ocularis TNHC62234 AY291097 Barnwell:South Carolina 

Pseudacris ocularis TNHC62241 AY291098 Gulf:Florida 

Hyla chrysoscelis  KU289034 AY291116 Douglas:Kansas 

Hyla eximia UTA A-13225 AY291113 Morelia, Michoacán:Mexico 

Pseudacris cadaverina KU207382 AY291114 San Diego:California 

Pseudacris regilla KU207396 AY291111 San Diego:California (S) 

Pseudacris regilla TNHC62409 AY291112 Berkeley:California (S central) 

Hyla andersonii KU207335 AY291115 Burlington:New Jersey 
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Figure 1.1. Previous hypotheses of Pseudacris phylogenetic relationships tested in this 

study. A. Hedges (1986) Cavalli-Sforza distance topology (allozyme data).  B. Hedges 

(1986) distance Wagner topology (allozyme data).  C. Topology based on parsimony re-

analysis of Hedges (1986) dataset (allozyme data).  Cocroft (1994) parsimony topology 

(allozyme and morphological data). 
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Figure 1.2. Maximum parsimony tree rooted with Hyla chrysoscelis (left).  Tree shown is a strict consensus of 504 equally 

parsimonious trees (CI=0.55, RI=0.83).  Numbers above branches indicate nonparametric bootstrap values greater than 50% 

based on 1000 pseudoreplicates.  Decay indices are listed below branches.  Maximum likelihood tree under the GTR+!+I 

model rooted with Hyla chrysoscelis (right).  Bayesian bpp values are shown above each branch.  Populations of several 

species were excluded from the likelihood analysis.   
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Figure 1.3. Geographic distributions of the Nigrita Clade.  Map shows geographic division of this group into eastern and 

western clades by the Mississippi River (thick line).  The eastern clade is further subdivided into a northeastern lineage and a 

southeastern lineage.  Current taxonomy does not reflect the phylogenetic relationships among these populations.  Branch 

lengths are not proportional to distance. 
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Figure 1.4. Null distributions for the parametric bootstrap tests.  These tests examine the 

validity of previous phylogenetic hypotheses for Pseudacris.  Values of the test statistic 

that fall outside the 95% limits of the distribution are significant. 
 



 

 37 

References 

Anderson, K.A. 1991. Chromosome evolution in Holarctic Hyla treefrogs. Pp. 299–331 

in Green, D.M. and S. K. Sessions, eds. Amphibian cytogenetics and evolution, 

Academic Press, San Diego. 

Andersson, M. 1994. Sexual Selection, Princeton Univ. Press, Princeton, New Jersey. 

Austin, J. D., S. C. Lougheed, L. Neidrauer, A. A. Chek, and P. T. Boag.  2002. Cryptic 

lineages in a small frog: the post-glacial history of the spring peeper, Pseudacris crucifer 

(Anura: Hylidae). Molecular Phylogenetics and Evolution 25:316–329. 

Bartlein, P. J., K. H. Anderson, P. M. Anderson, M. E. Edwards, C. J. Mock, R. S. 

Thompson, R. S. Webb, T. Webb III, and C. Whitlock. 1998. Paleoclimate simulations 

for North America over the past 21,000 years: Features of the simulated climate and 

comparisons with paleoenvironmental data. Quaternary Science Reviews 17:549–585. 

Berlocher, S. H., and D. L. Swofford. 1997. Searching for phylogenetic trees under the 

frequency parsimony criterion: an approximation using generalized parsimony. 

Systematic Biology 46:211–215. 

Blum, M. D., M. J. Guccione, D. A. Wysocki, P. C. Robnett, E. M. Rutledge. 2000. Late 

Pleistocene evolution of the lower Mississippi River valley, southern Missouri to 

Arkansas. Geological Society of America Bulletin 112:221–235. 



 

 38 

Brady, M. K., and F. Harper. 1935. A Florida subspecies of Pseudacris nigrita (Hylidae). 

Proceedings of the Biololgical Society of Washington 48:107-110. 

Brandt, B. B. 1936. The frogs and toads of eastern North Carolina. Copeia 1936:180–207. 

Brandt, B. B., and C. F. Walker. 1933. A new species of Pseudacris from the 

southeastern United States. Occasional Papers of the Museum of Zoology, University of 

Michigan 272:1–9. 

Bremer, K. 1994. Branch support and tree stability. Cladistics 10:295–304. 

Buckley, T. R. 2002. Model misspecification and probabilistic tests of topology: evidence 

from empirical data sets. Systematic Biology 51:509–523. 

Burbrink, F. T. 2000. Mitochondrial DNA phylogeography of the polytypic North 

American rat snake (Elaphe obsoleta): a critique of the subspecies concept. Evolution 

54:2107–2118 

Burbrink, F. T. 2002. Phylogeographic analysis of the cornsnake (Elaphe guttata) 

complex as inferred from maximum likelihood and Bayesian analyses. Molecular 

Phylogenetics and Evolution 25:465–476. 

Camin, J. H., and R. R. Sokal. 1965. A method for deducing branching sequences in 

phylogeny. Evolution 19:311–326. 

Chantell, C. J. 1968a. The osteology of Acris and Limnaoedus (Amphibia:Hylidae). 

American Midland Naturalist 79:179–182. 



 

 39 

Chantell, C. J. 1968b. The osteology of Pseudacris (Amphibia:Hylidae). American 

Midland Naturalist 80:381–391. 

Cocroft, R. B. 1994. A cladistic analysis of chorus frog phylogeny (Hylidae:Pseudacris). 

Herpetologica 50:420–437. 

Collins, J. T., and Taggart, T. W. 2002. Standard common and current scientific names 

for North American amphibians, turtles, reptiles, and crocodilians, 5th Ed. Center for 

North American Herpetology. 

Conant, R. and Collins, J. T. 1998. A field guide to reptiles and amphibians of eastern 

and central North America, Houghton-Mifflin Company, Boston. 

Crother, B. 2001. Scientific and standard English names of amphibians and reptiles of 

North America north of Mexico, with comments regarding confidence in our 

understanding. Herpetological Circular No. 29, Society for the Study of Amphibians and 

Reptiles. 

Da Silva, H. R. 1997. Two character states new for hylines and the taxonomy of the 

genus Pseudacris. Journal of Herpetology 31:609–613. 

Delahoussaye, A. J. 1966. The comparative sperm morphology of the Louisiana Hylidae 

(Amphibia: Anura). Louisiana Academy of Science 29:140–152. 

Duellman, W. E. 2001. Hylid frogs of Middle America, Contributions to Herpetology, 

Volume 18, Society for the Study of Amphibians and Reptiles. 



 

 40 

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood 

approach. Journal of Molecular Evolution 17:368–376. 

Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. 

Evolution 39:783–791. 

Fouquette, M. J. 1975. Speciation in chorus frogs. I. Reproductive character displacement 

in the Pseudacris nigrita complex.  Systematic Zoology 24:16–22. 

Gartside, D. F., and H. C. Dessauer. 1980. Analysis of a hybrid zone between chorus 

frogs of the Pseudacris nigrita complex in the southern United States. Copeia 1980:56–

66. 

Gaudin, A. J. 1974. An osteological analysis of Holarctic tree frogs, family Hylidae. 

Journal of Herpetology 8:141–152. 

Gerhardt, H. C., and F. H. Huber. 2002. Acoustic Communication in Insects and Anurans, 

Univ. of Chicago Press, Chicago. 

Goebel, A.M., J. M. Donnelly, and M. E. Atz. 1999. PCR primers and amplification 

methods for 12S ribosomal DNA, the control region, cytochrome oxidase I, and 

cytochrome b in bufonids and other frogs, and an overview of PCR primers which have 

amplified DNA in amphibians successfully. Molecular Phylogenetics and Evolution 

11:163–199. 



 

 41 

Goldman, N., J. P. Anderson, and A. G. Rodrigo. 2000. Likelihood-based tests of 

topologies in phylogenetics. Systematic Biology 49:652–670. 

Hardy, J. D., and R. J. Borroughs. 1986. Systematic status of the spring peeper, Hyla 

crucifer (Amphibia: Hylidae). Bulletin of the Maryland Herpetological Society 22:68–89. 

Harper, F. 1939a. A southern subspecies of the spring peeper (Hyla crucifera). The 

Academy of Natural Science of Philadelphia Notulae Naturae 27:1–4. 

Harper, F. 1939b. Distribution, taxonomy, nomenclature, and habits of the little tree-frog 

(Hyla ocularis). American Midland Naturalist 22:134-149. 

Harper, F. 1955. A new chorus frog (Pseudacris) from the Eastern United States.  

Chicago Academy of Science Natural History Miscellaneous 150:1–6.  

Harper, F. 1955. A new chorus frog (Pseudacris) from the eastern United States. Natural 

History Miscellaneous of the Chicago Academy of Science 150:1–6. 

Hasegawa, M., H. Kishino, and T. Yano. 1985. Dating of the human-ape splitting by a 

molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22:160–174. 

Hedges, S. B., 1986. An electrophoretic analysis of holarctic hylid frog evolution. 

Systematic Zoology 35:1–21. 

Highton, R., and S. B. Hedges. 1995. Geographic protein variation in Pseudacris brimleyi 

(Anura: Hylidae): Analysis by sequential electrophoresis. Journal of Herpetology 

29:419–425. 



 

 42 

Hillis, D.M, B. K. Mable, and C. Moritz. 1996. Applications of molecular systematics: 

the state of the field and a look to the future, in: D. M. Hillis, C. Moritz, and B. K. Mable, 

eds. Molecular Systematics, 2nd edition, Sinauer Associates, Sunderland, Massachusetts, 

pp. 515–543. 

Hoffman, R. L. 1983. Pseudacris brimleyi. Catalogue of American Amphibians and 

Reptiles 311.1–311.2. 

Huelsenbeck, J. P., and D. M. Hillis. 1996. Parametric bootstrapping in molecular 

phylogenetics: applications and performance. Pp. 19–45 in J. D. Ferraris and S. R. 

Palumbi, eds. Molecular Zoology: Advances, Strategies, and Protocols, Wiley-Liss, Inc., 

New York. 

Huelsenbeck, J. P., and K. A. Crandall. 1997. Phylogeny estimation and hypothesis 

testing using maximum likelihood. Annual Review of Ecology and Systematics 28:437–

466. 

Huelsenbeck, J.P., and F. P. Ronquist. 2001. MRBAYES: Bayesian inference of 

phylogenetic trees. Bioinformatics 17:754-755. 

Jameson, D. L., J. P. Mackey, and R. C. Richmond. 1966. The systematics of the Pacific 

tree frog, Hyla regilla.  Proceedings of the California Academy of Sciences 33:551–620. 

Kramer, D. C. 1973. Movements of western chorus frogs Pseudacris triseriata triseriata 

tagged with Co6 0. Journal of Herpetology 7:231–235.  



 

 43 

Kramer, D.C. 1974. Home range of the western chorus frog Pseudacris triseriata 

triseriata. Journal of Herpetology 8:245–246. 

Lanave, C., G. Preparata, C. Saccone, and G. Serio. 1984. A new method for calculating 

evolutionary substitution rates. Journal of Molecular Evolution 20:86–93. 

Leache, A. D. and T. W. Reeder. 2002. Molecular systematics of the eastern fence lizard 

(Sceloporus undulatus): a comparison of parsimony, likelihood, and Bayesian approaches. 

Systematic Biology 51:44–68. 

Lindsay, H. L. 1958. Analysis of variation and factors affecting gene exchange in 

Pseudacris clarkii and Pseudacris nigrita in Texas. Ph.D. Dissertation. Univ. Texas, 

Austin.  

Lord, R. D. and W. B. Davis. 1956. A taxonomic study of the relationship between 

Pseudacris nigrita triseriata Wied and Pseudacris clarkii Baird. Herpetologica 12:115–

120. 

Lynch, J. D. 1963. Additional evidence for the recognition of Limnaoedus 

(Amphibia:Hylidae). Copeia 1963:566-568. 

Maddison, D. R., W. P. Maddison. 2000. MacClade 4: Analysis of phylogeny and 

character evolution. Version 4.0. Sinauer, Sunderland, Massachusetts. 

Maxson, L. R., and A. C. Wilson. 1975. Albumin evolution and organismal evolution in 

the tree frogs (Hylidae). Systematic Zoology 24:1–15. 



 

 44 

Michaud, T. C. 1962. Call discrimination by females of the chorus frogs, Pseudacris 

clarki and Pseudacris nigrita. Copeia 1962:213–215. 

Michaud, T. C. 1964. Vocal variation in two species of chorus frogs, Pseudacris nigrita 

and Pseudacris clarki, in Texas. Evolution 18:498–506. 

Mittleman, M. B. and J. C. List. 1953. The generic differentiation of the swamp treefrogs. 

Copeia 1953:80–83. 

Neill, W. T. 1949. The status of Baird’s chorus frog. Copeia 1949:227–228. 

Platz, J. E., and D. C. Forester. 1988. Geographic variation in mating call among the four 

subspecies of the chorus frog: Pseudacris triseriata (Wied). Copeia 1988:1062–1066. 

Platz, J. E., 1989. Speciation within the chorus frog Pseudacris triseriata: morphometric 

and mating call analyses of the boreal and western subspecies. Copeia 1989:704–712. 

Rodríguez, F, J. L. Oliver, A. Marín, and J. R. Medina. 1990. The general stochastic 

model of nucleotide substitution. Journal of Theoretical Biology 142:485–501. 

Ryan, M.J. 2001. Anuran Communication, Smithsonian Institution Press, Washington, 

D.C. 

Schmidt, K.P. 1938. A geographic variation gradient in frogs. Zoological Series of the 

Field Museum of Natural History 20:377–382. 



 

 45 

Schwartz, A. 1957. Chorus frogs (Pseudacris nigrita LeConte) in South Carolina. 

American Museum Novitates 1838:1–12.  

Shaffer, H. B. and M. L. McKnight. 1996. The polytypic species revisited: genetic 

differentiation and molecular phylogenetics of the tiger salamander Ambystoma tigrinum 

(Amphibia: Caudata) complex. Evolution 50:417–433. 

Shimodaira, H., and M. Hasegawa. 1999. Multiple comparisons of log-likelihoods with 

applications to phylogenetic inference. Molecular Biology and Evolution 16:1114–1116. 

Smith, P. W. 1951. A new frog and a new turtle from the western Illinois sand prairies.  

Bulletin of the Chicago Academy of Sciences 9:189–199. 

Smith, P. W., and D. M. Smith. 1952. The relationship of the chorus frogs, Pseudacris 

nigrita feriarum and Pseudacris n. triseriata. American Midland Naturalist 48:165–180. 

Smith, P. W. 1956. The status, correct name, and geographic range of the boreal chorus 

frog. Proceedings of the Biological Society of Washington 69:169–176. 

Smith, P. W. 1957. An analysis of post-Wisconsin biogeography of the Prairie Peninsula 

region based on distributional phenomena among terrestrial vertebrate populations. 

Ecology 38:205–218. 

Starkey, D. E., H. B. Shaffer, R. L. Burke, M. R. J. Forstner, J. B. Iverson, F. J. Janzen, A. 

G. J. Rhodin, and G. R. Ultsch. 2003. Molecular systematics, phylogeography, and the 



 

 46 

effects of Pleistocene glaciation in the painted turtle (Chrysemys picta) complex. 

Evolution 57:119–128. 

Stebbins, R. C. 1985. A Field Guide to Western Reptiles and Amphibians. Houghton 

Mifflin Company, Boston, Massachusetts. 

Sullivan, J., E. Arellano, and D. S. Rogers. 2000. Comparative phylogeography of 

Mesoamerican highland rodents: concerted versus independent response to past climatic 

fluctuations. American Naturalist 155:755–768. 

Swofford, D. L. 2000. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other 

Methods), Version 4.0b8, Sinauer Associates, Sunderland, Massachusetts. 

Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. 

The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment 

aided by quality analysis tools.  Nucleic Acids Research 25:4876–4882. 

Whitaker, J. O. 1971. A study of the western chorus frog, Pseudacris triseriata, in Vigo 

County, Indiana. Journal of Herpetology 5:127–150. 

Wright, A. H., and A. A. Wright. 1949. Handbook of frogs and toads of the United States 

and Canada. Comstock Publishing Company, Inc., Ithaca, New York. 

Yang, Z. 1993. Maximum likelihood estimation of phylogeny from DNA sequences 

when substitution rates differ over sites. Molecular Biology and Evolution 10:1396–1401. 



 

 47 

 

Chapter 2 

Phylogeny-based Delimitation of Species Boundaries and Contact Zones  

in the Trilling Chorus Frogs (Pseudacris)* 

 

 

 

Abstract: Although the trilling chorus frogs (subclade within Pseudacris: Hylidae) have 

been important in studies of speciation, continental patterns of genetic diversity within 

and among species have not been elucidated.  As a result, this North American clade has 

been the subject of substantial taxonomic debate. In this study, we examined the 

phylogenetic relationships among the trilling Pseudacris and tested previously 

hypothesized scenarios for speciation using 2.4 kb of mitochondrial 12S and 16S rRNA 

from 253 populations. Bayesian phylogenetic analyses, in combination with published 

morphological and behavioral data, support recognition of at least nine species, including 

an undescribed species from the south-central United States.  Evidence is presented for 

substantial geographic subdivision within P. brachyphona (northern and southern clades) 

and P. feriarum (coastal and inland clades). Discordance between morphology/behavior 

and molecular data in several individuals suggests occasional hybridization between 

sympatric species. These results require major revision of range limits for several taxa, in 

particular, P. maculata, P. triseriata, and P. feriarum. Hypothesis tests using parametric 

bootstrapping strongly reject previously proposed scenarios for speciation in the group. 
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The tests also support recognition of the geographically restricted taxon P. kalmi as a 

distinct species. Results of this study provide both a firm phylogenetic basis for future 

studies of speciation in the trilling Pseudacris and a taxonomic framework for 

conservation efforts. 

 

*Significant portions of this chapter are currently in press as Lemmon, Lemmon, Lee-

Yaw, Collins, and Cannatella 2007. Molecular Phylogenetics and Evolution. 

 

 

2.1 INTRODUCTION 

Deciphering the phylogenetic relationships among taxa and determining how the 

patterns observed relate to known historical events are important to our understanding of 

speciation. Although the biogeographic origins and higher-order relationships among 

hylid tree frogs of North America have been elucidated (Middle American Clade: Smith 

et al. 2005), additional work is required to understand evolutionary relationships within 

each of the three main North American genera (Hyla, Acris, and Pseudacris). The trilling 

chorus frogs form a clade within Pseudacris (Moriarty and Cannatella 2004). The eight 

putative species (P. brachyphona, P. brimleyi, P. clarkii, P. feriarum, P. kalmi, P. 

maculata, P. nigrita, and P. triseriata) generally have parapatric distributions across the 

continent from northern Mexico to northern Canada and from the East Coast to the Rocky 

Mountains (Conant and Collins, 1998; Moriarty and Cannatella, 2004). The taxonomic 
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status of half of these species is supported by morphological and behavioral data. The 

other four taxa (P. feriarum, P. kalmi, P. maculata, P. triseriata) were elevated from 

subspecies to species primarily on the basis of acoustic data, and there is ambiguity with 

respect to geographic boundaries based on these data (Platz, 1989; Platz and Forester, 

1988). To gain insight into the process of speciation in this group, the phylogenetic 

relationships and range boundaries of these taxa must first be resolved using genetic data. 

Although some trilling chorus-frog species are distinguishable based on color 

pattern or advertisement call structure (Brandt and Walker, 1933; Neill, 1949; Smith, 

1934; Walker, 1932), a number of putative lineages are more cryptic. Smith and Smith 

(1952) and Smith (1956) defined the distributions of several trilling Pseudacris taxa 

based on geographic patterns of tibia length to body length ratios. By plotting population 

means of ratios on a map, they identified morphometric clines, which were then used to 

define the boundaries between taxa. These authors found a general trend of relatively 

shorter leg lengths in populations from the northwestern U.S. and Canada and relatively 

longer legs in populations in the southeastern U.S. These morphological differences 

translate into behavioral differences as well: short-legged frogs tend to walk rather than 

hop (Smith and Smith, 1952). Taxonomic designations based on these morphological 

studies have been generally accepted, (Fig. 2.1; Conant and Collins, 1998) but recent 

genetic work cast doubt on the accuracy of these designations (Moriarty and Cannatella 

2004). Molecular data point to a need for wider sampling to identify cryptic lineages and 

to delineate geographic distributions of species. 



 

 50 

The trilling chorus frogs have been the subject of important studies of speciation. 

Fouquette (1975) and Gartside (1980) independently studied the contact zone between 

Pseudacris feriarum and P. nigrita and found disparate outcomes of secondary contact in 

different areas of sympatry. In the Apalachicola River drainage (Florida), the two species 

show reproductive character displacement of their acoustic signals (Fouquette 1975). In 

the Pearl River drainage (Louisiana/Mississippi), they hybridize freely and lack 

differentiation of calls (Gartside 1980). Although these apparent differences are 

extremely interesting from an evolutionary standpoint, what remains unclear is whether 

these authors examined the same species pair across the contact zone or whether a third 

species was involved. If a single species pair was studied across the zone, each species, as 

currently defined, should be monophyletic. 

Two scenarios have been put forward to explain the origin of trilling Pseudacris 

in eastern North America. Smith (1957) proposed that following the Wisconsin glaciation 

(12–110 ka; Denton and Hughes 1981; Gibbard and Kolfschoten 2004), P. kalmi 

diverged from P. triseriata after an eastward expansion of the latter species left relict 

populations in New Jersey and the Delmarva Peninsula (Fig. 2.2). These relict 

populations became what is now called P. kalmi. Therefore, P. kalmi and P. triseriata are 

predicted to be sister species. Smith (1957) also proposed that when P. triseriata 

expanded eastward, it bisected the range of the widespread P. feriarum, leaving 

populations of P. feriarum in the eastern Great Lakes region that were isolated from the 

main distribution of the species (Fig. 2.2). Thus, populations in the Great Lakes region 

are predicted to form a monophyletic group with other P. feriarum populations. These 
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scenarios of migration and divergence were based on morphometric data for chorus frogs 

throughout North America (Smith, 1956; Smith and Smith, 1952), but these hypotheses 

have not been tested within a genetic framework.  

The goals of this study are twofold. First, we elucidate the phylogenetic 

relationships and establish geographic ranges of the trilling Pseudacris, using 2.4 kb of 

mitochondrial DNA from a dense taxon sample. Second, we test three scenarios for 

speciation and the associated taxonomic hypotheses, based on assumptions or predictions 

of previous authors. Detailed tests of timing of speciation and geographic expansion are 

presented elsewhere (Lemmon et al., in press). The results of this study advance our 

understanding of the patterns and processes of speciation in this group. In addition, 

identification of more precise species distributions facilitates efforts to conserve these 

frogs. 

 

2.2 MATERIALS AND METHODS 

Sampling. We sampled chorus frogs from 253 populations (258 total individuals) across 

North America (Fig. 2.3; Supplemental Data 2.1). Approximately 30% of the populations 

were collected by ECM; 10% were borrowed from museum or personal tissue 

collections; the remaining 60% were collected for this project by herpetologists across the 

continent (Supplemental Data 2.1; see Acknowledgments). Appropriate scientific permits 

were obtained for collection of specimens. The sample includes 16 basal Pseudacris 
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populations (outgroups: Pseudacris regilla, P. cadaverina, P. crucifer, P. ocularis, P. 

ornata, P. streckeri, and P. illinoensis) and 237 trilling Pseudacris populations (ingroup: 

P. brachyphona, P. brimleyi, P. maculata, P. clarkii, P. nigrita, P. sp. nov., P. kalmi, P. 

feriarum, P. triseriata; Moriarty and Cannatella, 2004). Our sample encompasses all 

currently described chorus-frog species, with the exception of two recently resurrected 

members of the P. regilla species group (Recuero et al., 2006). We focused our sampling 

efforts on potential contact zones among taxa, particularly along major river drainages 

and mountain systems, as well as on the edges of species’ distributions. Tissues were 

either frozen in liquid nitrogen or placed in tissue buffer or 95% ethanol and then stored 

at -80°C. Specimens were deposited into museums listed in Supplemental Data 2.1.  

DNA Sequencing and Data Alignment. Following the methods described in Moriarty 

and Cannatella (2004), we sequenced eight DNA fragments from a ~2.4-kb region 

spanning the 12S, tRNA
Val

, and 16S mitochondrial rRNA genes. Contiguous sequences 

were constructed using Sequencher 4.5 (GeneCodes). Sequences were aligned in Clustal 

X 1.8 (Thompson et al. 1997) and the alignment was manually checked in MacClade 

(4.08; Maddison and Maddison 2005). Uneven leading and trailing sequence as well as 

ambiguously aligned regions were identified in MacClade and excluded from further 

analysis. The 12S, tRNA
Val

, and 16S genes were used as character partitions described 

below. To maximize the genetic diversity and geographic area sampled, we sequenced 1–

2 individuals from many populations rather than several individuals from fewer 

populations. This sampling minimized the number of redundant haplotypes in the dataset, 

which were omitted from phylogenetic analyses. All sequences were deposited in 
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Genbank (Supplemental Data 2.1) and the dataset was deposited in TreeBase 

(www.treebase.org; SN3302).  

Phylogenetic Methods. We used a Bayesian approach to estimate phylogenetic 

relationships. To determine the appropriate model of evolution for each of the three 

partitions (12S: GTR+I+G, tRNA
Val

: TRN+I, 16S: GTR+I+G), we employed the Akaike 

information criterion (Akaike 1974) as implemented in MODELTEST 3.06 (Posada and 

Crandall 1998). Since the TRN+I model is not available in MrBayes 3.1.1 (Ronquist and 

Huelsenbeck 2003), we used the more general GTR+I model because 

overparameterization is less likely to cause bias than underparameterization (Lemmon 

and Moriarty 2004). We performed six separate partitioned Bayesian analyses (with four 

heated chains per analysis) using MrBayes with default prior (prset) and proposal (prop) 

settings. All parameters were unlinked across partitions except branch lengths, which 

were not unlinked for two reasons. First, we desired branch lengths that represented the 

average number of substitutions per site across the entire region sequenced.  Second, 

because recombination among mitochondrial partitions is unlikely, all partitions share a 

common gene tree. 

The posterior probability distribution was estimated using the last 75% of the 

Markov chain samples.  Convergence of the Markov chains on the posterior distribution 

was assessed by comparing bipartition posterior probability estimates across the six runs.  

We sampled from the chains every 1000 generations until the maximum standard 

deviation of bipartition posterior probability estimates across runs was less than 0.0625.  
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Running the chains until this level of agreement among the independent runs was reached 

assured that the runs converged on the posterior distribution and that enough samples 

were taken to estimate the phylogeny accurately. We also compared distributions for the 

model parameters across the six runs, which reached stationarity at 3000 samples.  A total 

of 92,682 samples was used to estimate the posterior distribution.  A fully resolved tree 

was obtained by constructing a majority-rule consensus tree from the posterior 

distribution.  Branch lengths were estimated as the average across the 92,682 samples. 

Phylogenetic Hypothesis Testing. We tested three previously proposed taxonomic 

hypotheses concerning the phylogenetic origin of Pseudacris lineages. Hypothesis 1 

posits that P. kalmi populations from New Jersey and the Delmarva Peninsula are relict 

populations of P. triseriata from an eastward expansion of the latter species. Therefore, 

P. kalmi is predicted to be most closely related to P. triseriata (Smith, 1957; Fig. 2.2). 

Hypothesis 2 predicts that chorus frogs in southeastern Ontario and New York are relict 

P. feriarum from a northward expansion of the species (Smith, 1957; Fig. 2.2). 

Hypothesis 3 states that chorus frogs in Louisiana, Arkansas, and westward are P. 

feriarum (Fouquette, 1975; Gartside, 1980; Smith and Smith, 1952). Following Moriarty 

and Cannatella (2004), we used a parametric bootstrapping approach to test these 

hypotheses. The null hypotheses are: 1) P. kalmi and P. triseriata populations form a 

monophyletic group, 2) P. feriarum, southeastern Ontario, and New York populations 

form a monophyletic group, and 3) eastern and western P. feriarum populations form a 

monophyletic group. For computational efficiency, we used subsets of the full dataset for 

each test; each subset included up to 10 geographically dispersed populations of the focal 
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species, 3 populations of each of the other trilling Pseudacris species, and 3 

representative outgroups. This arrangement produced datasets of 47, 58, and 51 

terminals, respectively  (see Supplemental Data 2.1 for populations included). 

Designating Species. Geographic populations corresponding to haplotype clades were 

assigned species names based on the inclusion of the type locality within the range of the 

haplotype clade. Each major haplotype clade contained no more than one type locality, 

and therefore species designations were straightforward. Type localities for the trilling 

chorus frogs are listed by Frost (2006). 

 

2.3 RESULTS 

Phylogenetic relationships. A dataset of 2401 characters was used for the phylogenetic 

analyses, after exclusion of 164 edge or ambiguously aligned sites; 685 sites were 

variable and 567 were parsimony-informative. Twelve individuals with redundant 

haplotypes were identified from the 258 sequences (Supplemental Data 2.1). The 

phylogeny shows strong support for the monophyly of most currently recognized trilling 

Pseudacris species (Fig. 2.4A).  

Pseudacris feriarum is the sister taxon of P. triseriata. There is geographic 

separation of P. feriarum into a coastal lineage and an inland lineage, separated roughly 

by the Altamaha River in eastern Georgia (Fig. 2.4E; following the nomenclature of 

Wright and Wright 1949). The distribution of P. triseriata is more restricted than 
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previously described (Smith 1956; Smith 1957; Smith and Smith 1952; Figs. 1, 3). The 

New Jersey/Delmarva Peninsula native, P. kalmi, is the sister taxon of the P. feriarum + 

P. triseriata clade (Fig. 2.4E). Pseudacris nigrita is the sister lineage to an undescribed 

species (P. sp. nov.; Fig. 2.4D), previously thought to be a western extension of P. 

feriarum. Pseudacris nigrita + P. sp. nov. form the sister clade of P. triseriata + P. 

feriarum + P. kalmi (Fig. 2.4A). The P. maculata/P. clarkii clade (Fig. 2.4C) is the sister-

group of these five species (Fig. 2.4A). Although P. maculata and P. clarkii are readily 

distinguishable in sympatry by morphology and behavior, their mitochondrial gene trees 

are not reciprocally monophyletic, suggesting recent mitochondrial introgression or 

incomplete lineage sorting. In concordance with Moriarty and Cannatella (2004), P. 

brachyphona and P.brimleyi are sister species (Fig. 2.4B); this clade is the sister taxon of 

the remaining trilling Pseudacris (Fig. 2.4A). There is not clear support for reciprocal 

monophyly of the gene trees of these two species, despite their allopatry and 

morphological differentiation, suggesting incomplete lineage sorting. Within P. 

brachyphona there is geographic division into a northern lineage and a southern lineage 

(Fig. 2.4B). 

Phylogenetic hypothesis tests. The parametric bootstrapping results do not support 

previous hypotheses regarding the biogeographic origin of trilling chorus frogs. In all 

three tests, the null hypothesis was rejected. Test 1 indicates that populations of 

Pseudacris kalmi in New Jersey and the Delmarva Peninsula are not simply relictual P. 

triseriata (P = 0.028). In fact, the phylogeny indicates that P. kalmi separated from an 

ancestral lineage of P. triseriata and P. feriarum prior to the divergence of the latter two 
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species (Fig. 2.4). Based on this phylogenetic evidence and also previous work on 

advertisement calls (Platz and Forester, 1988), we advocate continued recognition of P. 

kalmi as a distinct species. Test 2 shows that southeastern Ontario and New York 

populations are not derivatives of P. feriarum (P < 0.002). Rather, these populations 

encompass a contact zone between P. maculata and P. triseriata (Figs. 3, 4). Test 3 

indicates that the distribution of P. feriarum does not extend from Pennsylvania to Texas 

(P < 0.002). Instead, populations in Louisana, Arkansas, and westward represent a new 

species of chorus frog, which is the sister taxon of P. nigrita (Figs. 3 and 4). This 

previously unidentified species is currently being described elsewhere (Lemmon et al., 

unpub. ms). 

Evidence for hybridization. The phylogeny points to several cases where the 

mitochondrial clade to which an individual belongs does not correspond to its 

morphological and behavioral identity. In particular, we found evidence for hybridization 

between: Pseudacris kalmi-P. nigrita (1 individual), P. feriarum-P. brachyphona (2), P. 

triseriata-P. brachyphona (1), and P. sp. nov.-P. nigrita (1; Figs. 3 and 4; Supplemental 

Data 2.1). In each of these cases, the mitochondrial clade to which an individual belongs 

is listed first and the identity of the individual based on morphological and acoustic data 

is listed second.  The data do not allow us to distinguish between recent hybrids and 

advanced-generation hybrids. These results support the idea that occasional introgression 

occurs between trilling Pseudacris lineages. 
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2.4 DISCUSSION 

Species diversity within the trilling chorus frogs. Our phylogenetic analysis of 

mitochondrial lineages and tests of speciation hypotheses support the recognition of at 

least nine species within the trilling Pseudacris clade: P. brachyphona, P. brimleyi, P. 

clarkii, P. feriarum, P. kalmi, P. maculata, P. nigrita, P. sp. nov., and P. triseriata. These 

analyses are corroborated by previously published behavioral and morphological data. 

Revised range distributions of these taxa are shown in Fig. 2.3. We also found evidence 

for substantial genetic and geographic structure within P. brachyphona (northern and 

southern clades) and P. feriarum (coastal and inland clades), but we refrain from 

decisions about splitting these taxa until morphological, ecological, or behavioral 

differentiation between lineages of these species has been demonstrated.  

An interesting finding is that Pseudacris maculata and P. clarkii are not 

genetically differentiated with respect to their mitochondrial DNA.  If only the 

mitochondrial gene trees were considered, P. clarkii would be synonymized under P. 

maculata.  However, substantial differences in morphology and behavior exist (Smith, 

1934; Lemmon et al. unpub. ms), suggesting that the mitochondrial pattern results from 

hybridization and/or incomplete lineage sorting.  Evidence suggests that both processes 

may be occurring in this species pair. Fieldwork in the contact zone has yielded 

individuals with intermediate advertisement calls and morphology between the two 

species, supporting the hypothesis of hybridization (E. M. Lemmon, unpub. data). On the 

other hand, the fact that allopatric P. clarkii populations far from the contact zone (west 
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and south Texas) do not form a separate clade from P. maculata, is more suggestive of 

incomplete lineage sorting (Figs. 3 and 4). In this scenario, the two species have 

undergone rapid morphological and behavioral differentiation relative to molecular 

divergence, resulting in taxa with distinct phenotypes and acoustic signals that are not, 

however, reciprocally monophyletic.  Data from nuclear markers are needed, however, to 

determine whether hybridization or incomplete lineage sorting contributed more to the 

patterns of genetic variation observed. Given the degree of morphological and behavioral 

divergence between the taxa, we maintain P. maculata and P. clarkii and as separate 

species, until further data suggest otherwise. 

This study provides genetic identification for several marginal populations of 

uncertain origin including Pseudacris maculata from Arizona and New Mexico (formerly 

P. triseriata; Smith, 1952; Platz 1989), disjunct P. feriarum from Berkeley, Charleston, 

and Dorchester Counties, South Carolina (P. feriarum; Schwartz, 1957), disjunct P. 

nigrita from eastern Virginia (new state record; Hobson and Moriarty, 2003), and P. 

maculata and P. triseriata from southeastern Ontario (formerly P. triseriata only 

Bleakney, 1959; Cook, 1964; Figs. 3 and 4). In addition, this study provides strong 

support for recognition of the geographically restricted taxon, P. kalmi (formerly P. 

feriarum kalmi, Hedges, 1986) as a distinct species. Furthermore, we have found 

evidence for a new cryptic species of chorus frog, previously undetected within P. 

feriarum (Smith, 1952). In fact, this new species is the sister species of P. nigrita, with 

which it forms a narrow hybrid zone in the Pearl River drainage along the boundary 

between southern Louisiana and Mississippi (Gartside, 1980; Figs. 3 and 4D).  
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Earlier studies of the contact zone between Pseudacris nigrita and presumed "P. 

feriarum" in the Apalachicola River drainage of Florida (Fouquette, 1975) and the Pearl 

River drainage of Louisiana and Mississippi (Gartside, 1980) found disparate outcomes 

of secondary contact between these taxa. Fouquette (1975) observed a strong pattern of 

reproductive character displacement between taxa and found no evidence for 

hybridization, although an allozyme study of Gartside (1980) described a high frequency 

of hybridization between taxa (center of zone has 60% hybrids). We purposely sampled 

the majority of the P. feriarum populations examined in the Fouquette (1975) and 

Gartside (1980) studies to ascertain their taxonomic identity and found that all Fouquette 

(1975) localities are true P. feriarum (inland clade) and all Gartside (1980) localities are a 

third, cryptic species, P. sp. nov. (Figs. 3 and 4). This clarifies why there is a higher 

incidence of hybridization along the Pearl River (sister taxa) compared to the apparently 

low incidence along the Apalachicola River (non-sister taxa). Our results indicate that 

reproductive character displacement occurs between non-sister species in this group (P. 

nigrita and P. feriarum; Figs. 3 and 4; Fouquette, 1975). 

Results of the parametric bootstrapping tests have important implications for both 

conservation and speciation in chorus frogs. The tests do not support the biogeographic 

scenarios proposed by Smith (1957) for speciation in the trilling Pseudacris (Figs. 2 and 

3). Intriguingly, however, one of the morphological clines identified by Smith and Smith 

(1952) corresponds very closely to boundaries between mitochondrial lineages. These 

authors found a steep cline in relative leg length that runs perpendicular to a line 

stretching from southern Indiana and Illinois (Ohio River drainage), across the boundary 
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between Missouri and Arkansas, and into eastern Oklahoma (Fig. 2.1). They interpreted 

this line as the boundary between P. feriarum and P. triseriata. Our data show that, in 

fact, four lineages come into contact along this line: P. feriarum and P. triseriata in the 

east and P. maculata/clarkii and P. sp. nov. in the west (Fig. 2.3). Although Smith and 

Smith (1952) did not find east-west morphological differentiation at species boundaries, 

they were able to identify the border between the two north-south species pairs. The 

congruence between molecular and morphological data provides further support for 

delineation of these species boundaries. 

Evidence for hybridization among species. An interesting pattern that emerges is that 

most trilling Pseudacris lineages hybridize with nearby relatives. Prior to this study, 

natural hybridization was known only between P. nigrita and P. sp. nov. (Gartside, 1980) 

and between P. clarkii and P. sp. nov. (Michaud, 1964), although laboratory experiments 

had demonstrated viability of several other hybrid crosses (Mecham, 1965). We show 

evidence for sporadic mitochondrial introgression in nature between three additional 

species pairs: P. kalmi-P. nigrita, P. feriarum-P. brachyphona, and P. triseriata-P. 

brachyphona as well as further evidence for hybridization between P. sp. nov-P. nigrita. 

These data suggest that despite large differences in reproductive behaviors (measured by 

acoustic signals, Lemmon et al., unpub. ms), frogs occasionally fail to avoid 

heterospecific mates. The potential for hybridization can lead to reinforcement (Howard, 

1993) and, in some cases, result in differentiation of reproductive signals in sympatry 

(Fouquette, 1975). This pattern of hybridization underlines the importance of using 

multiple lines of evidence to delimit species (e.g., morphology, genetics, behavior). It 
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also illustrates the usefulness of mitochondrial genes in identifying areas of genetic 

admixture. Future studies should incorporate nuclear markers to establish the utility of 

mitochondrial DNA in defining species boundaries. 

Implications for conservation of Pseudacris. Declining amphibian species have been 

reported from many regions of North America where Pseudacris are found (Gray et al., 

2005; Reeder et al., 2005; Rorabaugh, 2005). Whereas several other frog taxa (in 

particular, Rana and Acris) have experienced declines in parts of the United States, 

Pseudacris populations appear less affected or stable in some areas (Corn et al., 1989; 

Fisher and Shaffer, 1996). This disparity may be due, in part, to the different natural 

histories of these taxa. Although Acris and Rana spend much of their life cycle near their 

natal ponds, Pseudacris disappear from breeding ponds after metamorphosis, dispersing 

to nearby fields and woods, and returning only for the next year’s brief breeding season 

(Kramer, 1973; Kramer, 1974). Because a number of emerging amphibian diseases are 

transmitted via water (Daszak et al., 1999; Jancovich et al., 2001; Lips et al., 2006), 

Pseudacris may have an advantage over more aquatic frogs by avoiding bodies of water 

for the majority of their life cycle. 

There are some notable exceptions, however, to the overall pattern of stability in 

chorus-frog populations. Recent field surveys have suggested that several species are 

declining in parts of the northeastern U.S. and southeastern Canada (Gibbs et al., 2005; 

Picard and Desroches, 2004; Pollio and Kilpatrick, 2002; Sias, 2006; Weeber and 

Vallianatos, 2000; J. Andrews and M. Ferguson, unpub. data; C. Pollio, unpub. data). In 



 

 63 

addition, several species have been listed by state wildlife agencies as species of 

conservation concern (Pseudacris feriarum: Pennsylvania, West Virginia; P. triseriata: 

Pennsylvania; P. brachyphona: Pennsylvania; P. maculata: Michigan), state threatened 

(P. brachyphona: Maryland), or state endangered (P. kalmi: Pennsylvania). In 

southeastern Ontario and New York, surveys have found that eastern populations have 

declined but the western populations appear stable (Gibbs et al., 2005; Picard and 

Desroches, 2004; F. Schueler, unpub. data). Our data indicate that declining eastern 

populations are P. maculata whereas stable western populations are P. triseriata (Fig. 

2.3). The apparent declines have been attributed to several factors, including habitat loss, 

agricultural runoff, and industrial pollution (Gibbs et al., 2005; Pollio and Kilpatrick, 

2002; Sias, 2006). Clearly, more focused research is needed to track the causes of these 

declines. Our study contributes to conservation efforts by defining the taxonomic status 

and range limits of these taxa. Currently, the trilling Pseudacris species that presents the 

most urgent conservation challenge is the New Jersey Chorus Frog, P. kalmi. In this 

study we have demonstrated that P. kalmi is a distinct species. Due to its restricted range, 

which is located in one of the most densely populated areas of the U.S., P. kalmi faces 

extinction particularly through habitat loss. Conservation measures must be undertaken 

immediately to preserve the remaining populations of this species. 
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Supplemental Data 2.1. List of Pseudacris specimens included in this study. The list uses updated taxonomy for each 

population. Field number, museum voucher number, and Genbank accession numbers are listed. Specimens with the same 

superscript letter following the field number have identical haplotypes. Putative hybrids are denoted by the following symbols 

after the field number: ! (P. brachyphona with P. feriarum mtDNA), " (P. brachyphona with P. triseriata mtDNA), # (P. 

nigrita with P. sp. nov. mtDNA), and $  (P. nigrita with P. kalmi mtDNA). A “n/a” under the museum number header means 

no voucher specimen is available for that specimen. Vouchers that have not been cataloged are listed as such for respective 

collections. Superscript numbers following the museum numbers refer to footnotes at the end of the list. An asterisk next to a 

Genbank number indicates previously published sequences from Moriarty and Cannatella (2004). The test column denotes 

which taxa were used in each of the three parametric bootstrapping tests (e.g. ECM0041 was included in all three tests). State 

or province of origin and county, township, or region information is listed for each specimen in addition to GPS coordinates. 

Museum collection codes are as follows: Arkansas State Museum Herpetology Collection, Jonesboro (ASUMZ), Bell Museum 

of Natural History, Minneapolis (JFBM), Canadian Museum of Nature, Ottawa (CMN), Cincinnati Museum Center, Museum 

of Natural History and Science (CMC), Illinois Natural History Survey (INHS), Museum of Vertebrate Zoology, Berkeley 

(MVZ), North Carolina State Museum of Natural History, Raleigh (NCSM), Royal Ontario Museum, Toronto (ROM), 

Smithsonian National Museum of Natural History, Washington, D.C. (USNM), Sternberg Museum of Natural History, Fort 

Hays State University (MHP), Texas Natural History Collection, University of Texas, Austin (TNHC), University of Alabama 

Herpetology Collection, Tuscaloosa (UAHC), and University of Kansas Museum of Natural History, Lawrence (KU).  

 

Species Field No. Museum No. Genbank No. Test State/Prov. County/Twshp. Latitude Longitude 

P. brachyphona ECM0040 TNHC62303 AY291095*  AL Tallapoosa 33.0064 -85.7603 

P. brachyphona ECM0041
A
 TNHC62304 EF472011 1 2 3 AL Tallapoosa 33.0064 -85.7603 

P. brachyphona ECM0111 TNHC62305 EF472014  AL Elmore 32.5175 -86.0071 

P. brachyphona ECM0198 TNHC62315 EF472022  KY Madison 37.6503 -84.2417 

P. brachyphona ECM0452 TNHC63121 EF472012  AL Lawrence 34.3344 -87.3503 

P. brachyphona ECM0974!  TNHC63443 EF472190  MS Itawamba 34.1679 -88.3754 

P. brachyphona ECM1131 n/a EF472013 1 2 3 GA Walker 34.7048 -85.2819 

P. brachyphona ECM1897
 A

 NCSM71330 EF472017  NC Cherokee 35.0414 -84.0520 

P. brachyphona ECM2070 n/a EF472028  OH Washington 39.5478 -81.2141 

P. brachyphona JA-06-01 UAHC15645 EF472016  AL Hale 32.9222 -87.4403 

P. brachyphona JA-06-10 UAHC15646 EF472015  AL Cleburne 33.5136 -85.8284 

P. brachyphona JTC2457 TNHC62402 EF472019  KY Laurel 37.1333 -84.1333 
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P. brachyphona JTC2609 TNHC63535 EF472020 1 2 3 OH Hocking 39.4161 -82.6018 

P. brachyphona JTC2616 TNHC63389 EF472021  KY Taylor 37.2469 -85.3197 

P. brachyphona JTC2619 TNHC63387 EF472023  KY Powell 37.8169 -83.6811 

P. brachyphona JTC2669 TNHC66044 EF472018  WV Harrison 39.2715 -80.5192 

P. brachyphona JTC2705 TNHC66046 EF472026  WV Wayne 38.1679 -82.3779 

P. brachyphona JTC2834 TNHC66047 EF472027  WV Wetzel 39.5597 -80.5567 

P. brachyphona JTC3084 CMC10360 EF472031  OH Adams 38.7156 -83.3233 

P. brachyphona JTC3086"  MHP12900 EF472183  KY Bullitt 37.8636 -85.6356 

P. brachyphona JTC3092 MHP12896 EF472030  TN Sullivan 36.4866 -82.0717 

P. brachyphona JTC3104 MHP12898 EF472029  KY Harlan 36.9279 -83.2154 

P. brachyphona R.Highton71747! R. Highton uncat.
1
 AY291096*  KY Lincoln 37.4358 -84.6878 

P. brachyphona R.Highton97-5 n/a EF472024  WV Raleigh 37.7489 -80.9236 

P. brachyphona R.Highton97-7 n/a EF472025  VA Bland 37.0372 -81.1094 

P. brimleyi ECM0079 TNHC62337 AY291094* 1 2 3 NC Pitt 35.7006 -77.4094 

P. brimleyi ECM0460 TNHC63571 EF472033  NC Sampson 35.0992 -78.4772 

P. brimleyi ECM0469 TNHC63573 EF472036  NC Craven 35.1892 -77.0814 

P. brimleyi ECM0612 TNHC63667 EF472032  VA Prince George 37.1229 -77.1094 

P. brimleyi ECM1077 TNHC63669 EF472035 1 2 3 VA Suffolk City 36.6930 -76.6953 

P. brimleyi ECM1100 TNHC63670 EF472034  VA Isle of Wight 36.8666 -76.6194 

P. brimleyi R.Highton67234 R. Highton uncat. EF472037 1 2 3 SC Orangeburg 33.3227 -80.4137 

P. brimleyi R.Highton68852 R. Highton uncat. EF472038  SC Hampton 32.5594 -81.2844 

P. cadaverina ECM0150 TNHC62247 EF472006 2 CA San Bernardino 34.1132 -117.1422 

P. clarkii ECM0210 TNHC63497 EF472105  KS Comanche 37.1247 -99.3258 

P. clarkii ECM1133 TNHC63548 EF472102 1 2 3 OK Garfield 36.3956 -97.8784 

P. clarkii ECM1143 TNHC63159 EF472103 1 2 3 TX Swisher 34.6464 -101.5722 

P. clarkii ECM2467 TNHC65044 EF472107  KS Chautauqua 37.0401 -96.1815 

P. clarkii ECM2478 TNHC65763 EF472106  TX Caldwell 30.0205 -97.6946 

P. clarkii JTC2454
E
 TNHC63533 EF472109  KS Barber 37.0139 -98.6492 

P. clarkii JTC2455
 E

 TNHC63534 EF472108  KS Barber 37.0139 -98.6492 

P. clarkii JTC2828 TNHC63138 EF472104 1 2 3 TX Cameron 26.1809 -97.5198 

P. clarkii Q-1 KU289035 AY291093*  KS Chautauqua 37.0044 -96.2764 
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P. crucifer ECM0039 TNHC62210 AY291099*  AL Barbour 32.0369 -85.0889 

P. crucifer ECM0083 TNHC62216 AY291100* 1 2 3 SC Barnwell 33.3177 -81.4840 

P. crucifer ECM0166 TNHC62221 EF472007  MD Kent 39.3122 -75.8485 

P. crucifer Y-1 TNHC62369
2
 AY291103*  FL Lake 29.0833 -81.5833 

P. feriarum ECM0122 TNHC62268 EF472173  AL Elmore 32.5175 -86.0071 

P. feriarum ECM0126 TNHC62380 EF472189 2 3 MO Dunklin 36.2435 -89.9622 

P. feriarum ECM0129 TNHC62271 EF472169  TN Weakley 36.2579 -88.6676 

P. feriarum ECM0131 TNHC62273 EF472170  TN Obion 36.2579 -89.2597 

P. feriarum ECM0135 TNHC62276 EF472176  TN Obion 36.4529 -89.3035 

P. feriarum ECM0180 TNHC62280 EF472202  MD Prince George 38.6909 -77.0137 

P. feriarum ECM0181 TNHC62385 EF472206  NC Wake 35.6238 -78.8999 

P. feriarum ECM0189 TNHC62287 EF472205  NC Chatham 35.8530 -79.1271 

P. feriarum ECM0232 TNHC63303 EF472167 1 2 3 FL Liberty 30.1626 -85.0666 

P. feriarum ECM0298 TNHC63326 EF472196  GA Banks 34.3322 -83.5654 

P. feriarum ECM0368 TNHC63322 EF472175  FL Calhoun 30.2847 -85.1073 

P. feriarum ECM0382 TNHC63323 EF472177  FL Gasden 30.6591 -84.8323 

P. feriarum ECM0383 TNHC63358 EF472172  GA Decatur 30.9081 -84.5979 

P. feriarum ECM0384 TNHC63359 EF472178  GA Seminole 31.0223 -84.8292 

P. feriarum ECM0386 TNHC63122 EF472174  AL Henry 31.6083 -85.0710 

P. feriarum ECM0387 TNHC63123 EF472168  AL Macon 32.5290 -85.6016 

P. feriarum ECM0399 TNHC63685 EF472163  TN Hamilton 35.1915 -85.2459 

P. feriarum ECM0400 TNHC63133 EF472161  AL Macon 32.4703 -85.6908 

P. feriarum ECM0402 TNHC63333 EF472179  GA Baker 31.3835 -84.5430 

P. feriarum ECM0441 TNHC63537 EF472197 2 3 SC Dorchester 32.9552 -80.2613 

P. feriarum ECM0446 TNHC63361 EF472171 1 2 3 GA Floyd 34.4076 -85.2216 

P. feriarum ECM0448 TNHC63362 EF472180  GA Heard 33.2765 -85.1211 

P. feriarum ECM0453 TNHC63562 EF472208  NC Sampson 35.1418 -78.5562 

P. feriarum ECM0455 TNHC63564 EF472201  NC Johnson 35.4392 -78.3706 

P. feriarum ECM0464 TNHC63567 EF472212 1 2 3 NC Davie 35.8982 -80.5764 

P. feriarum ECM0481 TNHC63627 EF472200  VA York 37.1779 -76.5007 

P. feriarum ECM0486
I
 TNHC63642 EF472209  VA Mathews 37.4451 -76.3424 
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P. feriarum ECM0601
I
 TNHC63643 EF472204  VA Mathews 37.4451 -76.3424 

P. feriarum ECM0602 TNHC63364 EF472203 2 3 GA Appling 31.9522 -82.3848 

P. feriarum ECM0630 TNHC63520 EF472217 1 2 3 MD Harford 39.5078 -76.2195 

P. feriarum ECM0632 TNHC63522 EF472198  MD Baltimore 39.4964 -76.7617 

P. feriarum ECM0665 TNHC63644 EF472207  VA Prince George 37.1229 -77.1094 

P. feriarum ECM0960 TNHC63465 EF472162  AL Conecuh 31.3546 -87.0267 

P. feriarum ECM0961
H

 TNHC63466 EF472188  AL Choctaw 31.7484 -88.1277 

P. feriarum ECM0969
 H

 TNHC63467 EF472191  AL Pickens 33.0979 -88.2033 

P. feriarum ECM0970 TNHC63439 EF472192 1 2 3 MS Oktibbeha 33.4282 -88.8768 

P. feriarum ECM0971 TNHC63440 EF472193  MS Lafayette 34.4114 -89.3729 

P. feriarum ECM0992 TNHC63468 EF472186 2 3 AL Cullman 34.0928 -86.8825 

P. feriarum ECM1011 TNHC63645 EF472214  VA Prince Edward 37.0973 -78.4770 

P. feriarum ECM1076 TNHC63652 EF472216  VA Southampton 36.7804 -77.2316 

P. feriarum ECM1125 n/a EF472218  GA Walton 33.7948 -83.7132 

P. feriarum ECM1130 n/a EF472187  GA Houston 32.4960 -83.6077 

P. feriarum ECM1435 TNHC65775 EF472221  SC Greenwood 34.1505 -82.1591 

P. feriarum ECM1454 TNHC65747 EF472220  GA Greene 33.5745 -83.2012 

P. feriarum F-1 KU289227 AY291084*  KY Calloway 36.6333 -88.2667 

P. feriarum INHS1196 INHS18810 EF472181  IL Pulaski 37.2769 -89.1833 

P. feriarum JTC2578 TNHC63355 EF472199  GA Oglethorpe 33.8628 -83.4089 

P. feriarum JTC2593 TNHC63686 EF472165 1 2 3 TN  Blount 35.7564 -83.9706 

P. feriarum JTC2615 TNHC63393 EF472182  KY McCracken 37.1597 -88.7972 

P. feriarum JTC2730 TNHC63524 EF472210  MD Anne Arundel 38.8283 -76.5389 

P. feriarum JTC2740 TNHC63134 EF472194  AL Morgan 34.5448 -86.7639 

P. feriarum JTC2762 TNHC63689 EF472195  TN Chester 35.4392 -88.6414 

P. feriarum JTC2857 TNHC66049 EF472211  WV Berkeley 39.4927 -78.2772 

P. feriarum MHP10700 MHP10700 EF472219  NC Lincoln 35.4135 -80.9719 

P. feriarum R.Highton50960 n/a EF472166  TN Blount 35.6911 -83.7989 

P. feriarum R.Highton61551 USNM uncat. EF472215  SC Kershaw 34.4782 -80.8017 

P. feriarum R.Highton61673 USNM uncat. EF472184  TN Franklin 35.2031 -85.9211 

P. feriarum R.Highton62076 USNM uncat. EF472213  PA Fulton 40.0708 -77.8839 
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P. feriarum R.Highton71758 R. Highton uncat. EF472185  KY Lincoln 37.4019 -84.8092 

P. feriarum R.Highton88-43 n/a EF472164  TN Anderson 36.1408 -84.1047 

P. illinoensis ECM0001 TNHC62351 AY291109*  AR Clay 36.3308 -90.1090 

P. illinoensis ECM0090 TNHC62346 AY291110*  MO Scott 37.0667 -89.5667 

P. illinoensis INHS2003.3 n/a EF472008  IL Cass 40.0175 -90.4242 

P. illinoensis INHS2003.9 n/a EF472010  IL Madison 38.7969 -90.0389 

P. kalmi ECM0162 TNHC62354 EF472224 1 2 3 MD Kent 39.3122 -75.8485 

P. kalmi ECM1064 TNHC63671 EF472225 1 2 3 VA Accomack 37.7501 -75.6663 

P. kalmi ECM1067 TNHC63674 EF472223 1 VA Northampton 37.4749 -75.8583 

P. kalmi ECM1080 TNHC63135 EF472230 1 DE Sussex 38.7459 -75.3809 

P. kalmi ECM1115
J
 TNHC63544 EF472226 1 2 3 NJ Atlantic 39.4765 -74.7106 

P. kalmi JTC2738 TNHC63403 EF472227 1 MD Wicomico 38.3215 -75.4499 

P. kalmi JTC2836 TNHC63546 EF472228 1 NJ Burlington 39.9593 -74.5093 

P. kalmi NJ-1 KU289235 AY291087* 1 MD Kent 39.3122 -75.8485 

P. kalmi R.Highton62067
 J
 USNM uncat. EF472229 1 NJ Salem 39.6834 -75.4905 

P. kalmi R.Highton62083 USNM uncat. EF472222 1 DE New Castle 39.7153 -75.6259 

P. maculata 03BEJ007 TNHC63622 EF472090  MN Cook 47.9105 -90.0075 

P. maculata 03EKH001
D
 TNHC63621 EF472101  MN St. Louis 47.6988 -93.0484 

P. maculata A-1 KU224560 AY291090*  KS Douglas 39.0068 -95.2233 

P. maculata D-3 KU224558 AY291092*  KS Cheyenne 39.7722 -101.7994 

P. maculata DCC3851 n/a EF472080  WI Wood 44.4500 -90.0500 

P. maculata ECM0105 TNHC62324 AY291081*  Ontario Frontenac 44.2333 -76.5000 

P. maculata ECM0204 TNHC62296 EF472123  KS Ellis 38.8352 -99.3363 

P. maculata ECM0209 TNHC62389 EF472078  MN Itasca 47.5000 -93.0000 

P. maculata ECM0604 TNHC63365 EF472088  IA Marion 41.3875 -92.9526 

P. maculata ECM0634 TNHC63370 EF472092  IA Warren 41.3375 -93.5570 

P. maculata ECM0644 TNHC65773 EF472091 2 CO Jackson 40.8348 -106.5705 

P. maculata ECM0645 n/a EF472089  MN Ramsey 45.0051 -93.1011 

P. maculata ECM0652 TNHC65814 EF472093  WI St. Croix 44.8614 -92.6236 

P. maculata ECM1140
B
 TNHC65824 EF472100  WI Bayfield 46.3941 -91.2938 

P. maculata ECM1156 TNHC63139 EF472094  ND Ward 48.1817 -101.2924 
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P. maculata ECM2099 n/a EF472132  Alberta Athabasca 54.6155 -113.3466 

P. maculata I-1 KU224624 AY291080*  CO Gunnison 38.8221 -106.5744 

P. maculata I-2 KU224625 AY291083*  CO Archuleta 37.2898 -106.9754 

P. maculata INDU214 n/a EF472121  IN Porter 41.6100 -87.2353 

P. maculata INHS1251 INHS18890 EF472127  IL Cass 39.9242 -90.3904 

P. maculata INHS1267 INHS13035 EF472115  IL Piatt 40.0114 -88.7261 

P. maculata INHS1372
F
 INHS13057 EF472124  IL Madison 38.8294 -90.0628 

P. maculata INHS1376 INHS13062 EF472122  IL Jersey 39.0778 -90.5555 

P. maculata INHS203 INHS16769 EF472113  IL Mercer 41.1031 -90.9339 

P. maculata JPB13421 CMN32633 EF472084 2 Manitoba Churchill 58.7667 -94.1667 

P. maculata JPB22607
B
 ROM uncat. EF472081 2 Ontario Fraleigh 48.4500 -89.2000 

P. maculata JRM4868 TNHC62405 EF472083  UT Cache 42.0778 -111.7222 

P. maculata JTC2588 TNHC63697 EF472117  MO Cole 38.5767 -92.1733 

P. maculata JTC2596 TNHC63699 EF472126  MO Adair 40.2540 -92.5821 

P. maculata JTC2600
F
 TNHC63702 EF472111 1 2 3 MO Boone 39.0333 -92.3333 

P. maculata JTC2601 TNHC63425 EF472118  IA Boone 41.9900 -93.8841 

P. maculata JTC2613 TNHC63423 EF472099  IA Allamakee 43.3621 -91.2264 

P. maculata JTC2630 TNHC63704 EF472116 2 Ontario Frontenac 44.5500 -76.3333 

P. maculata JTC2645 TNHC63612 EF472112  MN Fillmore 43.7208 -91.9767 

P. maculata JTC2650 TNHC63504 EF472134  KS Wilson 37.5667 -95.7333 

P. maculata JTC2674 TNHC63431 EF472120  IA Louisa 41.0997 -91.0444 

P. maculata JTC2687 TNHC63717 EF472129 2 Ontario Wellington 43.9822 -80.4039 

P. maculata JTC2698 TNHC63428 EF472125  IA Butler 42.6382 -92.6233 

P. maculata JTC2700 TNHC65819 EF472079 1 2 3 SD Lawrence 44.4060 -103.9573 

P. maculata JTC2706 TNHC63146 EF472086  CO Weld 40.4233 -104.7086 

P. maculata JTC2708
C
 TNHC63430 EF472098  IA Howard 43.2130 -92.4899 

P. maculata JTC2760 TNHC63552 EF472095  OK Washington 36.8836 -95.9259 

P. maculata JTC2805 TNHC63752 EF472128  IL Effingham 39.1235 -88.6194 

P. maculata JTC2832 TNHC63554 EF472114  OK Cherokee 36.0895 -94.8505 

P. maculata JTC2843 TNHC63733 EF472097  IL McDonough 40.3325 -90.6046 

P. maculata JTC2862 TNHC63543 EF472119  NE Douglas 41.2586 -95.9378 
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P. maculata K-2
F
 n/a AY291088*  KS Kingman 37.6458 -98.1133 

P. maculata MHP 8159 MHP8159 EF472130  KS Cherokee 37.1692 -94.8441 

P. maculata MHP10265 MHP10265 EF472133  MO Dade 37.3897 -93.9138 

P. maculata MHP10268 MHP10268 EF472131  MO Newton 36.9416 -94.1717 

P. maculata MHP10467 MHP10467 EF472135  MO Christian 37.0265 -93.4604 

P. maculata N-5 KU224630 AY291089*  NM McKinley 36.0023 -108.8162 

P. maculata R-1 KU290342 AY291082* 2 Ontario Lac Seul 50.6333 -93.2167 

P. maculata UMN14283
C
 JFBM14283 EF472082  MN Wright 45.3194 -93.9417 

P. maculata UMN14285 JFBM14285 EF472110  MN Rock 43.7917 -96.2667 

P. maculata UMN14316 JFBM14316 EF472096  MN Lac qui Parle 45.0417 -95.9167 

P. maculata UMN14327 JFBM14327 EF472087  ND Pembina 48.9861 -97.5544 

P. maculata UMN14336
D
 JFBM14336 EF472085 1 2 3 MN Otter Tail 46.4583 -95.7056 

P. nigrita ECM0024 TNHC62364 AY291079* 3 FL Brevard 28.2006 -80.8678 

P. nigrita ECM0036 TNHC62201 AY291078* 3 AL Barbour 32.0369 -85.0889 

P. nigrita ECM0087 TNHC62208 AY291076* 1 2 3 SC Barnwell 33.3177 -81.4840 

P. nigrita ECM0215 TNHC63210 EF472039  FL Calhoun 30.4477 -85.0922 

P. nigrita ECM0242 TNHC63187 EF472045 1 2 3 FL Liberty 30.1626 -85.0666 

P. nigrita ECM0261#  TNHC63585 EF472052  MS Harrison 30.5010 -88.9084 

P. nigrita ECM0290 TNHC63593 EF472040 3 MS Harrison 30.5010 -88.9084 

P. nigrita ECM0359 TNHC63191 EF472050  FL Liberty 30.1437 -84.9766 

P. nigrita ECM0371 TNHC63200 EF472049  FL Franklin 29.7035 -85.1901 

P. nigrita ECM0372 TNHC63201 EF472042 3 FL Jefferson 30.1981 -84.0500 

P. nigrita ECM0422 TNHC63345 EF472043  GA Baker 31.2380 -84.5017 

P. nigrita ECM0442 TNHC63538 EF472041 3 SC Dorchester 33.0956 -80.3156 

P. nigrita ECM0482$  TNHC62399 EF472231  VA York 37.1779 -76.5007 

P. nigrita ECM0603 TNHC63354 EF472046  GA Liberty 31.8470 -81.5960 

P. nigrita ECM0609 TNHC63658 EF472044 1 2 3 VA Prince George 37.1229 -77.1094 

P. nigrita ECM0666 TNHC63662 EF472048  VA Sussex 36.8921 -77.0628 

P. nigrita ECM1097 TNHC63664 EF472047  VA Surrey 36.9277 -77.0406 

P. nigrita ECM1801 TNHC65785 EF472051 3 GA McIntosh 31.5343 -81.5376 

P. nigrita FC11452 MVZ145452
3
 AY291077* 3 NC Scotland 34.7739 -79.4631 
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P. ocularis ECM0045 TNHC62234 AY291097*  SC Barnwell 33.1606 -81.6908 

P. ocularis ECM0095 TNHC62241 AY291098*  FL Gulf 29.6801 -85.3287 

P. ornata ECM0033 TNHC62178 AY291106*  AL Barbour 32.0369 -85.0889 

P. ornata ECM0055 TNHC62183 AY291105* 1 2 3 SC Aiken 33.2167 -81.7500 

P. regilla ECM0147 TNHC62195 EF472005 1 2 3 CA San Bernardino 34.1132 -117.1422 

P. sp. nov. ASUMZ27608 ASUMZ27608 EF472058 3 AR Conway 35.1508 -92.7439 

P. sp. nov. ASUMZ27611 ASUMZ27611 EF472057  AR Yell 35.0003 -93.4167 

P. sp. nov.. ASUMZ27612 ASUMZ27612 EF472056  AR Sebastian 35.3858 -94.3983 

P. sp. nov. ECM0011 TNHC62255 AY291086* 1 2 3 AR Craighead 35.8546 -90.6626 

P. sp. nov. ECM0029 TNHC62265 AY291085* 1 2 3 LA EastBatonRouge 30.6889 -90.8894 

P. sp. nov. ECM0124 TNHC62269 EF472066  LA Washington 30.6787 -89.9480 

P. sp. nov. ECM0137 TNHC62277 EF472064  LA Evangeline 30.7801 -92.2819 

P. sp. nov. ECM0139 TNHC62384 EF472060 3 LA Beauregard 30.7821 -93.0143 

P. sp. nov. ECM0258 TNHC63598 EF472054 3 MS Simpson 31.9682 -90.1125 

P. sp. nov. ECM0259 TNHC63599 EF472069  MS Simpson 31.9274 -90.0544 

P. sp. nov. ECM0260 TNHC63600 EF472053  MS Marion 31.2358 -89.8228 

P. sp. nov. ECM0264 TNHC63480 EF472068  LA St.Tammany 30.5655 -89.8715 

P. sp. nov. ECM0268 TNHC63483 EF472059  LA St.Tammany 30.3840 -89.7554 

P. sp. nov. ECM0270 TNHC63380 EF472055  AR Perry 34.8916 -92.8044 

P. sp. nov. ECM0332 TNHC63609 EF472067  MS Hancock 30.4399 -89.6576 

P. sp. nov. ECM1155 TNHC63496 EF472061 3 LA Red River 32.1649 -93.4799 

P. sp. nov. ECM2293 TNHC65744 EF472075  TX Jasper 30.2577 -94.2141 

P. sp. nov. ECM2294 TNHC65745 EF472076  TX Liberty 30.4451 -94.7405 

P. sp. nov. ECM2295 TNHC65746 EF472077 3 TX Liberty 30.3517 -95.0632 

P. sp. nov. ECM2437 TNHC65022 EF472074  LA St. Martin 30.3309 -91.6964 

P. sp. nov. JTC2586 TNHC63583 EF472062 1 2 3 TX Lamar 33.7803 -95.5353 

P. sp. nov. JTC2737 TNHC63551 EF472072 3 OK Osage 36.5356 -96.0507 

P. sp. nov. JTC2829 TNHC63703 EF472071  MO Ripley 36.7069 -90.6938 

P. sp. nov. JTC2847 TNHC63556 EF472070 3 OK Pittsburg 34.9927 -95.8385 

P. sp. nov. JTC2860 TNHC63557 EF472065  OK Love 34.1330 -97.1062 

P. sp. nov. JTC2866 TNHC63559 EF472063  OK McCurtain 34.1405 -94.6958 
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P. sp. nov. R.Highton71204 R. Highton uncat. EF472073  OK LeFlore 34.7107 -94.5497 

P. streckeri JTC2581 TNHC63382 EF472009  AR Conway 35.2503 -92.6833 

P. streckeri P-2 TNHC62317 AY291108*  TX Travis 30.3218 -97.8034 

P. triseriata ECM0615 TNHC63682 EF472146 2 MI Ingham 42.7222 -84.4275 

P. triseriata ECM0616 TNHC63683 EF472155 1 MI Ingham 42.6890 -84.2830 

P. triseriata ECM0662 n/a EF472142 2 Ontario Essex 42.1216 -82.9715 

P. triseriata INHS1207 INHS18840 EF472138  IL Perry 38.0188 -89.4181 

P. triseriata INHS1234 INHS18853 EF472136 2 IL Lawrence 38.7128 -87.6768 

P. triseriata INHS1239 INHS18857 EF472153 1 IL Saline 37.7358 -88.6941 

P. triseriata INHS1581 INHS19242 EF472159 2 IL Wayne 38.5257 -88.3456 

P. triseriata J-1 KU289219 AY291091* 1 2 MI Berrien 41.9500 -86.4167 

P. triseriata JTC2590 TNHC63412 EF472151 1 2 OH Logan 40.4614 -83.6700 

P. triseriata JTC2594 TNHC63392 EF472139  KY Daviess 37.8661 -87.2855 

P. triseriata JTC2604 TNHC63405 EF472144  OH Highland 39.2124 -83.8362 

P. triseriata JTC2605 TNHC63408 EF472149 2 OH Clinton 39.2599 -83.8828 

P. triseriata JTC2607 TNHC63410 EF472148 2 OH Preble 39.6478 -84.5272 

P. triseriata JTC2611 TNHC63687 EF472137 1 3 TN Montgomery 36.4501 -87.4767 

P. triseriata JTC2639 TNHC63691 EF472156 1 2 NY Niagara 43.1706 -78.6906 

P. triseriata JTC2678
G

 TNHC63708 EF472141 2 Ontario Halton 43.6500 -79.9167 

P. triseriata JTC2679
G

 TNHC63709 EF472140 2 Ontario Oxford 42.9089 -80.8341 

P. triseriata JTC2682 TNHC63712 EF472145 1 2 3 Ontario Niagara R.M. 43.0085 -79.5393 

P. triseriata JTC2690
G

 TNHC63720 EF472143 1 2 Ontario Waterloo R.M. 43.2984 -80.3735 

P. triseriata JTC2709 TNHC63394 EF472147 2 KY Jefferson 38.1111 -85.8703 

P. triseriata JTC2715 TNHC65812 EF472157  KY Breckinridge 37.6495 -86.4241 

P. triseriata JTC2723 TNHC63510 EF472154  IN Jennings 38.9848 -85.6094 

P. triseriata JTC2830 TNHC63517 EF472150 2 IN Delaware 40.0400 -85.3000 

P. triseriata JTC2848 TNHC63694 EF472152 2 NY Livingston 42.9377 -77.7739 

P. triseriata JTC2851 TNHC63518 EF472158 1 IN Marion 39.8641 -86.2904 

P. triseriata R.Highton69234 R. Highton uncat. EF472160 1 2 3 IN Posey 38.1298 -87.9350 

 



 

 73 

1
 R.Highton71747 was labeled as Pseudacris feriarum in Moriarty and Cannatella (2004); according to R. Highton (pers. 

comm.), who collected the specimen, this specimen is morphologically and acoustically a P. brachyphona.  However, its 

mitochondrial DNA suggests that this individual is a hybrid between the two species. 
2
 TNHC62369 is from Lake Co. not Ocala Co, as reported in Moriarty and Cannatella (2004). 

3
 MVZ145452 was mislabeled in Moriarty and Cannatella (2004) as MVZ11452. 
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Figure 2.1. Distributions of four trilling chorus-frog taxa based on earlier non-genetic 

studies.  This figure was modified from Conant and Collins (1998), which was largely 

based on morphometric data of Smith (1956), Smith (1957), and Smith and Smith (1952).  

Distributions of Pseudacris brachyphona, P. brimleyi, P. clarkii, P. nigrita, and P. sp. 

nov. are not shown because ranges of these species have not changed substantially with 

the addition of genetic data. 
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Figure 2.2. Scenarios for migration and speciation in the trilling Pseudacris proposed by Smith (1957). According to this 

scenario, the distribution of the wide-ranging P. feriarum (A) was bisected by eastward expansion of P. triseriata (B), leading 

to geographic isolation of northern P. feriarum populations (C). Pseudacris triseriata reached the East Coast where it left relict 

populations when its range contracted (D).  These relict populations are now known as P. kalmi.
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Figure 2.3. Updated distributions of all North American Trilling Frogs. Species 

boundaries are based on the phylogeny (Fig. 2.4) and county-level taxon records from 

Lannoo (2005). Markers indicate populations sampled that correspond to species in the 

phylogeny to the right. Ranges of Pseudacris brachyphona and P. brimleyi are outlined 

in black for visual simplicity. Capital letters indicate hybrids and represent the following 

hybrid combinations: NS–P. nigrita-P. sp. nov., BF–P. brachyphona-P. feriarum, BT–P. 

brachyphona-P. triseriata, and NK–P. nigrita-P. kalmi, where the first species listed 

refers to the behavioral/morphological identity and the second to the mitochondrial DNA 

identity of the individual. Degree of geographic overlap between species is indicated on 

map if known; if no overlap is shown between parapatric taxa, then the amount of overlap 

is unknown. 
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Figure 2.4. Bayesian phylogeny of Pseudacris.  Tree A shows the phylogenetic 

relationships of the entire genus. Numbers of populations sampled from each species are 

indicated in parentheses. Trees B-E illustrate the population-level relationships of each 

subclade. Each tip on the phylogeny is described by a field number, state/province, and 

county/region of origin.  Bayesian posterior probabilities above 50% are located near 

corresponding branches.  Species names in parentheses indicate the 

morphological/behavioral identity of individuals when this conflicted with the 

mitochondrial clade identity. Note that the branch length scale for phylogeny A is 25% of 

the scale for phylogenies B-E
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Chapter 3 

Geological and Climatic Forces Driving Speciation in the Continentally 

Distributed Trilling Chorus Frogs (Pseudacris)* 

 

 

Abstract: Tertiary geological events and Quaternary climatic fluctuations have been 

proposed as important factors of speciation in the North American flora and fauna. Few 

studies, however, have rigorously tested hypotheses regarding the specific factors driving 

divergence of taxa. Here, we test explicit speciation hypotheses by correlating geologic 

events with divergence times among species in the continentally distributed trilling 

chorus frogs (Pseudacris). In particular, we ask whether marine inundation of the 

Mississippi Embayment, uplift of the Appalachian Mountains, or modification of the 

ancient Teays-Mahomet River system contributed to speciation. To examine the 

plausibility of ancient rivers causing divergence, we tested whether modern river systems 

inhibit gene flow. Additionally, we compared the effects of Quaternary climatic factors 

(glaciation and aridification) on levels of genetic variation. Divergence time estimates 

using penalized likelihood and coalescent approaches indicate that the major lineages of 

chorus frogs diversified during the Tertiary, and also exclude Quaternary climate change 

as a factor in speciation of chorus frogs. We show the first evidence that inundation of the 

Mississippi Embayment contributed to speciation. We reject the hypotheses that 

Cenozoic uplift of the Appalachians and that diversion of the Teays-Mahomet River 



 

 88 

contributed to speciation in this clade. We find that by reducing gene flow, rivers have 

the potential to cause divergence of lineages. Finally, we demonstrate that populations in 

areas affected by Quaternary glaciation and aridification have reduced levels of genetic 

variation compared to those from more equable regions, suggesting recent colonization. 

 

*Significant portions of this chapter have been previously published as Lemmon, 

Lemmon, and Cannatella 2006. Evolution, in press. 

 

 

3.1 INTRODUCTION 

Two of the most important factors thought to drive speciation are formation of 

geological barriers and climatic fluctuations (Mayr 1942; Hewitt 2000). Geological 

changes such as uplift of mountain systems and the development of river systems may 

form barriers to gene flow between populations, resulting in diversification along these 

boundaries (Nielson et al. 2001; Brant and Ortí 2003; Carstens et al. 2004; Funk et al. 

2005; Steele et al. 2005; Howes et al. 2006; Kozak et al. 2006). Additionally, rapid 

climate change during Pleistocene glaciation events may isolate populations in multiple 

refugia, leading to genetic divergence, and potentially to speciation (Sewell et al. 1996; 

Hewitt 2000; Good and Sullivan 2001; Knowles 2001; Tzedakis et al. 2002; Church et al. 

2003; Zamudio and Savage 2003; Carstens et al. 2005a). Although a number of recent 

studies have examined the effects of a particular process in a limited geographic region, 
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few have elucidated the relative importance of climate change and barrier formation on a 

continental scale.  

Many phylogeographic studies have addressed questions of speciation by 

employing a retrospective, interpretive approach rather than a predictive hypothesis-

testing approach. The former method attempts post hoc to identify historical processes 

that might have produced observed patterns of genetic variation. This can lead to over-

interpretation of data because there is no well-defined null hypothesis to set bounds on 

the expected pattern. Additionally, this approach frequently does not consider whether 

the timing of proposed events coincides with the speciation event. The more powerful 

approach employed here formulates temporally and geographically explicit hypotheses 

prior to data collection and analysis, and thus uses information from independently 

derived datasets to test factors proposed to drive speciation. 

The late Tertiary period (2.6–34 million years ago [ma]; Gradstein et al. 2004) is 

characterized by several major geological changes in the eastern United States. First, sea 

levels fluctuated dramatically, leaving a series of scarps along the Coastal Plain (Haq et 

al. 1987; Dowsett and Cronin 1990). These marine transgressions, which may have been 

indirectly related to climate change, filled the Mississippi Embayment, a geologic trough 

formed during the Cretaceous through faulting in the Mississippi River Valley (Cox and 

Van Arsdale 2002; Fig. 3.1A). Marine depositional sediments indicate that sea 

transgressions from the Gulf of Mexico extended as far north as southern Missouri during 

the Paleocene and as far north as Jackson, Mississippi during the Miocene (Reed et al. 
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2005). These marine inundations likely presented a formidable barrier to salt-intolerant 

species such as amphibians, although this hypothesis has not yet been tested (Fig. 3.1A). 

A second major geological change during the Tertiary was renewed uplift of the 

Appalachian Mountains (Fig 1B). The Paleozoic Appalachian Mountains had been 

largely eroded to a plain (Dunbar and Waage 1969; Cleaves 1989) by the end of the 

Mesozoic. Data from sedimentation rates and fault ages indicate that another major uplift 

occurred during the late Oligocene to Miocene (Prowell and O’Connor 1978; Hack 1982; 

Reinhardt et al. 1984; Poag and Sevon 1989; Prowell 1989; Prowell and Christopher 

2000, 2006; Dennison 2001). The uplift may have created both an elevational barrier and 

an ecological barrier through development of a rain shadow on the eastern slope. In this 

case, the western slope of the Appalachians was probably wet while the eastern side was 

arid, similar to the Sierra Nevada Range today (Stanley 1989). We might expect, 

therefore, that this geologic feature contributed to divergence of taxa inhabiting the 

region (Fig. 3.1B).  

A third major geological change involves development of North American river 

systems. During the late Pliocene and early Pleistocene, the ancient Teays-Mahomet 

River and its tributaries flowed northward from the western side of the Appalachian 

Mountains into Ohio, and west through central Indiana and Illinois before joining with 

the Mississippi River system (Fig. 3.1C–E; Ver Steeg 1946; Hocutt et al. 1986; Gray 

1991; Melhorn and Kempton 1991). Glacial advances in the Pleistocene (~0.8 ma) 

dammed the Teays-Mahomet River in southern Ohio, forming a vast lake that lasted 
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several thousand years before overflow resulted in formation of new river channels. 

These channels cut a path westward to the Old-Ohio drainage system, forming the basis 

of the modern Ohio River (Fig. 3.1D-E; Gray 1991). When the Teays-Mahomet River 

joined the Old-Ohio, a land passageway between Kentucky and Indiana was cut off, 

potentially blocking gene flow between populations of terrestrial organisms on either side 

of the newly formed Ohio river (Fig. 3.1D-E). Development of these river systems has 

been implicated as a cause of speciation in a number of fish taxa (Hocutt et al. 1978; 

Mayden 1988; Strange and Burr 1997; Berendzen et al. 2003). 

The onset of the Quaternary (present–2.6 ma; Gibbard and Van Kolfschoten 2004) 

marked the beginning of a period of rapid climate fluctuations, with advances of massive 

ice sheets across much of North America alternating with warmer interglacial periods 

(Brown and Lomolino 1998). The most recent Wisconsin glaciation extended as far south 

as southern Illinois (Denton and Hughes 1981; Fig. 3.2). According to paleoclimatic 

models, as the ice sheet receded (12–110 thousand years ago [ka]; glacial maximum 14 

ka; Denton and Hughes 1981; Gibbard and Kolfschoten 2004), a period of extreme 

aridification (desertification) ensued throughout much of the western United States, due 

to ice sheet-induced displacement of the jet stream. The eastern boundary of this arid 

region stretched from approximately northern Illinois to east Texas, and lasted until 

around 11 ka (Fig. 3.2; Bartlein et al. 1998; Brown and Lomolino 1998). The rapid onset 

of this xeric period is proposed to have caused local extinction of wetland-restricted 

species, which later re-colonized these regions as more favorable climatic conditions 

returned (Starkey et al. 2003). Given these drastic changes, we expect to find reduced 
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genetic variation in organisms from recently glaciated or aridified areas. We also predict 

that these climatic factors caused isolation of populations in refugia, potentially 

contributing to divergence of taxa during the Pleistocene. 

Hylid treefrogs have undergone two independent radiations into North America 

from Central America and Mexico. One radiation includes members of the genus Hyla, 

the other the genera Acris and Pseudacris (Smith et al. 2005). Both of the latter genera 

are endemic to North America and are thought to have diverged at least 33 ma (Smith et 

al. 2005). The trilling chorus frogs are a continentally distributed clade within Pseudacris 

(Moriarty and Cannatella 2004). Members of this group range from northern Mexico to 

Canada and throughout the eastern two-thirds of the United States (Conant and Collins 

1998). We determined the species diversity and range limits of the nine species in this 

group based on 2.4 kb of 12S/16S mitochondrial DNA data from 237 populations in 

combination with published morphological and behavioral data (Lemmon et al. in press; 

Fig. 3.2). This paper provided a foundation for testing specific hypotheses about factors 

driving speciation on the North American continent.  

Due to their broad geographic distribution, we expect the patterns of diversity 

within the trilling Pseudacris to be potentially influenced by a spectrum of historical 

processes, both geological and climatic. Here, we ask the general question: Are 

speciation events correlated primarily with geological events of the Tertiary or with 

climatic fluctuations of the Quaternary? To address this question, we first test specific 

hypotheses that barriers promoting speciation formed through inundation of the 
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Mississippi Embayment, uplift of the Appalachian Mountains, and diversion of the 

ancient Teays-Mahomet River. Second, to investigate the plausibility that ancient rivers 

cause divergence, we test the prediction that current river systems reduce gene flow. 

Third, we test the prediction that Quaternary climate change caused speciation. Finally, 

we test the hypothesis that these climatic factors reduced patterns of genetic diversity 

within species. We employ the Lemmon et al. (in press) chorus frog dataset to test these 

hypotheses by correlating fossil-based and coalescent-based divergence times among 

species to the timing of geological events, by examining levels of genetic variation across 

riverine barriers, and by comparing levels of genetic variation throughout areas affected 

by Quaternary climate change. This multi-tiered approach integrates phylogenetics and 

population genetics as well as new statistics for phylogeographic applications to 

rigorously test hypotheses for the factors driving speciation in North America.   

 

3.2 MATERIALS AND METHODS 

Tests of Speciation Hypotheses 

Geological changes driving speciation. To test the historical effects of geological 

barriers on species diversification, we asked whether the formation of particular barriers 

(Mississippi Embayment inundation, Appalachian Mountains, Teays-Mahomet-Ohio 

River) occurred within the confidence limits of estimated divergence times for three 

species pairs. Divergence times were estimated using two different approaches.  The first 
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approach uses a coalescent model to estimate the rate of migration between, and time of 

divergence for two populations specified a priori (Nielsen and Wakeley 2001). This 

method assumes a panmictic ancestral population splits into two populations, which then 

may or may not exchange migrants (asymmetric migration is allowed). Populations may 

have different effective population sizes, but these are assumed to be constant in time. 

The method also assumes that the genetic loci are selectively neutral and that there is no 

additional population subdivision. Divergence times were estimated for Pseudacris 

nigrita-P. sp. nov., P. brimleyi-P. brachyphona, and P. triseriata-P. feriarum (Figs. 1–3). 

Population boundaries for these three pairs are delineated by the Pearl River, 

Appalachian Mountains, and the Ohio River, respectively.  

Analyses were performed using MDIV (http://ser-

loop.tc.cornell.edu/cbsu/mdiv.htm) following Carstens et al. (2005b). For each of the 

three species pairs, we performed preliminary analyses using the default settings to 

determine an appropriate prior for the scaled divergence time, T, the scaled migration rate, 

M, and the measure of genetic diversity, !. Analyses were performed using the HKY 

model of substitution. All prior distributions were assumed to be uniform with a lower 

bound equal to zero. Based on preliminary analyses, the upper bounds for M were 

assumed to be 3.0, 1.0, and 3.0 for Pseudacris nigrita-P. sp. nov., P. brimleyi-P. 

brachyphona, P. triseriata-P. feriarum, respectively. Likewise, the upper bounds for T 

were assumed to be 1.0, 4.0, and 2.7, respectively. Finally, the upper bounds for ! were 

assumed to be 120.0, 62.1, and 70.0, respectively. After discarding 500,000 cycles as 

burnin, the posterior probability distribution was estimated using 1.5 million cycles of the 
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Markov chain. Estimates of T and ! were used to solve for divergence time (Tdiv) using 

the following equations: T = Tdiv / 2Ne and ! = 4Neµ, where the units of µ are 

substitutions per sequence per generation. To calculate divergence time in years, a 

mutation rate of 0.00249 substitutions per site per million years was assumed, as 

estimated for the same mitochondrial region (12S/16S) in the frog family Pipidae by 

Evans et al. (2004). This rate was converted to the units used in MDIV by assuming a 

generation time in Pseudacris of one year (Green 1964; Caldwell 1987; Smith 1987).  

The second approach to quantifying divergence times, based on penalized 

likelihood, uses fossil calibrations and branch lengths to estimate absolute dates 

(Sanderson 2002). This method assumes that the species identity and date of fossils are 

accurate and that the gene tree used represents the species tree. With this method, 

divergences were estimated across the entire Pseudacris phylogeny. Because there are no 

pre-Pleistocene Pseudacris fossils with known species identity, external calibration 

points from the hylid phylogeny were used. Following Smith et al. (2005), minimum ages 

of clades were constrained in the genus Hyla and at the base of the Acris/Pseudacris split. 

To calculate divergence times, a dataset of the same 12S/16S region was used with 35 

hylid frog sequences (Cannatella and Holloway, unpub. data; see Supplemental Data 3.1) 

in combination with a single representative of each Pseudacris species from our dataset. 

This hylid dataset has taxon sampling comparable to Smith et al. (2005). A Bayesian 

analysis was performed on the combined dataset using the methods described in Lemmon 

et al. (in press) except with 4 runs, a sample frequency of 100, and 40000 total samples. 
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Our phylogeny was generally congruent with the tree of Smith et al. (2005) with 

respect to the nodes to which fossils were assigned. The one exception is the position of 

Hyla gratiosa, which we found to be the sister taxon of H. cinerea, rather than affiliated 

with H. versicolor and H. avivoca. The position of this taxon in our tree is more 

reasonable because the former two species are more similar morphologically and 

acoustically, and they hybridize in nature, suggesting their close relationship (Oldham 

and Gerhardt 1975; Gerhardt et al. 1980; Höbel and Gerhardt 2003). Four of the five 

fossil calibrations (phylogenetic position and age) employed by Smith et al. (2005) were 

used. The H. avivoca/H. gratiosa/H. versicolor calibration found by Smith et al. (2005) 

could not be used because we did not recover those taxa as a monophyletic group. Instead, 

the minimum age of the H. versicolor/H. chrysoscelis/H. avivoca clade was constrained 

to at least 14 ma and the H. gratiosa/H. cinerea clade to at least 15 ma (Holman 2003; 

Smith et al. 2005). In sum, we employed six fossil calibration points.  The “root” of the 

tree was constrained to 42 ma, following Smith et al. (2005). 

Analyses were performed using r8s 1.70 (Sanderson 2003). An appropriate 

smoothing parameter was chosen following seven preliminary analyses using a range of 

smoothing parameters (smoothing parameter = 101+0.3n, where n = {0,1,2,3,4,5,6,7}). The 

parameter producing the smallest cross-validation score was used in the final analysis 

(Sanderson 2002). To assess uncertainty in the divergence time estimates, we repeated 

the analysis using 1000 trees randomly sampled from the posterior distribution (see 

Bayesian phylogenetic analysis above). Since preliminary analyses suggested that the 

optimal smoothing parameter did not vary substantially across the 1000 replicates, we 
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used the value 79, chosen in the above analysis, for all replicate analyses. Confidence 

intervals (95%) were calculated as the range in divergence times estimated for each node 

after removing the lower 2.5% and upper 2.5% of the distribution of times estimated for 

that node. This procedure is analogous to the bootstrapping approach used by Evans et al. 

(2004). For the complete hylid chronogram see Supplemental Figure 3.1. 

Uncertainty in Timing of Geological Processes. The timing of Mississippi Embayment 

inundation is based on relative sea-level estimates that have been measured on a fine 

temporal scale (Haq et al. 1987). Timing of recent Appalachian uplift is somewhat 

uncertain. Data based on sedimentation rates and fault ages bracket uplift from late 

Oligocene to Miocene and suggest that orogenic activity slowed substantially by the late 

Miocene and the mountains rapidly eroded (Hack 1982; Pazzaglia and Brandon 1996; 

Prowell and Christopher 2000, 2006). More extensive geological data are needed to 

refine this estimate. The estimate for Teays-Mahomet river divergence is based on 

paleomagnetic and stratigraphic data, indicating this event occurred between 0.79 and 

0.88 ma (Bigham et al 1991; Bonnett et al. 1991; Goldthwait 1991). In this paper, we 

consider a geological event to be consistent with a speciation event if the confidence 

intervals of the two events overlap.   

Rivers as barriers to gene flow. Modern river systems have been suggested as important 

barriers to gene flow (Kozak et al. 2006; Liu et al. 2006; Pauly et al. 2007). In order to 

determine whether this is the case for Pseudacris, patterns of genetic variation were 

examined in one exemplar species (P. feriarum) that spans several major rivers. We 



 

 98 

expect that if a particular river inhibits gene flow among populations, then genetic 

distances between populations spanning the river should be greater than genetic distances 

between populations on the same side of the river. Partial Mantel tests (Mantel 1967; 

Smouse et al. 1986) were employed to test hypotheses that the following rivers are 

barriers to gene flow in P. feriarum: Apalachicola/Chattahoochee (within inland clade 

only), Altamaha/Oconee (all P. feriarum), Savannah (coastal clade only), and Cape 

Fear/Haw (coastal clade only; Fig. 3.1E, 3.3E). This type of test permits integration of 

geospatial data into population genetic analyses (Kidd and Ritchie 2006). Within-clade 

tests were performed to maximize the independence of each test (to reduce the effects of 

other rivers). The partial Mantel test calculates partial correlations between a response 

variable and multiple independent variables (Smouse et al. 1986). In this way, we can test 

for a correlation between two variables (genetic distance, position relative to barrier) 

while controlling for a third variable (geographic distance). Pairwise genetic distances 

were measured in terms of patristic distance, calculated as the sum of branch lengths 

between a pair of populations on the majority-rule Bayesian topology (Fig. 3.3E). 

Redundant haplotypes were included in these analyses by inserting them with zero length 

branches next to their identical haplotype. Geographic distance was measured as the 

great-circle distance between populations (Sinnott 1984). Geographic distances were not 

log-transformed because the relationship between genetic and geographic distance was 

approximately linear. Position of two populations relative to the river was coded as either 

same or opposite sides. To perform the test, we calculated (1) a matrix of pairwise 

patristic distances, (2) a matrix of pairwise geographic distances, and (3) a matrix of 
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binary variables indicating whether a pair of populations spans the barrier or not. All tests 

were performed in FSTAT 2.9.3 (Goudet 1995) with 10,000 randomizations. A 

significant result suggests that the river inhibits gene flow.  

As a corollary to the barrier tests, we asked whether coastal Pseudacris feriarum 

shows evidence of northward expansion east of the Appalachian Mountains in response 

to recent climatic change along the eastern Piedmont (Williams et al. 2000, 2004). 

Specifically, we hypothesize that if northward expansion has occurred, populations 

should exhibit lower pairwise genetic distances on the north side of the Savannah River 

than on the south side. To test this, we performed a randomization test, hereafter referred 

to as the Range Expansion Test: 1) all pairwise patristic and geographic distances among 

populations were calculated, 2) population pairs from one side of the barrier were placed 

in one category, and pairs from the other side of the barrier were placed in a second 

category, 3) to remove the effect of geographic distance, pairwise patristic distances were 

divided by great circle distances between populations, 4) this standardized patristic 

distance (v) was averaged for all population pairs north of the barrier (

! 

v N) and for those 

south of the barrier (

! 

v S), and the difference between these values was used as the test 

statistic (!

! 

v test), 5) the categories assigned to the population pairs (north or south) were 

randomized, and !

! 

v rand was calculated; this step was performed 100,000 times to 

generate a null distribution, and 6) the distribution of !

! 

v rand was compared to the test 

statistic !

! 

v test. A significant result suggests that the species has undergone a recent 

expansion. 
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Climatic changes affecting genetic diversity. We examined the effects of climatic 

fluctuations on genetic diversity in seven Trilling Pseudacris clades, three of which 

occupy formerly glaciated or aridified areas (P. brimleyi was not included due to small 

sample size). If these clades have expanded their ranges into climatically disturbed areas, 

we expect to observe both a pattern of recent population growth and reduced genetic 

variation relative to geographic area. 

In order to test for population growth, the coalescent model of population growth 

developed by Kuhner et al. (1998) was employed. Populations experiencing growth are 

expected to have many coalescent events near the tips of the tree, whereas stable 

populations are expected to have a relatively larger proportion of deeper coalescent 

events (Kuhner et al. 1998). Growth rate (g) was estimated for each of the seven clades 

following Carstens et al. (2004). First, ! was estimated for each clade using the 

coalescent model implemented in MIGRATE 2.1.2 (Beerli and Felsenstein 1999). Using 

these estimates of diversity as the starting parameters, g was estimated for each clade 

using FLUCTUATE 1.4 (Kuhner et al. 1998). In order to avoid potential bias in 

estimating confidence in g (Abdo et al. 2004), we tested for significance of each value of 

g by generating a null distribution for each clade. The null distributions were obtained by 

first simulating 100 datasets using TREEVOLVE 1.3.2 (Grassly et al. 1999) and the 

values of ! estimated above, assuming constant population size (g = 0). Then g was 

estimated for each of those datasets using FLUCTUATE (with the same settings as 

above). Finally, the values of g estimated with the empirical datasets were compared to 
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the null distributions of g to test for significance. Substitution model parameters required 

for the analyses were estimated in PAUP* v4.0b10 (Swofford 1998).  

If taxa have expanded their ranges into climatically-disturbed areas, we predict 

that: 1) clades in climatically-disturbed areas will have lower genetic variation than 

clades in undisturbed areas and 2) in clades that span the boundaries of these regions, 

populations within the affected region will show lower genetic variation (

! 

v ) than 

populations outside the region. To test the first prediction, the amount of standardized 

genetic variation (

! 

v ) within each clade was quantified and compared across clades. The 

values were compared by first sorting the species-level clades by 

! 

v , and then by testing 

for significance using a randomization test that is analogous to a Tukey Test (Zar 1998). 

The test statistic is the difference between 

! 

v  for two adjacent clades in the sorted list. The 

null distribution was simulated by randomizing vs between two adjacent clades and 

calculating "v (with 100,000 randomizations).  

To test the second prediction, we considered only clades with part of their range 

in climatically-disturbed areas. In the Trilling Pseudacris, one clade is found in glaciated 

areas (Pseudacris triseriata), one inhabits aridified areas (P. sp. nov.) and one is in both 

(P. maculata/P. clarkii; Fig. 3.2). The glacial boundary was designated using the 

maximum extent of the most recent glaciation (Wisconsin), based on Denton and Hughes 

(1981). The aridification boundary was approximated using data from Bartlein et al. 

(1998). To assess whether populations in climatically-disturbed areas have significantly 

lower genetic variation, we performed the Range Expansion Test described above. 
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3.3 RESULTS 

Timing of Speciation 

All speciation events in Pseudacris occurred in the Tertiary rather than the 

Quaternary. This result is supported by both approaches for estimating divergence times, 

which give remarkably congruent estimates (Fig. 3.4). The youngest split is between P. 

maculata and P. clarkii, which occurred near the end of the Pliocene. These results 

demonstrate that Pleistocene climatic factors did not cause the major species-level 

divergences in this group. 

Inundation of the Mississippi Embayment is consistent with timing of speciation 

between Pseudacris nigrita and P. sp. nov. During the late Miocene and early Pliocene, 

sea levels fluctutated and rose above current levels (Haq et al. 1987; Figs. 1, 4). The peak 

sea level of this period, which was sufficient to geographically isolate the current ranges 

of these species (Fig. 3.2), occurred at the same time as the speciation event, 

approximately 4.8 ma (Fig. 3.4). Prior to this peak, sea levels dropped to at or below 

current levels potentially allowing passage of the ancestor of these taxa. 

The most recent uplift of the Appalachian Mountains occurred well before the 

divergence of Pseudacris brachyphona and P. brimleyi. Although orogenic activity took 

place in the Oligocene and Miocene (5.3–33.9 ma), speciation between these taxa is 

estimated to be during the Pliocene, approximately 4.6 ma (Table 3.1; Fig. 3.4). Although 

the Appalachians may currently restrict gene flow, the actual uplift of the mountains did 

not cause divergence of these species. 
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The Teays-Mahomet River shifted to form the Ohio River after speciation 

between Pseudacris feriarum and P. triseriata (Fig. 3.1D-E). Damming of the Teays-

Mahomet River occurred from 0.79–0.88 ma, whereas divergence of these taxa is 

estimated at approximately 2.6 ma (Table 3.1; Fig. 3.4). Therefore, this particular channel 

shift does not appear to be a factor in speciation. 

The average 12S/16S mutation rate that we estimated for hylid frogs from r8s 

(0.00277 substitutions per site per million years) is highly consistent with estimates from 

distantly related pipid frogs (0.00249; Evans et al. 2004). For illustration purposes, we 

show the results of the MDIV estimates of divergence times using this new mutation rate, 

although we favor the Evans et al. (2004) estimate for the MDIV calculations because it 

is from an independent source (Table 3.1).  

Rivers as Barriers to Gene Flow 

The results from the partial Mantel tests suggest that each of the four rivers 

restrict gene flow in Pseudacris feriarum. A significantly different genetic distance exists 

between populations on the same side of the river compared to populations on different 

sides of the river, even after controlling for geographic distance (Table 3.2). These data 

suggest that river systems may form important barriers to gene flow in chorus frogs. 

The randomization test for expansion in coastal Pseudacris feriarum points to 

significantly greater genetic distances among populations south of the Savannah River 

than populations on the north side (P < 0.0001). In addition, the phylogeny shows that the 
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earliest-branching populations in this clade are from Tennessee and Georgia, and the 

deeply-embedded populations are from the Carolinas and northward (Fig. 3.3E). These 

results are consistent with a pattern of northward expansion. 

Effects of Climate on Genetic Variation 

Estimates of the growth parameter (g) show evidence of recent population growth 

in all clades examined except Pseudacris brachyphona (Table 3.3). Although estimates 

of g are not directly comparable among clades due to their different genealogical histories 

and population sizes, the P-values for expansion in the P. maculata/clarkii 

(glaciated/aridified range) and P. sp. nov. (partially aridified range) clades are highly 

significant. 

Comparisons of the standardized genetic variation among clades also suggest that 

the two clades existing in previously glaciated areas have undergone recent geographic 

expansion into these areas (Table 3.3). The Pseudacris maculata/clarkii clade has 

significantly lower genetic variation than all other clades, and P. triseriata has the next 

lowest value (although this is not significantly less than P. nigrita). This result is 

supported by the Range Expansion Tests: both P. maculata/clarkii and P. triseriata show 

significantly lower variation in glaciated parts of their ranges. If we omit populations 

from glaciated areas and repeat the Range Expansion Tests, P. maculata/clarkii still has 

significantly lower genetic variation than any other clade (

! 

v  = 0.000419; P = 0.019), 

suggesting that aridification may have reduced variation in this clade. Interestingly, after 

northern populations are removed from the P. triseriata sample, this species has the 
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highest amount of genetic variation of all clades (

! 

v  = 0.001110). These results are 

consistent with the idea that glaciation and aridification have acted in concert to reduce 

genetic diversity in P. maculata/clarkii. We found equivocal support for range expansion 

of P. sp. nov. into formerly aridified areas (the population growth test was significant 

whereas the Range Expansion Test was not significant; Table 3.3).  

 

3.3 DISCUSSION 

Divergence times estimated using two independent approaches indicate that the 

major lineages of trilling chorus frogs diversified during the Tertiary (late Miocene), and 

therefore Quaternary climatic change was not an important factor driving speciation. 

Instead, we show evidence that at least one geological event, the inundation of the 

Mississippi embayment during the Pliocene, resulted in speciation. To our knowledge, 

this is the first study to demonstrate that this event contributed to speciation in any group. 

We also show that modern river systems reduce gene flow in Pseudacris and thus 

potentially promote diversification. Lastly, Pseudacris populations inhabiting areas 

affected by Quaternary climatic change have reduced levels of genetic variation 

compared to populations from more equable regions, suggesting that these areas have 

been recently colonized.  

Geological Processes and Species Diversification 
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Identifying the primary factors that have caused speciation is notoriously difficult 

and frequently speculative. Here, we employed a predictive hypothesis-testing approach 

to test for correlations between timing of species divergence and timing of geological 

events that are relevant to the species distribution. The geological events examined 

include inundation of the Mississippi Embayment, uplift of the Appalachian Mountains, 

and diversion of the Teays-Mahomet River. Although the latter two geological events 

were ruled out as causes of species divergence, the timing of the first event is consistent 

with timing of speciation between Pseudacris nigrita and P. sp. nov.  

Inundation of the Mississippi Embayment. Marine inundation of the Mississippi 

Embayment is correlated with at least one speciation event in Pseudacris. Sea levels in 

the Embayment reached the maximum inland extent during the early Cenozoic, then sea 

levels fluctuated and gradually receded through the late Cenozoic (Fig. 3.1A; Reed et al. 

2005). A peak level of the late Pliocene seas corresponds to the divergence time of P. 

nigrita-P. sp. nov. Immediately prior to this high sea stand was a drop to present-day 

levels, which potentially allowed passage of the ancestor of Pseudacris nigrita-P. sp. nov. 

across the Embayment before speciation (Fig. 3.4; Haq et al. 1987). Currently the two 

species form a narrow contact zone along the eastern side of the Mississippi Embayment 

(Fig. 3.1A; Gartside 1980). These data are consistent with the interpretation that 

inundation of the Embayment contributed to this speciation event.  

This study is the first to find a correlation between timing of speciation and 

inundation of the Mississippi Embayment. Although the Mississippi River has been 
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implicated as a barrier to gene flow and potential cause of speciation in numerous taxa 

(Moncrief 1993; Burbrink et al. 2000; Austin et al. 2002, 2004; Burbrink 2002; Leaché 

and Reeder 2002; Brant and Ortí 2003; Zamudio and Savage 2003; Hoffman and Blouin 

2004; Howes et al. 2006; Ray et al. 2006), only a handful of studies have attempted to 

estimate timing of divergence between populations currently divided by the river. Though 

all of these divergence estimates may be compromised by methodological problems 

(strict molecular clock; Hillis et al. 1996), two studies suggest divergences occurred in 

the Pleistocene (Brant and Ortí 2003; Howes et al. 2006), one suggests the late Pliocene 

(Hoffman and Blouin 2004), and one supports both Pleistocene and Pliocene divergences 

(Austin et al. 2004). Pleistocene divergences are more likely due to geographic isolation 

caused by ice sheets or glacial outwash in the Mississippi River Valley rather than marine 

inundation because seas did not extend much further into the Embayment than present 

during this period (Fig. 3.4; Reed et al. 2005). The Pliocene divergence of northern 

leopard frogs (Hoffman and Blouin 2004) is not related to marine inundation because the 

frogs are distributed north of the Mississippi Embayment. No geological or climatic 

factor has been suggested as the cause of the Pliocene divergence between Pseudacris 

crucifer clades (Austin et al. 2004). 

Austin et al. (2004), who studied Pseudacris crucifer, did not suggest a factor of 

divergence for the Pliocene split. 

Appalachian uplift. The most recent uplift of the Appalachian Mountains is not 

correlated with the divergence of Pseudacris brachyphona-P. brimleyi, which occurred 
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well after the uplift (Fig. 3.4). Though the eroded mountains may still have played a role 

in divergence if the ancestor dispersed across the mountains, the uplift itself did not cause 

speciation. An alternative hypothesis for the cause of divergence between these species is 

bisection of their ancestral range through competition from another chorus frog, the 

ancestor of P. feriarum-P. kalmi-P. triseriata. Evidence that this ancestor existed along 

the corridor between the modern distributions of P. brachyphona and P. brimleyi comes 

from the fact that P. kalmi was left behind in the northeastern U.S after speciation 

occurred during the middle Pliocene. Though this idea is speculative, P. brimleyi and P. 

feriarum are rarely found sympatrically, suggesting their distributions may be restricted 

by interspecific competition (E. M. Lemmon, unpub. data). Therefore, we hypothesize 

that historical competition among lineages caused allopatric divergence.  

The Appalachians have been proposed to be an important geographic feature 

causing divergence in other taxa (Burbrink et al. 2000; Austin et al. 2002; Leaché and 

Reeder 2002; Church et al. 2003; Zamudio and Savage 2003; Austin et al. 2004; Runck 

and Cook 2005). Divergence times between clades spanning the mountains have only 

been estimated in two of these studies (Church et al. 2003; Austin et al. 2004); in both, 

divergences are thought to have occurred during the Pleistocene, long after uplift and 

erosion of the Appalachians had occurred. Both of the latter studies attributed the 

divergences to the effects of glaciation rather than to Cenozoic uplift of this mountain 

system. 



 

 109 

Teays River development. Although our results suggest that modern river systems can 

be important barriers to gene flow, the data indicate that diversion of the ancient Teays-

Mahomet River did not cause speciation in the trilling Pseudacris. Rather, this event 

occurred well after the divergence of P. feriarum-P. triseriata (Fig. 3.4). Prior to 

formation of the westward flowing Teays-Mahomet River, however, the Teays flowed 

northward, emptying into the Lake Erie basin (Fig. 3.1C; Gray 1991; Melhorn and 

Kempton 1991). At some point during the late Pliocene, the northward path of the Teays 

was diverted west to form the Teays-Mahomet, thereby cutting off the land connection 

between northern and southern Indiana, Ohio, and Illinois (Gray 1991; Melhorn and 

Kempton 1991; Strange and Burr 1997). Because this event has not been well studied in 

the geological literature, there are no precise estimates for the timing of this channel shift. 

The general time frame (late Pliocene), however, is consistent with the divergence 

estimates for P. feriarum-P. triseriata, and may therefore be involved in this speciation 

event. Additional geological data are needed to test this hypothesis. 

Although not important for speciation in chorus frogs, which are terrestrial, 

modification of the Teays-Mahomet River may have caused divergence in some aquatic 

taxa (Hocutt et al. 1978; Mayden 1988; Strange and Burr 1997; Berendzen et al. 2003; 

Kozak et al. 2006). Though many phylogeographic patterns are consistent with this event, 

evidence from divergence time estimates is tenuous. In the only two studies that 

estimated timing of genetic divergences (Strange and Burr 1997; Kozak et al. 2006), 

estimates (based on a molecular clock) pre-dated the Quaternary, thereby ruling out 

glacial blockage of the Teays-Mahomet as a cause of divergence. Future research should 
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not only identify genetic patterns consistent with positions of ancient river drainages but 

also attempt to correlate timing of speciation events with timing of drainage modification. 

Climatic Factors and Reduced Genetic Diversity 

Quaternary climatic factors did not cause speciation, but rather have reduced 

genetic variation in Pseudacris. In particular, clades from glaciated areas have the lowest 

genetic variation. Furthermore, within clades that span the glacier boundary, populations 

in glaciated regions have significantly lower genetic diversity than those from 

unglaciated regions. These clades also show evidence for significant recent population 

growth, supporting the idea that glaciated regions have been recently colonized. These 

results are consistent with a myriad of other studies that have found similar colonization 

patterns following glacial recession (see Hewitt 1999, 2000, 2004 for reviews). 

The hypothesis that aridification of the western U.S. affected the demographic 

history of the P. maculata/clarkii lineage is supported by the strikingly low level of 

genetic variation throughout the clade. Despite the age (~9.4 ma) and the broad 

distribution of this lineage, populations show little geographic structuring and subclades 

have only shallow divergences. Even when only populations in unglaciated areas are 

examined, genetic variation is lower than in any other trilling Pseudacris clade, 

supporting the idea that aridification caused local extinction. This suggests that aridified 

areas were recently colonized by this clade. A different pattern, however, was found in P. 

sp. nov., in which genetic variation is slightly higher in the aridified region. One possible 

explanation is that the Ozark Mountains may have formed a refugium for P. sp. nov., 
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allowing populations to survive during the drought. This idea is supported by studies of 

freshwater fishes, which not only persisted but even diversified during this period 

(Mayden 1988). To test the Ozark refugium hypothesis, however, more intense sampling 

of P. sp. nov. should be conducted in the area. 

Whereas recent expansion into glaciated areas is supported by many taxa, 

expansion into aridified regions has not been as well studied. An alternative explanation 

for reduced genetic variation is that a selective sweep (Hartl and Clark 1997) erased 

mitochondrial variation in aridified areas. Although comparison of data from nuclear 

markers with mitochondrial data would be the optimal approach for testing this 

hypothesis, a selective sweep in Pseudacris is unlikely because a similar pattern of low 

genetic variation exists in several other western wetland-restricted taxa, including tiger 

salamanders (Shaffer and McKnight 1996), painted turtles (Starkey et al. 2003), and 

leopard frogs (Hoffman and Blouin 2004). The improbability that selective sweeps 

occurred in multiple taxa in the same region suggests, rather, that the same climatic 

processes affected contraction and expansion of these species’ geographic distributions. 

Routes of Geographic Expansion and Contact Zones 

Following Quaternary climatic changes due to glaciation and aridification, chorus 

frogs expanded geographically to colonize previously uninhabitable areas of North 

America (Fig. 3.5). Signatures of these expansions can be detected in several taxa. The 

genetic patterns in Pseudacris triseriata suggest the species expanded northward from 

unglaciated areas in southern Illinois, Indiana, and Ohio. This expansion is congruent 
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with the routes of other taxa (Pseudacris crucifer clade D: Austin et al. 2002; Ambystoma 

maculatum interior clade: Zamudio and Savage 2003). The close phylogenetic 

relationship of P. maculata haplotypes in SE Ontario and in southern Illinois suggest that 

the species expanded across Illinois, Indiana, and Michigan before entering SE Ontario 

between Lake Erie and Lake Huron. This scenario suggests that P. maculata (a freeze-

tolerant species; Storey and Storey 1987; Jenkins and Swanson 2005) expanded into 

formerly glaciated areas prior to P. triseriata, which later bisected the distribution of P. 

maculata (Fig. 3.5). Alternative entry routes for P. maculata into SE Ontario (e.g., via 

upstate Michigan) are less likely because these would require frogs to traverse large areas 

of currently (and presumably, historically) unsuitable habitat (Fig. 3.2; Bleakney 1959; 

Cook 1964; Lannoo 2005). Pseudacris maculata also expanded across the western U.S. 

and Canada into formerly glaciated and aridified areas. 

Species that currently inhabit the Coastal Plain of the eastern and southern U.S. 

likely underwent frequent range expansion and contraction as sea levels fluctuated 

throughout the Pliocene and Pleistocene (Haq et al. 1987). One such fluctuation (Hobbs 

2004) allowed gene flow between populations on the Delmarva Peninsula 

(Delaware/Maryland/Virginia; Pseudacris kalmi) and populations of eastern mainland 

Virginia (P. nigrita), indicated by a putative hybrid between the two species (Figs. 2, 3; 

Lemmon et al. in press). The finding that Coastal Plain species (P. kalmi, P. nigrita, P. sp. 

nov.) have relatively lower genetic variation (Table 3.3) than inland species (P. 

brachyphona and P. feriarum) is consistent with the prediction that sea level fluctuations 
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had a demographic effect similar to glaciation. This hypothesis can be tested by 

examining genetic variation in other organisms with similar distributions. 

The strongest evidence for expansion is found in the coastal Pseudacris feriarum 

clade: northern populations have significantly lower genetic variation (Table 3.3) and 

southern populations are phylogenetically basal (Fig. 3.3). Although the northern P. 

feriarum distribution did not experience glaciation, it was indirectly affected through 

southward expansion of boreal forests (Davis 1983; Williams 2000, 2004). Thus, it is 

probable that coastal P. feriarum contracted its range southward during the last glacial 

maximum and later expanded northward (Fig. 5), a hypothesis testable by combining 

ecological niche and paleoclimate models (e.g., Carstens and Richards 2007). Pseudacris 

crucifer shows a similar expansion route (clades A+B: Austin et al. 2002).  

An extremely interesting finding is the strong congruence between proposed 

suture zones or contact zone hot spots (Remington 1968; Swenson and Howard 2004, 

2005) and areas of contact among mitochondrial lineages of the trilling chorus frogs (Fig. 

3.2). In particular, the southeastern Ontario hybrid zone hot spot (No. 5, Swenson and 

Howard 2005) corresponds closely to the contact between Pseudacris maculata and P. 

triseriata. The central-southeastern Alabama tree contact zone hot spot (No. 3, Swenson 

and Howard 2005) matches with an area of contact between P. brachyphona, P. feriarum, 

P. nigrita, and P. sp. nov. The central Texas suture zone (No. 3, Remington 1968) lines 

up with the contact between P. clarkii and P. sp. nov. Perhaps most significantly, the 

southern Indiana/Illinois/Missouri–northern Kentucky/Arkansas hot spot (suture zone No. 
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VIIG, Remington 1968; tree contact zone No. 4, Swenson and Howard 2005) 

corresponds closely to the contact between two species pairs: P. feriarum and P. 

triseriata in the eastern region, and P. maculata and P. sp. nov. in the west. Although 

Swenson and Howard (2005) did not include data from amphibians, our study suggests 

that suture zones apply to this group as well. Future studies attempting to uncover 

biodiversity should be careful to sample these North American hot spots. 

 

3.5  CONCLUSION 

In this study, we have highlighted the importance of developing testable a priori 

hypotheses with respect to phylogeographic questions and evaluating these hypotheses 

within a statistical framework. We provide a novel combination of approaches: 

correlation of the timing of barrier development and species divergence times, and 

examination of the effects of climatic fluctuations on genetic variation. This strategy 

allowed us to test several geological events thought to promote diversification in North 

America. Our study offers insight into general patterns of speciation and provides a guide 

for future phylogeographic studies attempting to identify the specific features driving 

divergence. 
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Table 3.1. Estimates of divergence times in three sister species pairs using coalescent (MDIV) and penalized likelihood (r8s) 

approaches.  The columns indicate: the species pair that diverged, a measure of genetic diversity (!), mutation rate (µ) in units 

of substitutions per site per million years, divergence time in millions of years (bold) using the µ from Evans et al. (2004; 

Tdiv1A) and µ estimated from analysis of the hylid dataset (Tdiv1B), 95% lower and upper confidence limits on Tdiv1, divergence 

time in millions of years derived from the r8s analysis (Tdiv2), and 95% lower and upper confidence limits on Tdiv2. 

 

 MDIV results r8s results 

 

 

 Evans et al. µ Estimated µ 

 

 

Species Pair ! µ Tdiv1A CI ! µ Tdiv1B CI Tdiv2 CI 

 

P. nigrita/sp. nov. 38.08 0.00249 4.63 3.56–6.08 38.08 0.00277 4.16 3.20–4.46 4.97 3.50–6.72 

 

P. brachyphona/P. brimleyi 24.59 0.00249 4.17 3.03–6.23 24.59 0.00277 3.75 2.72–5.6 4.95 3.37–6.68 

 

P. feriarum/P. triseriata 68.88 0.00249 2.40 1.93–3.03 68.88 0.00277 2.16 1.73–2.72 2.86 1.86–4.12 
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Table 3.2. Role of modern river systems in restricting gene flow. Partial Mantel tests 

were conducted for four river systems. A significant result suggests that a river inhibits 

gene flow between populations. The Mantel test statistic (r) is analogous to the Pearson 

product-moment correlation coefficient and r
2
 is the coefficient of determination. This 

statistic tests the partial correlation between genetic distance and rivers after controlling 

for geographic distance. Significant P-values are indicated by an asterisk. 

 

River P r r
2
 

 

Apalachicola < 0.0001* 0.285 0.375 

Altamaha < 0.0001* 0.362 0.569 

Savannah < 0.0001* 0.569 0.646 

Cape Fear < 0.0001* 0.181 0.355 
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Table 3.3. Measures of genetic variation (

! 

v ), range expansion (!v), and growth (g) in 

seven Trilling Pseudacris clades. Taxa are identified as from glaciated (G), aridified (A), 

or unaffected (–) regions. Clades are listed in order from smallest to largest standardized 

genetic variation (

! 

v ). Each P-value corresponds to a test between the neighboring 

! 

v  and 

the 

! 

v  immediately below (see text for details). For the range expansion test, the statistic 

!v quantifies the within-clade difference between 

! 

v  of populations in a climatically-

disturbed area and 

! 

v  of populations outside the area. An asterisk next to the P-value 

indicates evidence for population expansion into a climatically-disturbed region. The 

Pseudacris maculata/clarkii clade was only tested for expansion into glaciated regions 

and not for expansion into aridified regions because no populations are located outside 

aridified regions. Growth parameters (g) were estimated using FLUCTUATE and 

significance of these values was determined through simulation of null distributions. A 

significant value, denoted by an asterisk, indicates that the population has undergone 

recent population growth.  

 

 Genetic Variation Range Expansion Growth 

 

Clade Region 

! 

v  P !v  P g P 

 

P. maculata/clarkii G A 0.000330 0.00 * 0.000161 0.00 * 1035 0.00 * 

P. triseriata G 0.000558 0.25  0.000701 0.00 * 1191 0.01 * 

P. nigrita – 0.000645 0.37  - -  494 0.01 * 

P. kalmi – 0.000677 0.36  - -  4055 0.02 * 

P. sp. nov. A 0.000805 0.48  -0.000059 0.56  1252 0.00 * 

P. brachyphona – 0.000806 0.06  - -  61 0.45  

P. feriarum – 0.000906 -  - -  192 0.00 *  
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Supplemental Data 3.1. List of taxa included in a Bayesian phylogenetic analysis of 

hylid frogs. All taxa except the outgroups Agalychnis callidryas, Hyla microcephala, 

Phrynohyas venulosa, and Trachycephalus jordani were included in the penalized 

likelihood analysis to estimate divergence times. The Acris, Hyla, and Smilisca sequences 

are taken from Cannatella and Holloway (unpub. data) and the Pseudacris are either 

published in Moriarty and Cannatella (2004) or Moriarty et al. (in press). The combined 

dataset includes complete 12S, tRNAval and 16S mitochondrial sequence data for these 

taxa. 

 

Species Field Number Genbank Number 

Acris crepitans DCC3535 EF566969 

Acris crepitans MGP01060103 EF566970 

Acris gryllus ECM0052 EF566971 

Agalychnis callidryas DCC2134 EF566944 

Hyla andersonii HAFL04 EF566956 

Hyla andersonii HASCB01 EF566955 

Hyla andersonii WED54451 AY291115 

Hyla arenicolor DCC3043 EF566960 

Hyla arenicolor DCC3897 EF566958 

Hyla arenicolor HCG2 EF566959 

Hyla avivoca H146 EF566947 

Hyla avivoca HCG28 EF566946 

Hyla chrysoscelis DCC3095 EF566948 

Hyla chrysoscelis DCC3829 EF566949 

Hyla cinerea DCC3511 AY680271 

Hyla euphorbiacea JAC8895 EF566961 

Hyla eximia JAC8527 EF566957 

Hyla eximia JAC8160 AY291113 

Hyla femoralis DCC3858 EF566964 

Hyla gratiosa H15929 EF566966 

Hyla japonica WED2 EF566952 

Hyla meridionalis KU207371 EF566953 

Hyla microcephala MVZ203881 EF566945 

Hyla pentheter JAC7808 EF566972 

Hyla plicata JAC8599 EF566962 

Hyla savignyi KU207344 EF566954 

Hyla squirella H487 EF566965 

Hyla versicolor DCC3512 EF566951 

Hyla versicolor DCC3800 EF566950 

Hyla walkeri JAC7861 EF566963 

Hyla zeteki MVZ203913 EF566968 

Phrynohyas venulosa DCC3069 AY326048 

Pseudacris brachyphona ECM0040 AY291095 

Pseudacris brimleyi ECM0079 AY291094 
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Pseudacris cadaverina ECM0150 EF472006 

Pseudacris clarkii JTC2828 EF472104 

Pseudacris crucifer ECM0039 AY291099 

Pseudacris feriarum ECM0382 EF472177 

Pseudacris illinoensis ECM0001 AY291109 

Pseudacris kalmi JTC2836 EF472228 

Pseudacris maculata DCC3851 EF472080 

Pseudacris nigrita ECM0372 EF472042 

Pseudacris ocularis ECM0045 AY291097 

Pseudacris ornata ECM0033 AY291106 

Pseudacris regilla ECM0147 EF472005 

Pseudacris sp. nov. ECM0029 AY291085 

Pseudacris streckeri P-2 AY291108 

Pseudacris triseriata J-1 AY291091 

Smilisca baudinii DMH86_269 EF566967 

Smilisca phaeota DMH86_115 AY326040 

Trachycephalus jordani DCC2917 AY326042 
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Figure 3.1. Hypotheses for geological factors contributing to speciation. Panel A illustrates the 

hypothesis that marine inundation of the Mississippi Embayment led to speciation between P. 

nigrita (white boxes) and P. sp. nov. (gray boxes). White lines indicate the maximum extent of 

inundation during the Miocene and Pliocene. Note that each of these inundations bisects the 

current distributions of these taxa (indicated by black lines). Panel B describes the hypothesis that 

uplift of the Appalachian Mountains caused divergence of P. brachyphona (white stars) and P. 

brimleyi (gray stars). Current high elevation areas are shown in light gray. Panels C–E show 

development of the Teays-Mahomet-Ohio River systems from the Pliocene (C), to early 

Pleistocene (D), to present (E) positions. Panels D–E illustrate the hypothesis that glacially 

induced diversion of the Teays-Mahomet River caused speciation between Pseudacris feriarum 

(dark gray diamonds) and P. triseriata (light gray diamonds). Panel E also shows four modern 

river systems (Apalachicola, Altamaha, Savannah, and Cape Fear) that bisect the range of P. 

feriarum and that contribute to intraspecific divergence.
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Figure 3.2. Distributions of North American Trilling Chorus Frogs. Species boundaries 

are based on the phylogeny (Fig. 3.3; Lemmon et al. in press) and county-level taxon 

records from Lannoo (2005). Markers indicate populations sampled and correspond to 

species in the phylogeny on the right. Ranges of P. brachyphona and P. brimleyi are 

outlined in black for visual clarity. Capital letters indicate the following hybrid 

combinations, in which the first species listed refers to the behavioral/morphological 

identity and the second to the mitochondrial DNA identity of the individual: NS–P. 

nigrita-P. sp. nov., BF–P. brachyphona-P. feriarum, BT–P. brachyphona-P. triseriata, 

and NK–P. nigrita-P. kalmi. Degree of overlap between species is indicated where 

known; if no overlap is shown between parapatric taxa, the degree of overlap has not 

been determined. White lines point to boundaries of Pleistocene climatic events. The 

glaciated region is north of the line labeled Glaciation; the aridified region is west of the 

line labeled Aridification. The scale of the branch lengths on the phylogeny is 

substitutions per site. This figure is available in color in the online version of Lemmon et 

al. (in press).  



 

 122 

Figure 3.3. Phylogeny of Pseudacris. Tree A shows the phylogenetic relationships of the 

genus. Numbers of populations sampled from each Trilling Chorus Frog species are 

indicated in parentheses. Trees B-E illustrate the population level relationships of the 

Trilling Chorus Frogs on the fully resolved tree. Each tip on the phylogeny is described 

by a field number, state/province, and county/region of origin.  

Bayesian posterior probabilities above 50% are located near corresponding branches. 

Species names in parentheses indicate species allocation based on morphology and 

behavior, if this conflicted with the mitochondrial clade identity. The scale of the branch 

lengths on the phylogeny is substitutions per site. Note that the branch length scale for 

tree A is 25% of the scale for trees B-E. 
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Figure 3.4. Chronogram of species divergence in Pseudacris and chronology of 

geological events from the late Oligocene to present. Divergences between sister species 

(top half, labeled with black dots) correspond to hypothesized geological events (bottom 

half). Estimated divergence times with 95% error bars are shown for the penalized 

likelihood (black dots) and coalescent (white dots) analyses. Horizontal gray lines 

indicate present day levels of benthic !
18

O and sea level. Because benthic !
18

O levels are 

negatively correlated with temperature, this trace is shown as a proxy for temperature 

fluctuations through time (Zachos et al. 2001; Lisiecki and Raymo 2005). Units for 

benthic !
18

O are described in Zachos et al. (2001, ref. 19). River diversion estimates are 

derived from Gray (1991), Melhorn and Kempton (1991), and Strange and Burr (1997). 

The sea level curve is taken from Haq et al. (1987) and illustrates changes in sea level 

compared to present levels. The Appalachian orogeny bars represent periods of uplift 

(solid bar) and erosion (broken bar) based on Prowell and O’Connor (1978), Hack (1982), 

Reinhardt et al. (1984), Poag and Sevon (1989), Prowell (1989), Prowell and Christopher 

(2000, 2006), and Dennison (2001). 
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Figure 3.5. Proposed expansion routes in several trilling chorus frog lineages following 

Quaternary glaciation and aridification. Hypothesized expansion patterns, indicated by 

dashed arrows, are based on phylogenetic structure and levels of intraspecific genetic 

variation. Glaciated and aridified regions correspond to areas indicated by arrows in Fig. 

3.2. Distributions of unlabeled taxa correspond to species in Figure 3.2. 
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Supplemental Figure 3.1. Full chronogram from a penalized likelihood analysis of 

divergence times across North American hylid frogs based on a 12S/16S mitochondrial 

dataset. Scale is in millions of years (my). Calibration points and root constraint follow 

Smith et al. (2005) except as explained in the methods: 1) root constraint, 42 my, 2) 

North American Hyla, 33 my, 3) Acris–Pseudacris, 15 my, 4) Hyla squirrella–H. 

gratiosa–H. cinerea, 15 my, 5) Hyla gratiosa–H. cinerea, 15 my, 6) Hyla chrysoscelis–H. 

versicolor, 14 my, and 7) European Hyla, 10 my. The four outgroups used in the 

Bayesian analysis are not shown (full phylogeny can be obtained from TreeBase). 
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Chapter 4 

Acoustic Niche Partitioning and Signal Divergence  

in Chorus Frogs (Pseudacris) 

 

Abstract. Acoustic interference of reproductive signals in breeding aggregations can 

reduce the ability of individuals to locate conspecific mates. When this reproductive cost 

is high, species may be under selection to avoid acoustically similar taxa or to evolve 

signals that occupy new acoustic space. Because different components of acoustic signals 

are subject to different selection pressures and constraints, we expect some components 

(physiology-controlled characters) to be more evolutionarily labile than other 

components (morphology-controlled characters). Signal components that are under less 

evolutionary constraint or stronger divergent selection are predicted to form the more 

important axis of differentiation for acoustically similar sympatric species. We test these 

predictions by 1) examining the degree of signal divergence between sympatric and 

allopatric species pairs, and by 2) estimating evolutionary rates of signal components, 

using an acoustically diverse clade, the North American chorus frogs (Pseudacris). We 

find that signal divergence is greater among sympatric species pairs than allopatric 

species pairs, providing evidence that acoustic niche partitioning occurs in chorus frogs. 

Acoustic divergence is significant along the axis of physiology-controlled characters but 

not along the axis of morphology-controlled characters. The former axis is not correlated 
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with body size, a variable that is indicative of the species’ ecological niche within the 

community, supporting the idea that acoustic divergence is not merely a by-product of 

ecological differentiation. Maximum likelihood estimates of the degree of phylogenetic 

effect indicate that physiology-controlled characters are more evolutionarily labile, 

supporting the prediction that these characters are more likely to evolve during acoustic 

niche partitioning among sympatric species.  

 

4.1 INTRODUCTION 

The raucous playlist of songs emanating from a frog pond on a warm summer 

night begs the question: In choruses of multiple species, how do acoustically signaling 

organisms avoid interference? What are the ecological and evolutionary consequences of 

this interference?  

Assuming that species compete for acoustic space—the multidimensional acoustic 

representation of signal structure (Nelson and Marler 1990)—several scenarios are 

possible: species with no acoustic competitors experience no competitive exclusion and 

co-exist without difficulty, while species with very similar calls cannot co-exist in the 

same region or calling site. Alternatively, interference from sympatric species may lead 

to divergent evolution of behaviors. For example, species may diverge with respect to 

acoustic signals, breeding time, or breeding habitat (Duellman 1967; Hödl 1977; Drewry 

and Rand 1983; Donnelly and Guyer 1994; Lüddecke et al 2000; Gottsberger and Gruber 
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2004). This behavioral axis of divergence may be regulated by the available ecological 

space. If optimal breeding time and habitat are limited, however, species may be under 

pressure to partition the acoustic niche—meaning the axes of call variables such as pitch 

(frequency) or temporal components—to minimize signal interference. If species diverge 

acoustically in response to heterospecific interactions, do components of the signal 

diverge uniformly, or are some components more evolutionarily labile? 

Among frogs, acoustic signals are the primary method of communication. Males 

announce their presence to potential mates through an unlearned advertisement call (B. 

Dawson, unpub. data), and females then make mating decisions based on information 

conveyed through the acoustic structure of the signal (Ryan 2001; Gerhardt and Huber 

2002). Frogs frequently call in aggregations of multiple species, each with a species-

specific signal. The anuran advertisement call is subject to both natural and sexual 

selection  (Ryan 1980, 1985, 1991; Gerhardt and Huber 2002). The direction and 

magnitude of call evolution may be affected, however, by biotic and abiotic constraints 

that can have unequal effects on different components of the call. These constraining 

factors include acoustically-oriented predators (Ryan 1985), heterospecific signalers 

(Hödl 1977; Drewry and Rand 1983; Duellman and Pyles 1983), environmental acoustics 

of the calling sites (Ryan and Wilczynski 1991), vocal morphology and size-related traits 

(Ryan 1988), and energetic costs (Wells 2001). Given the diverse selection pressures and 

constraints affecting signals, we might generally predict that individual call variables 

(e.g., call rate, dominant frequency) evolve at different rates. Only Ryan (1988) and 

Cocroft and Ryan (1995) have examined this prediction in a phylogenetic context, testing 
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the prediction that physiology-controlled characters are more evolutionarily labile than 

morphology-controlled characters (see description below). 

If acoustic space is limited, sympatric species pairs are expected to show greater 

signal divergence than allopatric species pairs, a prediction that can be tested by 

measuring call parameters of replicate sympatric and allopatric species pairs. In addition, 

those call characters that are crucial for partitioning acoustic space are predicted to be the 

least constrained, i.e., the most evolutionary labile in general. This prediction can be 

tested by determining which acoustic characters most closely track the phylogeny; i.e., 

retain phylogenetic signal. Finally, if acoustic trait divergence in sympatry results from 

competition for acoustic rather than ecological space, we expect these traits to be 

uncorrelated with variables related to the ecological niche. This prediction can be tested 

by examining correlations between each call variable and body size (an important axis 

along which frogs partition ecological space; Parmalee 1999).  

The North American tree frog genus Pseudacris (chorus frogs) is an excellent 

system for testing these predictions. Advertisement calls of Pseudacris include both 

single-note and pulsed calls that vary across a range of frequencies (Straughan 1975; 

Platz and Forester 1988; Owen and Tucker 2006). Chorus frogs (including spring peepers) 

generally breed syntopically and synchronically following winter and early spring rains, 

before most other species have emerged into the breeding pools (E. C. Moriarty, unpub. 

data), and then disappear after their short breeding season.  Any occasional other species 

breeding at this time (e.g., true frogs [Rana] or cricket frogs [Acris]) is acoustically very 
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different than Pseudacris in several temporal or frequency parameters of the call. Thus, 

other Pseudacris species are the primary competitors for acoustic space during the early 

spring breeding season, and represent the entire acoustic community at most sites. 

An advantage of this system is that consistent mechanisms of sound production 

among chorus frog species allow comparison of homologous call characters. Additionally, 

community structure and behavioral interactions among members of this group are well 

studied (Brandt 1936; Harper 1937, 1939; Schwartz 1957; Gosner and Black 1958; 

Michaud 1964; Gerhardt 1973; Caldwell, 1987). Geographic ranges and overlap among 

taxa have been well documented using museum records and molecular data (Lannoo 

2005; Moriarty et al., in press). Finally, a well-supported phylogeny is available 

(Moriarty and Cannatella, 2004; see additional data below). 

 This study has four goals, the first three of which relate to the hypothesis 

that acoustic space is partitioned in these small acoustic communities. First, we ask 

whether sympatric species pairs are more acoustically divergent than allopatric species 

pairs. Second, we ask which characters are associated with partitioning of acoustic space. 

Third, we examine correlations between call variables and body size to determine which 

characters are influenced by size-related ecology. Fourth, we re-examine the general 

hypothesis (Ryan, 1988; Cocroft and Ryan 1995) that physiologically-controlled call 

characters are more evolutionarily labile than morphologically-controlled characters. We 

test these hypotheses using a phylogeny from new mitochondrial and nuclear DNA 

sequences and a dataset of 15 call characters measured across the genus Pseudacris.
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4.2 MATERIALS AND METHODS 

Sampling. We recorded and collected 15 species of Pseudacris from 21 populations 

across North America. For five species, multiple populations were recorded to reflect 

intraspecific call variation.  At the time call sampling was done, we sampled all 

recognized species. However, recent work has clarified species boundaries. The former 

distribution of triseriata is now known to include some populations of P. maculata, a 

new undescribed species under description (Moriarty et al. in press), as well as true P. 

triseriata. Thus, our original recordings were not made in the proper location to capture 

true P. triseriata.  Also, only data from the southern species (P. hypochondriaca) of the 

three species formerly included in the Pacific chorus frog (recently divided into P. regilla, 

P. sierra, and P. hypochondriaca; Recuero et al. 2006a, 2006b) were examined here. 

Most species were recorded in allopatric locations with respect to Pseudacris species 

with similar calls. Areas where reproductive character displacement is known to occur 

(Fouquette 1975) were avoided. This sampling strategy minimizes the effect of call 

divergence between sympatric species. 

Ten or more individuals were recorded from all species except Pseudacris kalmi 

and P. streckeri, each represented by eight individuals. Ten or more calls were recorded 

from most individuals, resulting in a total dataset of 2611 calls (Supplemental Data 4.1). 

Only advertisement calls were analyzed because other call types, such as aggressive or 

courtship calls, are structurally different (Owen and Tucker 2006). 
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Acoustic analysis. A Sennheiser ME67 directional microphone was used to record calls 

onto TDK MA90 metal bias tape cassettes with a portable Sony stereo cassette recorder 

(WM-D6C). The microphone was held at approximately one meter from the calling frog 

during recording. The frog was then captured and the location and temperature of its 

position were noted. Frogs were euthanized, tissue samples were removed, and specimens 

were preserved and deposited into the Texas Memorial Museum (Austin, Texas) under 

IACUC protocol 06022701. Snout-urostyle length of preserved specimens was measured 

with a precision of 0.01 mm using digital calipers.  

Recordings were digitized using SoundEdit16 version 2 (Macromedia) at a 

sampling rate of 44100 Hz with sample size of 16 bits. Calls were analyzed using 

SoundRuler version 0.941 (http://soundruler.sourceforge.net/; reviewed by Bee 2004). 

This program was designed to accommodate the variety of calls in Pseudacris. Frequency 

measurements were taken from spectrograms generated with FFT length of 1024 samples 

and 900 samples of overlap among subsequent FFTs. All call variables were taken 

directly or calculated from SoundRuler’s raw data output. Definitions of call characters 

are in Supplemental Data 4.2.  

Because some call variables change with the frog’s temperature, we corrected the 

appropriate variables to a common temperature of 14°C using linear regression analyses 

(Sokal and Rohlf 1995). All fifteen call variables were regressed against temperature for 

all species using an ! = 0.01 to assess whether a variable was significantly correlated 

with temperature. If a variable's correlation with temperature was significant in three or 
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more species, that variable was corrected in all species; otherwise, the variable was not 

corrected. Calls were corrected using either a species-specific slope (when significant) or 

the significant slope of the species with the most structurally similar call. Structural 

similarity was established by conducting a discriminant function analysis of the raw call 

variables by species and using the Mahalanobis distance between species centroids to 

identify the most similar species. This approach was taken because we observed that 

irrespective of phylogenetic relationships, species with comparable calls are affected 

similarly by temperature. Four call variables were strongly correlated with temperature 

and were thus corrected to the common temperature: call length, call rise time, call rate, 

and call period. These results are consistent with those from intraspecific studies of 

various anurans (Harper 1937; Bellis 1957; Zweifel 1959; Michaud 1964; Zweifel 1967, 

1970; Platz 1989; Gerhardt and Huber 2002; Forester et al. 2003). 

Selection and classification of call characters. We selected call characters known to be 

salient for species recognition in frogs (Klump and Gerhardt 1987; Gerhardt 1991; 

Gerhardt 1994; Gerhardt 1996; Murphy and Gerhardt 2000; Gerhardt and Huber 2002). 

Characters not known to be important in mate recognition but that showed low 

intraspecific and high interspecific variation were also included. To ensure structural 

homology of call components, we define a call as the sound produced by a single 

exhalation during vocalization. We define a pulse as a section of the call delimited by 

amplitude decreases below 50% of the maximum call amplitude. 
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Comparative and experimental studies of call production have suggested that call 

characters fall into two natural categories (Drewry et al. 1982; Martin 1972). The frog’s 

physiology primarily controls temporal properties of the call, including call duration, call 

shape, call rhythm, and pulse number. These characters are produced by active 

contractions of the body wall and laryngeal muscles as the frog forces air from the lungs 

(Schmidt 1965; Martin 1972; Martin and Gans 1972). Morphology, including the shape 

and size of the frog’s larynx and associated arytenoid cartilages (Martin 1971, 1972; 

reviewed in Schneider 1988), controls mostly spectral properties of calls, including 

dominant frequency and relative energy. A dataset of 15 call variables was constructed to 

examine call evolution across the genus Pseudacris. Within this dataset, six characters 

have been surmised to be under morphological control and eight under physiological 

control, and one has not been studied in detail (Table 4.1). 

We examined the distribution for each call character for each species. Normality 

was tested by calculating skewness and kurtosis for each distribution and identifying 

significant deviations from expected values (Sokal and Rohlf 1995). Within a species, 

most variables were normally distributed. Because transformation did not improve the 

overall number of species with normal distributions, all analyses were performed on the 

untransformed data. 

DNA sequencing. Sequence data for a ~2.4kb region spanning the 12S rRNA, tRNA-val, 

and 16S rRNA mitochondrial genes were collected following Moriarty and Cannatella 

(2004).  Seven new sequences from this region were added to the Moriarty and 
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Cannatella (2004) dataset. Data were also collected for the first exon of the nuclear gene 

rhodopsin. Two primers were used to amplify 292 bp: 5’ to 3’ Rhod1U 

AACGGAACAGAAGGCCCAAACTT (modified from Hoegg et al. 2004) and Rhod1L 

GCCAAAGCCATGATCCAGGTGA (designed in our lab). PCR conditions were as 

follows: 1) 2 min 92°C, 2) 30 sec 92°C, 3) 45 sec 48-55°C, 4) 1 min 72°C, 5) 7 min 72°C, 

and 35 cycles of steps 2-4. Annealing temperature (step 3) was adjusted within the range 

above to optimize amplification.  

Samples were purified using the Viogene Gel-M™ gel extraction protocol. 

Sequencing reactions were done with the primers listed above, using the ABI BigDye 

version 3.1 terminator ready-mix. Several internal primers were developed to obtain 

complete sequence data from problematic samples. These primers are: 5’ to 3’ RhodE1U 

GAAGGCTTCTTTGCTACYCTTGGTG, RhodE2U GCTTCTTTGCTACYCTTGGT, 

RhodE3U GATATTCACACCCCATGCTAAGCAA, RhodI4U 

AGGTGGMAGATAGTTTAGTT, RhodI5U GTGGMAGATAGTTTAGTTGGGAATG, 

RhodE1L GGACCAAAGGGCAATTTCACCTGTC, RhodE2L 

ACCAGGGACCAAAGGGCAATTTCAC, RhodI4L TCMTGATACWTCACAGYCTG, 

and RhodI5L CTGCMATGTAAAATGGCATATAC (designed in our lab). An ABI 3100 

PRISM™ sequencer was used to sequence samples (Applied Biosystems Inc.). 

Phylogenetic analyses. Contiguous sequences were constructed from 8 overlapping 

mitochondrial fragments and 2-11 nuclear fragments using Sequencher 4.5 (GeneCodes 

Corp.). Sequence data were aligned using Clustal X 1.8 (Thompson et al., 1997). 
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Alignments were examined and adjusted manually to minimize informative sites; regions 

of ambiguous alignment were defined as character sets and excluded from further 

analyses. To confirm the alignment, nuclear data were translated to codons using the 

universal genetic code in MacClade 4.08 for OSX (Maddison and Maddison, 2005). Data 

partitions and character sets were also defined using MacClade.  

 The mitochondrial and nuclear datasets were concatenated and phylogenetic 

analyses were conducted simultaneously on six data partitions: 12S, tRNA-val, 16S 

(mitochondrial genes), and first, second, and third codon positions of rhodopsin (nuclear 

gene). Prior to phylogenetic analysis, the appropriate model of evolution for each 

partition was chosen using the Akaike information criterion (AIC) in ModelTest 3.06 

(Posada and Crandall 1998). We performed four independent Bayesian analyses using 

MrBayes 3.1.1 (Ronquist and Huelsenbeck 2003) with four heated chains for 300,000 

generations (sampling every 100 generations). Convergence was determined by 

comparing bipartition posterior probabilities across the four runs, and the first 166,000 

samples were discarded as burnin from each analysis.  The remaining samples were then 

combined using a majority-rule consensus tree to calculate the posterior probabilities. 

Branch lengths were obtained by averaging branch lengths across all samples that 

included the bipartition (posterior probability of the branch length). 

Acoustic niche partitioning test. We categorized each of the 105 pairwise combinations 

of taxa as sympatric or allopatric.  Geographic overlap between species was calculated 

from range maps constructed from county-level museum records compiled by Lannoo 
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(2005). Additional information was obtained from a detailed molecular phylogeographic 

study of Pseudacris (Moriarty et al. in press). To estimate degree of overlap, the area of 

sympatry between two species was divided by total area of the species with the smaller 

range (Chesser and Zink 1994). Each species pair was then placed into one of two 

categories, allopatric (<10% overlap) or sympatric (>10% overlap). This degree of 

overlap was chosen because it represented a natural break in the percent overlap data. Of 

the 105 pairs, 29 were sympatric and 76 were allopatric. Geographic overlap values 

between 5% and 20% were also tested and produced consistent results. 

We quantified call distances between each species pair using a multivariate 

approach. First, principal component analyses (PCA; from correlation matrices, using 

JMP 5.1 SAS Institute Inc.) were performed on species means of the physiology-

controlled characters. Second, pairwise call distances between species were calculated 

using scores on PC1. The mean pairwise call distance was then calculated for each 

category, allopatric pairs and sympatric pairs. The difference in means between 

categories was calculated and compared to a null distribution created by randomizing 

species pairs between the two categories for 1000 replicates. This test was repeated for 

the morphology-controlled characters. Because we predicted that sympatric pairs would 

be more divergent than allopatric pairs, a one-tailed test was used. 

Phylogenetic effect on call evolution. We used a generalized least squares (GLS) 

approach to assess the degree of phylogenetic effect on character evolution, using a 

maximum likelihood approach implemented in the program Continuous (Pagel 1994, 
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1997, 1999). The estimated parameter " equals 1.0 if character evolution is explained 

perfectly by the phylogeny and " equals 0 if phylogenetic history has no effect on 

character evolution. Characters that have evolved under the Brownian motion model are 

expected to exhibit a strong phylogenetic effect (" = 1.0; Pagel 1999; Freckleton et al. 

2002). Likelihood-ratio tests are used to test if " is significantly different than predicted 

by the null hypothesis (" = 1). If the null hypothesis is rejected, the interpretation is that 

character evolution cannot be explained by a neutral model of evolution, suggesting that 

the character may be under selection (Darst et al. 2005).  

We also used the software Continuous to assess changes in the rate of trait 

evolution by estimating the parameter # (Pagel 1999).  If most trait evolution has 

occurred early in the radiation of Pseudacris then # < 1.0.  This scenario corresponds to 

early divergence of a call trait variable deep in phylogenetic history, such that these 

ancestral species might easily share geographic space because their acoustic niches are 

separated. If trait evolution has largely occurred late in the phylogeny, near the tips of the 

tree, then # > 1.0. This situation would suggest that call variables diverged recently, 

providing support for recent divergence of acoustic characters.  

Correlations between traits were tested within a phylogenetic context by 

estimating " under the null and alternative hypotheses, where covariance between two 

traits is constrained to be 0 under the null hypothesis (Pagel 1994, 1997, 199). 

Correlations between call variables (or their multivariate counterparts) and body size 
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were tested to determine whether signal divergence is correlated with ecological 

divergence. 

Character evolution along the phylogeny was assessed using mean population 

character values (Fig. 4.1). To obtain population means, each call variable was averaged 

across calls within an individual, and then averaged across individuals within a 

population (21 populations; Supplemental Data 4.1). Parameters were estimated for each 

call variable and likelihood-ratio tests were performed to test for significance. 

Call variables were reduced to principal components using JMP 5.1 (SAS Institute 

Inc.). These analyses were performed to remove some of the correlations among variables 

and to identify differences in degree of phylogenetic effect among characters and 

character suites. Principal component analyses were performed on population means for 

each variable.  

We performed the first set of principal component analyses on character “suites.”  

Here, we combined related measures of a particular call feature. The suites examined 

here include call dominant frequency (composed of dominant frequency begin, end, and 

peak), call relative energy (call relative energy begin and end), call duration (call length, 

call rise time, call fall time), and call rhythm (call rate, call period, and call duty cycle).  

The second set of PC analyses was performed as described under “acoustic niche 

partitioning test.” PC analyses were performed separately on the physiological and 

morphological categories; " was estimated using population PC scores as trait values. To 
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test the hypothesis that physiology-controlled characters are more labile than 

morphology-controlled characters, we used a randomization approach to test for a 

significant difference in " scores for the two categories. Call variables were randomized 

between categories, while maintaining the original number of variables in each group. PC 

analyses were then performed on the randomized set of characters and " scores were 

estimated. This procedure was repeated 500 times and the differences in scores between 

the two categories were used to create a null distribution against which the observed 

difference was tested. 

It is common, almost mandatory, in analyses of tables of statistics to "correct" the 

experiment-wise alpha (probability of a type I error) by application of the Bonferroni 

inequality (see for example, Rice 1989).  This correction, however, is problematic in that 

it increases the probability of committing a Type II error (Perneger 1998). In addition, 

there is currently broad controversy regarding the proper application of this correction 

(Perneger 1998; Moran 2003; Nakagawa 2004). For these reasons, we did not apply the 

Bonferroni correction here. Although we conducted multiple tests on univarate characters 

and present these results for visual purposes, we rely on the single randomization test 

described above to evaluate the character lability hypothesis. 
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4.3 RESULTS 

Phylogenetic relationships of Pseudacris. The Bayesian analysis of the combined 

mitochondrial and nuclear data supports a majority-rule tree consistent with the results of 

Moriarty and Cannatella (2004). The addition of nuclear data provided greater support for 

the basal position of P. crucifer/P. ocularis relative to the clade containing P. ornata, P. 

streckeri, and P. illinoensis, which was an unresolved node in the previous study (Fig. 

4.1). Only four branches had Bayesian posterior probabilities less than 1.00; these are 

listed in Figure 4.1. Branch lengths are provided in Supplemental Data 4.3.  

Acoustic niche partitioning. The randomization test supported the hypothesis that 

sympatric species are more acoustically divergent than allopatric species. The difference 

between allopatric and sympatric pairs was significant for the physiology PC1 scores (p = 

0.041, one-tailed test) but not for the morphology PC1 scores (p = 0.186, one-tailed test). 

These axes explain 68% and 69% of the variation, respectively (Table 4.2). 

Correlations between call variables and body size. No significant correlations were 

found between body size and any physiology-controlled character. In contrast, body size 

is strongly correlated with multiple morphology-controlled characters (Tables 4.1–4.3). 

Phylogenetic effect on call evolution. For univariate characters, the null hypothesis of 

perfect covariance with phylogeny (" = 1) was rejected for 5 of 8 physiology-controlled 

characters and 1 of 6 morphology-controlled characters (Table 4.1). These results should 

be regarded cautiously, however, because several of these characters are highly correlated. 
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When call variables were combined into character suites and analyzed with PCA, the null 

hypothesis was rejected for 2 of 2 physiology-controlled suites and for 0 of 2 

morphology-controlled suites on PC1 (Table 4.3). The maximum likelihood estimate of " 

for PC1 was significantly different than 1 for the physiology-controlled category (" = 

0.89, p = 0.03; likelihood-ratio test) but not for the morphology-controlled category (" = 

1.00, p = 1.00; likelihood-ratio test; Table 4.2). More directly, the randomization test 

rejected the null hypothesis that the difference in " values for the physiological and 

morphological categories was due to chance (p = 0.04, one-tailed test). These results are 

consistent with the predictions of Cocroft and Ryan (1995) and Ryan (1988) that 

physiology-controlled characters should be more evolutionarily labile than morphology-

controlled characters in the genus Pseudacris. 

Rate of signal evolution. The GLS analysis found the # scaling parameter (Pagel 1999) 

to be >1.0 for 10 of 15 call variables and significantly >1.0 for 4 of 15 variables (Table 

4.1). This suggests that most change in call variables occurs near the tips of the tree. 

Values of # are significantly >1.0 for PC2 of both physiology-controlled character suites 

(call duration: high call rise time and call fall time loadings and call rhythm: high call 

duty cycle loading), but not for PC1 or any axes of morphology-controlled characters 

(Table 4.3). The null hypothesis of gradual evolution was not rejected for PC axes 

representing combinations of physiology-controlled or morphology-controlled characters 

(Table 4.2), although #>1.0 for all axes except PC1 of the morphology-controlled 

characters. 
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4.4 DISCUSSION 

Our data demonstrate that the calls of sympatric species pairs are on average more 

divergent than the calls of allopatric species pairs, providing evidence that acoustic niche 

partitioning occurs in frog communities. Interestingly, the results suggest that for 

Pseudacris the divergence of physiology-controlled characters is more important for 

partitioning acoustic space than the divergence of morphology-controlled characters. This 

result is supported by Cocroft and Ryan (1995) and by the other major finding of this 

study, that physiology-controlled characters are more evolutionarily labile than 

morphology-controlled characters in chorus frogs. No correlations were found between 

physiology-controlled characters and body size, suggesting that acoustic differences in 

sympatry are not merely the result of ecological differentiation.  

Comparison with previous work. Whereas there is some support for acoustic niche 

partitioning in other taxa (e.g., bats: Siemers and Schnitzler 2004; birds: Nelson and 

Marler 1990; cicadas: Sueur 2002), there is only equivocal support for this phenomenon 

from previous studies of anuran communities. In a study of three tropical tree frog 

communities, Duellman and Pyles (1983) predicted that species occupying the same 

acoustic space should be allopatric. Based on a cluster analysis of species using call 

variables, they identified 15 species pairs with similar calls.  Six pairs were allopatric and 

nine were sympatric.  Although they interpreted these results as evidence for acoustic 

niche partitioning, this proportion is not significantly greater than random expectation 

(one-tailed binomial test). In an examination of several frog communities, Chek et al. 
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(2003) predicted that species in a community should have calls that are evenly distributed 

across acoustic space. They tested this hypothesis using simulations of random call 

variables and found some support for their prediction in only for 3 of 11 communities. 

Neither of the studies above directly tests the critical prediction of the acoustic 

niche partitioning hypothesis: that sympatric species pairs are more acoustically divergent 

than allopatric species pairs. Our study specifically tests this prediction, by comparing 

levels of call divergence for sympatric species pairs to the null expectation determined 

from allopatric species pairs. Additionally, earlier studies compared species from deeply 

diverged lineages with diverse mechanisms for signal production. Our study, in contrast, 

focuses on a single clade of closely related species. This is advantageous for two reasons. 

First, we can appropriately compare homologous characters of the signals. Second, we 

can identify characters important for differentiating recently diverged taxa. Therefore, 

given the contrasting phylogenetic scales and our results on character lability, it is not 

surprising that we find partitioning by physiology-controlled characters whereas previous 

studies claim some support for partitioning by morphology-controlled characters, 

especially those related to size (dominant frequency; Duellman and Pyles 1983; Hödl 

1977; Drewry and Rand 1983; Chek et al. 2003).  

Our results with respect to character lability may not apply all anurans, however. 

We might expect species with simple spectral structure and complex temporal structure 

(e.g., Pseudacris, Bufo) to have more labile temporal components. In contrast, we might 

predict that species with complex spectral structure and simple temporal structure (e.g., 
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Leptodactylus) have more labile spectral components. Preliminary evidence from túngara 

frogs (Engystomops), which fall into the latter category, supports this prediction (S. Ron, 

ms), suggesting that some taxa diversify with respect to morphology-controlled (spectral) 

characters.  

Processes driving acoustic niche partitioning. At least two processes can lead to the 

observed pattern of acoustic niche partitioning in Pseudacris. In the first, co-existence 

only occurs when signals of species are already sufficiently different to avoid acoustic 

interference (Passmore 1981).  We refer to this as signal assortment, a co-option and 

modification of "size assortment," used by Losos (1990). This process has not been 

studied in detail. In the second, signals diverge in sympatry, thus reducing interference, 

and the divergent signal(s) may then spread into allopatric populations.  

Can we discriminate between these two processes? If signal divergence has 

occurred, we expect to find a pattern of reproductive character displacement between taxa. 

If signal assortment is the basis for acoustic niche partitioning, we expect to find 

equivalent levels of signal differentiation among sympatric and allopatric populations of 

these species. These predictions are complicated, however, by the situation where signals 

diverge in sympatry and then spread into allopatry, thereby obliterating the pattern 

expected from signal divergence. For this reason, it may only be possible to determine the 

process driving acoustic niche partitioning if a clear pattern of reproductive character 

displacement is present. 
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Estimates of # from the GLS analyses lend some support for the signal divergence 

hypothesis. Two-thirds of the characters show a trend of accelerated evolution near the 

tips of the tree (although the trend is significant for only four characters), suggesting 

more recent interspecific divergence. The pattern for call variables summarized by 

principal components (suites and categories) is consistent with this trend, except for PC 

axes with high loadings of dominant frequency variables. Interestingly, dominant 

frequency shows # estimates consistently less than 1.00, whether individual variables, 

suites, or principal component axes are examined. Although these estimates are not 

significantly different from the expectation of gradual evolution, the trend suggests 

diversification of these variables early rather than late in the phylogeny. 

Selection pressures driving signal divergence. Several types of selection pressures can 

lead to acoustic reproductive character displacement. First, interaction of non-hybridizing 

taxa possessing similar signals and the resulting loss of mating efficiency lead to 

divergence (facilitated reproductive character displacement, Howard 1993; Noor 1999). 

The strength of this selection is predicted to increase when predation pressures are high 

or when breeding resources (space or time) are in short supply. Second, limited 

ecological resources can lead to ecological character displacement (including divergence 

in body size) to reduce competition among species (Brown and Wilson 1956; Schluter 

2000, 2001). If acoustic signals are correlated with ecological characters under selection, 

pleiotropic divergence of signals can occur. Third, maladaptive hybridization between 

acoustically-similar species can lead to reinforcement of male signals and female 



 

 164 

preferences, resulting in reduction of signal confusion and decrease in frequency of 

hybridization (Dobzhansky 1940; Blair 1955, 1958; Howard 1993). 

How can we distinguish among these selection pressures? Table 4.4 presents 

predictions for each type of selection. Using these, we can design critical tests for the 

primary selection pressure contributing to the observed pattern. To provide evidence for 

facilitated reproductive character displacement, no hybrids should be found in sympatry 

and females should require more time to choose conspecific signals in the presence of 

heterospecific signals (Howard, 1993; Noor 1999; Amézquita et al. 2006). To support 

ecological character displacement, a correlation between acoustic characters and an 

ecology-related character (e.g., body size or signal transmission environment) must be 

shown (Schluter 2000). To demonstrate reinforcement with reproductive character 

displacement, five conditions are needed (Howard 1993): 1) hybridization occurs in 

nature, 2) selection acts against hybridization, 3) female preferences have evolved in 

sympatry, 4) the displaced reproductive character is not correlated with ecological 

characteristics, and 5) signals are heritable.  

Processes of acoustic niche partitioning in Pseudacris. Evidence to date provides 

support for the hypothesis of signal divergence (reproductive character displacement) in 

Pseudacris. For example, in the contact zone between Pseudacris feriarum and P. nigrita, 

the former species has undergone reproductive character displacement with respect to 

physiology-controlled call characters (pulse rate and pulse number; Fouquette 1975). 

Preliminary genetic and behavioral data suggest that this pattern may be due to 
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reinforcement (E. Moriarty unpub. data). Because hybridization is known between 

several other species pairs (P. clarkii/maculata, P. kalmi/nigrita, P. 

brachyphona/feriarum, P. nigrita/sp. nov.: Moriarty et al. in press; P. clarkii/sp. nov.: 

Michaud, 1964), signal divergence by reinforcement may be more common than 

previously thought. Future work will elucidate whether this selective force is primarily 

responsible for acoustic niche partitioning in chorus frogs. Several call variables 

(dominant frequency, relative energy) are highly correlated with body size, a character 

that is related to the ecological niche occupied by a species (Parmelee 1999). Our 

analyses indicate, however, that characters involved in acoustic niche partitioning 

(physiology-controlled variables) are not correlated with body size, thus providing 

evidence that acoustic characters have not simply diverged in sympatry as the result of 

ecological character displacement. 

Our study found a significant difference in call variables in sympatric species, but 

not allopatric species.  We interpret this pattern as acoustic niche partitioning. To identify 

the processes responsible for acoustic niche partitioning, future work should examine 

signals of a species in populations both allopatric and sympatric with another species.  

This fine-scale comparison will be necessary to test for reproductive character 

displacement.  If not present, signal assortment rather than signal divergence is 

implicated (given the caveat described above). If signal displacement is detected, 

additional ecological, behavioral, and genetic data (Table 4.3) should be collected to 

differentiate among the selective pressures driving signal divergence. 
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4.5 CONCLUSION 

In summary, divergence in advertisement calls is greater among sympatric species 

than allopatric species, indicating acoustic niche partitioning occurs in chorus frogs. Call 

components that are constrained by the frog’s morphology show a stronger phylogenetic 

effect than components that are constrained by physiology, indicating that the latter 

characters are more evolutionarily labile in this clade. Chorus frogs partition acoustic 

space using labile physiology-controlled characters and not by morphology-controlled 

characters. 
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Table 4.1. Estimates of phylogenetic effect, mode of trait evolution, and correlation with 

body size for univariate call variables. Two categories of call characters were examined: 

physiology-controlled characters (P) and morphology-controlled characters (M). 

Phylogenetic effect is measured by ", and p is the probability of the null hypothesis, " = 

1. Mode of trait evolution is measured by # and p indicates the probability of the null 

hypothesis of gradual trait evolution (Ho: # = 1).  With accelerated evolution near the tips 

of the phylogeny, # > 1.0 and with rapid evolution early in the phylogeny, # < 1.0. 

Correlations between body size and call variables are shown ($), and p indicates whether 

the null hypothesis of no correlation ($ = 0) is rejected. 

 

Variable Category " p(" = 1) # p(# = 1) $ p($ = 0) 

 

Call length P 0.86 0.01* 1.81 0.42  – 0.46  

Call rise time P 0.77 0.00* 2.31 0.24  – 0.84 

Call fall time P 0.54 0.00* 3.00 0.04* – 0.42 

Call rate P 0.88 0.08  3.00 0.01* – 0.09 

Call period P 0.87 0.01* 2.09 0.33  – 0.18 

Call duty cycle P 0.82 0.01* 0.57 0.49  – 0.73 

Call shape onset P 0.99 0.83  2.34 0.22  – 0.64 

Pulse number P 1.00 0.77  0.97 0.97  – 0.63 

Dominant frequency begin M 1.00 1.00  0.59 0.51  -0.73 0.00* 

Dominant frequency end M 1.00 1.00  0.70 0.66  -0.72 0.00* 

Dominant frequency peak M 1.00 1.00  0.69 0.65  -0.66 0.00* 

Call relative energy begin M 0.98 0.33  1.72 0.50  -0.69 0.00* 

Call relative energy end M 1.00 1.00  3.00 0.02* – 0.27 

Tuning of call M 0.77 0.00* 2.54 0.22  – 0.47 

Crest factor ? 0.00 0.01* 3.00 0.00* – 0.20 
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Table 4.2. Estimates of phylogenetic effect, mode of evolution, and body size 

correlations for multivariate call variables and loadings of univariate characters on 

principal component axes. Physiology and morphology headers denote principal 

component analyses of physiology-controlled and morphology-controlled characters, 

respectively. Tests and symbols are described in Table 4.1. Proportion of variance 

explained by the PC axes is indicated. The lower portion of the table is presented to 

facilitate comparison of the the loadings of call variables on PC1 and PC2 with the 

comparative analyses. Two categories of call characters were analyzed: physiology-

controlled characters (P) and morphology-controlled characters (M).  

 

 Physiology Morphology 

  PC1 PC2 PC1 PC2 

"  0.89  0.99 1.00  0.94 

p(" = 1)  0.03* 0.81 1.00  0.11 

#  1.75  1.86 0.80  1.59 

p(# = 1)  0.45  0.39 0.79  0.51 

$  –  – -0.70  – 

p($ = 0)  0.33  0.72 0.00* 0.34 

Proportion of variance explained  0.68  0.16 0.69  0.24 

Eigenvalue  5.47  1.31 4.16  1.44 

      

 

Call Variables Category Loadings on PC Axes   

Call length P 0.42 -0.09 – – 

Call rise time P 0.40 -0.02 – – 

Call fall time P 0.38 -0.21 – – 

Call rate P -0.36 -0.20 – – 

Call period P 0.40 -0.13 – – 

Call duty cycle P 0.38 0.27 – – 

Call shape onset P -0.22 0.58 – – 

Pulse number P 0.19 0.69 – – 

Dominant frequency begin M – – 0.47 0.24 

Dominant frequency end M – – 0.48 0.12 

Dominant frequency peak M – – 0.48 0.15 

Call relative energy begin M – – 0.47 0.10 

Call relative energy end M – – -0.25 0.64 

Tuning of call M – – 0.19 -0.70 
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Table 4.3. Estimates of phylogenetic effect, mode of evolution, and body size correlation 

for multivariate character suites. Suites are composed of physiology-controlled (P) or 

morphology-controlled (M) characters (see text). Tests and symbols are described in 

Table 4.1. Proportion of variance explained by the PC axes is indicated. Loadings of 

univariate characters on principal component axes are not shown. ", #, and $ were not 

estimated for call dominant frequency PC2 (n/a) because this axis explains less than 1% 

of the variation. 

 

 Call Duration Call Rhythm Call Dom. Freq Call Rel. Ener. 

 (P) (P) (M) (M) 

 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 

" 0.85  0.00  0.84  0.90  1.00  n/a 0.99  0.96 

p (" = 1) 0.01* 0.00* 0.02* 0.04* 1.00  n/a 0.58  0.25 

# 2.00  3.00  2.12  3.00  0.63  n/a 3.00  1.92 

p (# = 1) 0.33  0.02* 0.27  0.04* 0.56  n/a 0.11  0.31 

$ –  –  –  –  -0.72  n/a 0.56  -0.45 

p ($ = 0) 0.40  0.66  0.15  0.18  0.00* n/a 0.01* 0.03* 

Prop. Var. Expl. 0.91  0.09  0.83  0.11  0.99  n/a 0.70  0.30 

Eigenvalue 2.73  0.27  2.50  0.34  3.00  n/a 1.41  0.60 
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Table 4.4. Predictions for processes driving acoustic niche partitioning. Critical predictions supporting each process are in 

bold. The question mark means a particular process may or may not produce the phenomenon listed in the first column. 

 

 Differential Facilitated RCD Ecological CD Reinforcement + 

RCD 

 Community Formation 

 

Hybridization No No Yes/No Yes 

 

Delayed mate choice in sympatry No Yes ? ? 

 

Correlation with ecological character ? No Yes No 

 

Female preference evolution in sympatry No ? ? Yes 

 

Male signal evolution in sympatry No Yes Yes Yes 

 



 

 171 

Supplemental Data 4.1. List of specimens recorded and sequenced. Population numbers correspond to tips of the phylogeny 

on Fig. 4.1. Number of calls analyzed from each individual are is listed under No. Calls. Museum numbers refer to the Texas 

Natural History Collection, Texas Memorial Museum, University of Texas. Individuals not collected were not assigned a 

museum number. Genbank numbers are listed for the sequenced representative of each population. Collection locality is the 

county and state of origin.  

 

Species Pop. No. Calls Field No. Museum No. Genbank Mt Genbank Nu Collection Locality 

Pseudacris brachyphona 9 14 ECM111 62305 AY291xxx AY291xxx Elmore:AL 

Pseudacris brachyphona 9 13 ECM112 62306   Elmore:AL 

Pseudacris brachyphona 9 14 ECM114 62307   Elmore:AL 

Pseudacris brachyphona 9 19 ECM115 62308   Elmore:AL 

Pseudacris brachyphona 9 14 ECM116 62309   Elmore:AL 

Pseudacris brachyphona 9 13 ECM117 62310   Elmore:AL 

Pseudacris brachyphona 9 12 ECM119 62312   Elmore:AL 

Pseudacris brachyphona 9 11 ECM120 62313   Elmore:AL 

Pseudacris brachyphona 9 11 ECM002365 na   Elmore:AL 

Pseudacris brachyphona 9 19 ECM040 62303   Tallapoosa:AL 

Pseudacris brachyphona 9 11 ECM041 62304   Tallapoosa:AL 

Pseudacris brimleyi 10 12 ECM071 62329   Pitt:NC 

Pseudacris brimleyi  10 10 ECM072 62330   Pitt:NC 

Pseudacris brimleyi  10 12 ECM073 62331   Pitt:NC 

Pseudacris brimleyi  10 12 ECM074 62332   Pitt:NC 

Pseudacris brimleyi  10 11 ECM075 62333   Pitt:NC 

Pseudacris brimleyi  10 11 ECM076 62334   Pitt:NC 

Pseudacris brimleyi  10 14 ECM077 62335   Pitt:NC 

Pseudacris brimleyi  10 13 ECM077a na   Pitt:NC 

Pseudacris brimleyi  10 12 ECM077b na   Pitt:NC 

Pseudacris brimleyi  10 13 ECM077c na   Pitt:NC 

Pseudacris brimleyi  10 12 ECM078 62336   Pitt:NC 

Pseudacris brimleyi  10 12 ECM080 62338   Pitt:NC 

Pseudacris brimleyi 11 12 ECM469 63573   Craven:NC 
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Pseudacris brimleyi 11 11 ECM470 63574   Craven:NC 

Pseudacris brimleyi  11 13 ECM471 na   Craven:NC 

Pseudacris brimleyi  11 8 ECM472 63575   Craven:NC 

Pseudacris brimleyi  11 13 ECM473 63576   Craven:NC 

Pseudacris brimleyi  11 12 ECM474 63577   Craven:NC 

Pseudacris brimleyi  11 12 ECM475 63578   Craven:NC 

Pseudacris brimleyi  11 13 ECM476 63579   Craven:NC 

Pseudacris brimleyi  11 11 ECM477 63580   Craven:NC 

Pseudacris brimleyi  11 14 ECM478 63581   Craven:NC 

Pseudacris cadaverina 2 12 ECM143 62245   San Bernardino:CA 

Pseudacris cadaverina  2 10 ECM143a na   San Bernardino:CA 

Pseudacris cadaverina  2 11 ECM145 62246   San Bernardino:CA 

Pseudacris cadaverina  2 3 ECM150 62247   San Bernardino:CA 

Pseudacris cadaverina  2 13 ECM150a na   San Bernardino:CA 

Pseudacris cadaverina  2 5 ECM151 62248   San Bernardino:CA 

Pseudacris cadaverina  2 3 ECM153a na   San Bernardino:CA 

Pseudacris cadaverina  2 12 ECM155 62249   San Bernardino:CA 

Pseudacris cadaverina  2 11 ECM155a na   San Bernardino:CA 

Pseudacris cadaverina  2 11 ECM156 62250   San Bernardino:CA 

Pseudacris cadaverina  2 10 ECM156a na   San Bernardino:CA 

Pseudacris cadaverina  2 11 ECM156b na   San Bernardino:CA 

Pseudacris clarkii 12 13 ECM102 62253   Chautauqua:KS 

Pseudacris clarkii  12 14 ECM102a na   Chautauqua:KS 

Pseudacris clarkii  12 14 ECM103 62254   Chautauqua:KS 

Pseudacris clarkii  12 9 ECM103a na   Chautauqua:KS 

Pseudacris clarkii  12 14 ECM104 na   Chautauqua:KS 

Pseudacris clarkii 12 16 ECM2464 na   Chautauqua:KS 

Pseudacris clarkii 12 12 ECM2465 65043   Chautauqua:KS 

Pseudacris clarkii 12 13 ECM2466 na   Chautauqua:KS 

Pseudacris clarkii 12 15 ECM2468 na   Chautauqua:KS 

Pseudacris clarkii 12 12 ECM2469 65045   Chautauqua:KS 
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Pseudacris clarkii 12 13 ECM2470 na   Chautauqua:KS 

Pseudacris crucifer  4 14 Y1 62369   Lake:FL 

Pseudacris crucifer  4 15 Y2 62370   Lake:FL 

Pseudacris crucifer  4 15 Y3 62371   Lake:FL 

Pseudacris crucifer 4 12 ECM2336 na   Calhoun:FL 

Pseudacris crucifer 4 14 ECM2338 na   Calhoun:FL 

Pseudacris crucifer 4 16 ECM2339 na   Calhoun:FL 

Pseudacris crucifer 4 14 ECM2341 na   Calhoun:FL 

Pseudacris crucifer 4 18 ECM2344 na   Calhoun:FL 

Pseudacris crucifer 4 10 ECM2345 na   Calhoun:FL 

Pseudacris crucifer 4 18 ECM2367 na   Calhoun:FL 

Pseudacris crucifer 4 17 ECM2432 na   Calhoun:FL 

Pseudacris crucifer 4 17 ECM2433 na   Calhoun:FL 

Pseudacris crucifer 4 6 ECM2434 na   Calhoun:FL 

Pseudacris crucifer 4 17 ECM2435 na   Calhoun:FL 

Pseudacris crucifer 4 16 ECM2436 na   Calhoun:FL 

Pseudacris feriarum  15 11 ECM387 63123   Macon:AL 

Pseudacris feriarum  15 14 ECM 388 63124   Macon:AL 

Pseudacris feriarum  15 7 ECM 389 63125   Macon:AL 

Pseudacris feriarum  15 12 ECM 390 63126   Macon:AL 

Pseudacris feriarum  15 12 ECM 391 63127   Macon:AL 

Pseudacris feriarum  15 8 ECM 392 63128   Macon:AL 

Pseudacris feriarum  15 7 ECM 393 63129   Macon:AL 

Pseudacris feriarum  15 5 ECM 394 na   Macon:AL 

Pseudacris feriarum  15 4 ECM 396 na   Macon:AL 

Pseudacris feriarum  15 13 ECM 397 63131   Macon:AL 

Pseudacris feriarum  15 6 ECM 398 63132   Macon:AL 

Pseudacris feriarum  15 18 ECM 400 63133   Macon:AL 

Pseudacris feriarum 16 12 ECM129 62271   Weakley:TN 

Pseudacris feriarum  16 10 ECM130 62272   Weakley:TN 

Pseudacris feriarum  16 11 ECM131 62273   Obion:TN 
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Pseudacris feriarum  16 11 ECM132 62274   Obion:TN 

Pseudacris feriarum  16 13 ECM135 62276   Obion:TN 

Pseudacris feriarum  16 14 ECM136 62383   Obion:TN 

Pseudacris illinoensis 6 14 ECM001 62351   Clay:AR 

Pseudacris illinoensis  6 16 ECM002 62352   Clay:AR 

Pseudacris illinoensis  6 11 ECM003 62353   Clay:AR 

Pseudacris illinoensis  6 11 ECM004 62339   Clay:AR 

Pseudacris illinoensis  6 15 ECM005 62340   Clay:AR 

Pseudacris illinoensis  6 15 ECM006 62341   Clay:AR 

Pseudacris illinoensis  6 15 ECM007 62342   Clay:AR 

Pseudacris illinoensis  6 13 ECM008 62343   Clay:AR 

Pseudacris illinoensis  6 13 ECM009 62344   Clay:AR 

Pseudacris illinoensis  6 13 ECM010 62345   Clay:AR 

Pseudacris kalmi 14 13 ECM162 62354   Kent:MD 

Pseudacris kalmi  14 13 ECM162a na   Kent:MD 

Pseudacris kalmi  14 10 ECM163 62355   Kent:MD 

Pseudacris kalmi  14 10 ECM164 62356   Kent:MD 

Pseudacris kalmi  14 12 ECM170 62358   Kent:MD 

Pseudacris kalmi  14 11 ECM171 62359   Kent:MD 

Pseudacris kalmi  14 11 ECM172 62360   Kent:MD 

Pseudacris kalmi  14 11 ECM172a na   Kent:MD 

Pseudacris maculata  13 11 ECM099 62377   Douglas:KS 

Pseudacris maculata  13 11 ECM099a na   Douglas:KS 

Pseudacris maculata 13 12 ECM100 na   Douglas:KS 

Pseudacris maculata  13 11 ECM101 62378   Douglas:KS 

Pseudacris maculata 13 12 ECM2448 65031   Douglas:KS 

Pseudacris maculata 13 7 ECM2450 65033   Douglas:KS 

Pseudacris maculata 13 13 ECM2452 65035   Douglas:KS 

Pseudacris maculata 13 16 ECM2454 65036   Douglas:KS 

Pseudacris maculata 13 12 ECM2456 65038   Douglas:KS 

Pseudacris maculata 13 12 ECM2457 65039   Douglas:KS 
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Pseudacris maculata 13 13 ECM2458 65040   Douglas:KS 

Pseudacris maculata 13 12 ECM2459 65041   Douglas:KS 

Pseudacris maculata 13 13 ECM2460 65042   Douglas:KS 

Pseudacris maculata 13 14 ECM2462 na   Douglas:KS 

Pseudacris maculata 13 10 ECM2463 na   Douglas:KS 

Pseudacris nigrita 19 10 ECM024 62364   Brevard:FL 

Pseudacris nigrita  19 10 ECM025 62365   Brevard:FL 

Pseudacris nigrita  19 12 ECM026 62366   Brevard:FL 

Pseudacris nigrita  19 11 ECM027 62367   Brevard:FL 

Pseudacris nigrita  19 12 ECM028 62368   Brevard:FL 

Pseudacris nigrita 21 14 ECM372 63201   Jefferson:FL 

Pseudacris nigrita 21 13 ECM373 63202   Jefferson:FL 

Pseudacris nigrita 21 14 ECM374 63203   Jefferson:FL 

Pseudacris nigrita 21 12 ECM375 63204   Jefferson:FL 

Pseudacris nigrita 21 13 ECM376 63205   Jefferson:FL 

Pseudacris nigrita 21 12 ECM377 63206   Jefferson:FL 

Pseudacris nigrita 21 11 ECM378 63207   Jefferson:FL 

Pseudacris nigrita 21 10 ECM379 63208   Jefferson:FL 

Pseudacris nigrita 21 14 ECM381 na   Jefferson:FL 

Pseudacris nigrita 20 11 ECM062a na   Barnwell:SC 

Pseudacris nigrita 20 12 ECM065 62203   Barnwell:SC 

Pseudacris nigrita 20 8 ECM066a na   Barnwell:SC 

Pseudacris nigrita 20 11 ECM067 62204   Barnwell:SC 

Pseudacris nigrita 20 10 ECM069 62206   Barnwell:SC 

Pseudacris ocularis 3 20 ECM042 62231   Barnwell:SC 

Pseudacris ocularis  3 12 ECM043 62232   Barnwell:SC 

Pseudacris ocularis  3 12 ECM044 62233   Barnwell:SC 

Pseudacris ocularis  3 11 ECM044a na   Barnwell:SC 

Pseudacris ocularis  3 15 ECM044b na   Barnwell:SC 

Pseudacris ocularis  3 15 ECM045 62234   Barnwell:SC 

Pseudacris ocularis  3 13 ECM046 62235   Barnwell:SC 
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Pseudacris ocularis  3 15 ECM047 62236   Barnwell:SC 

Pseudacris ocularis  3 15 ECM048 62237   Barnwell:SC 

Pseudacris ocularis  3 5 ECM050 62239   Barnwell:SC 

Pseudacris ornata 8 15 ECM033 62178   Barbour:AL 

Pseudacris ornata 8 19 ECM034  62179   Barbour:AL 

Pseudacris ornata 8 16 ECM035 62180   Barbour:AL 

Pseudacris ornata 8 17 ECM037 62181   Barbour:AL 

Pseudacris ornata 8 14 ECM038 62182   Barbour:AL 

Pseudacris ornata  7 11 ECM057 62185   Barnwell:SC 

Pseudacris ornata  7 12 ECM059 na   Barnwell:SC 

Pseudacris ornata  7 12 ECM061 62186   Barnwell:SC 

Pseudacris ornata  7 11 ECM062 62187   Barnwell:SC 

Pseudacris ornata  7 13 ECM063 62188   Barnwell:SC 

Pseudacris ornata  7 14 ECM063a na   Barnwell:SC 

Pseudacris ornata  7 10 ECM066 62189   Barnwell:SC 

Pseudacris regilla 1 15 ECM140 62190   San Bernardino:CA 

Pseudacris regilla 1 12 ECM140a na   San Bernardino:CA 

Pseudacris regilla 1 12 ECM140b na   San Bernardino:CA 

Pseudacris regilla 1 16 ECM141 62191   San Bernardino:CA 

Pseudacris regilla 1 13 ECM142 62192   San Bernardino:CA 

Pseudacris regilla 1 13 ECM144 62193   San Bernardino:CA 

Pseudacris regilla 1 11 ECM147 62195   San Bernardino:CA 

Pseudacris regilla 1 14 ECM147a na   San Bernardino:CA 

Pseudacris regilla 1 20 ECM148 62196   San Bernardino:CA 

Pseudacris regilla 1 14 ECM149 62197   San Bernardino:CA 

Pseudacris regilla 1 12 ECM152 62198   San Bernardino:CA 

Pseudacris regilla 1 14 ECM153 62199   San Bernardino:CA 

Pseudacris sp. nov. 18 16 ECM011 62255   Craighead:AR 

Pseudacris sp. nov. 18 11 ECM012 62256   Craighead:AR 

Pseudacris sp. nov. 18 13 ECM013 62257   Craighead:AR 

Pseudacris sp. nov. 18 13 ECM014 62258   Craighead:AR 
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Pseudacris sp. nov. 18 11 ECM015 62259   Craighead:AR 

Pseudacris sp. nov. 18 16 ECM016 62260   Craighead:AR 

Pseudacris sp. nov. 18 14 ECM017 62261   Craighead:AR 

Pseudacris sp. nov. 18 13 ECM018 62262   Craighead:AR 

Pseudacris sp. nov. 18 15 ECM019 62263   Craighead:AR 

Pseudacris sp. nov. 18 14 ECM020 62264   Craighead:AR 

Pseudacris sp. nov. 17 10 ECM124 62269   Washington:LA 

Pseudacris sp. nov. 17 10 ECM125 62379   Washington:LA 

Pseudacris sp. nov. 17 14 ECM137 62277   Evangeline:LA 

Pseudacris sp. nov. 17 14 ECM138 62278   Evangeline:LA 

Pseudacris sp. nov. 17 10 ECM029 62265   East Baton Rouge:LA 

Pseudacris sp. nov. 17 14 ECM030 62266   East Baton Rouge:LA 

Pseudacris sp. nov. 17 14 ECM031 62267   East Baton Rouge:LA 

Pseudacris sp. nov. 17 12 ECM304 63471   East Baton Rouge:LA 

Pseudacris sp. nov. 17 15 ECM305 63472   East Baton Rouge:LA 

Pseudacris sp. nov. 17 11 ECM306 63473   East Baton Rouge:LA 

Pseudacris sp. nov. 17 12 ECM307 63474   East Baton Rouge:LA 

Pseudacris sp. nov. 17 11 ECM308 63475   East Baton Rouge:LA 

Pseudacris sp. nov. 17 14 ECM309 63476   East Baton Rouge:LA 

Pseudacris sp. nov. 17 10 ECM310 63477   East Baton Rouge:LA 

Pseudacris sp. nov. 17 13 ECM311 63478   East Baton Rouge:LA 

Pseudacris sp. nov. 17 15 ECM313 na   East Baton Rouge:LA 

Pseudacris streckeri 5 11 P3 62318   Travis:TX  

Pseudacris streckeri 5 12 P4 62319   Travis:TX 

Pseudacris streckeri 5 12 P5 62320   Travis:TX 

Pseudacris streckeri 5 13 P6 62321   Travis:TX 

Pseudacris streckeri 5 11 P7 62322   Travis:TX 

Pseudacris streckeri 5 10 P8 62323   Travis:TX 

Pseudacris streckeri 5 17 ECM021 62301   Travis:TX 

Pseudacris streckeri 5 10 ECM023 62302   Travis:TX 

Acris gryllus - - ECM052 62372   Barnwell:SC 
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Hyla andersonii - - 54451 KU 207335   Burlington:NJ 

Hyla chrysoscelis - - T-1 n/a   Douglas:KS 
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Supplemental Data 4.2. Definitions of call characters examined in Pseudacris. 

 

Call length Duration of call from 10%  maximum amplitude (call onset) to 10% maximum amplitude 

(offset) 

Call rise time Duration of call from 10% maximum amplitude (onset) to maximum amplitude 

Call fall time Duration of call from maximum amplitude to 10% of maximum amplitude (offset) 

Call shape onset Time from 10% to 50% of maximum amplitude (onset)/time from 10% to 90% (onset) 

Call rate 1/time from 10% maximum amplitude (onset) to 10% maximum amplitude (onset) for 

next call 

Call period Time from 10% maximum amplitude (onset) to 10% maximum amplitude (onset) for 

next call 

Call duty cycle Call length/Call period 

Pulse number Number of pulses 

Call dominant frequency begin Call dominant frequency at 10% maximum amplitude (onset) 

Call dominant frequency end Call dominant frequency at 10% maximum amplitude (offset) 

Call dominant frequency peak Call dominant frequency at the call maximum amplitude 

Call relative energy begin Call energy from 10% to 50% maximum amplitude call onset/Call energy from 90% to 

50% maximum amplitude call offset 

Call relative energy end Call energy from 90% to 50% maximum amplitude call offset/Call energy from 90% to 

50% maximum amplitude call offset 

Tuning of call (Q3) Width of dominant frequency at half the height of spectrum peak/dominant frequency, in 

an amplitude spectrum centered on the point of maximum amplitude 

Crest factor Maximum amplitude/root mean square of amplitude 
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Supplemental Data 4.3. Branch lengths in substitutions per site from Figure 4.1.  
 
Branch Number Branch Length  
1 0.02779  
2 0.04393  
3 0.04492  
4 0.05267  
5 0.01543  
6 0.01550  
7 0.00649  
8 0.00743  
9 0.01429  
10 0.00128  
11 0.00290  
12 0.00385  
13 0.00205  
14 0.00600  
15 0.00476  
16 0.00291  
17 0.00167  
18 0.00133  
19 0.00226  
20 0.00205  
21 0.00166  
22 0.00081   
23 0.01711  
24 0.01118  
25 0.00730 
26 0.00542 
27 0.00994 
28 0.00288 
29 0.01647 
30 0.00508 
31 0.00956 
32 0.01935 
33 0.02745 
34 0.03680 
35 0.02374 
36 0.05484 
37 0.01015 
38 0.03333 
39 0.01225 
40 0.04529 
41 0.02906 
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42 0.12924 
43 0.03424 
44 0.03144 
45 0.11606 



 

 182 

 

 

Figure 4.1. Phylogram and oscillograms of Pseudacris species. Branches 42-44 are outgroup taxa 
(Acris gryllus, Hyla andersonii, and H. chrysoscelis, respectively). Branch lengths are listed in 
Table 4.2. Only four branches have Bayesian posterior probability values less than 1.00. These 
are: branch 22 (0.66), branch 28 (0.70), branch 30 (0.84), branch 39 (0.96). Oscillograms are 
from natural calls that were recorded at temperatures varying from 12.4°C to 17.4°C. Time is 
indicated on the x-axis and amplitude on the y-axis. A gray bracket on each oscillogram indicates 
a full call. Warmer temperatures result in greater horizontal spacing of pulses and calls. Call 
temperatures are listed from top to bottom: P. regilla (12.4), P. cadaverina (12.4), P. ocularis 
(17.3), P. crucifer (14), P. streckeri (15), P. illinoensis (14), P. ornata (15.2), P. brachyphona 
(16), P. brimleyi (15), P. clarkii (12.7), P. maculata (17.4), P. kalmi (13), P. feriarum (13.8), P. 
sp. nov. (11.8), and P.nigrita (12.6°C). 
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Chapter 5 

Heterospecific Overlap Generates Divergent Reproductive Character 

Displacement in Chorus Frogs 

 

 

Abstract. Recent neural network models have suggested that geographic overlap between 

two or more species can promote divergence of mate recognition systems among 

conspecific sympatric populations. This can occur when reinforcement leads to 

reproductive character displacement along different signal axes in different populations. 

Here, I test this hypothesis by assessing patterns of acoustic signal divergence in a 

contact zone between two frog species, Pseudacris feriarum and P. nigrita in the 

southeastern United States. In addition, I test one criterion for reinforcement, by 

examining the evolution of female preferences in the contact zone. Patterns of signal 

evolution based on analysis of 16 populations indicate: 1) the magnitude of reproductive 

character displacement in sympatry varies geographically, 2) only P. feriarum has 

diverged in sympatry, and 3) populations of P. feriarum have displaced along different 

axes of the signal. Preference experiments on females from an allopatric and a sympatric 

P. feriarum population indicate that in sympatry the propensity of females to hybridize 

has been reduced by ~60%. Data also suggest that divergence of the female preference 

rather than the male call has led to greater reproductive isolation between taxa. Sympatric 

females strongly prefer sympatric over allopatric P. feriarum, providing evidence that 

reinforcement is driving displacement in this system. Geographic variation in male 
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signals and published phylogeographic data support the hypothesis that these taxa are in 

an early stage of speciation in the northern part of their contact zone and later stage in the 

southern region. Signal and preference data suggest that overlap with heterospecific taxa 

can promote divergent reproductive character displacement, potentially leading to 

reproductive isolation among conspecific populations. 

 

5.1 INTRODUCTION 

Effective communication between conspecific individuals is essential for 

maintenance of species (Dobzhansky 1940; Blair 1958; Littlejohn and Michaud 1959; 

Blair and Littlejohn 1960).  A signaler must convey information about species identity to 

a receiver to procure a conspecific mate.  Failure to do so may lead to hybridization, 

which tends to erode the boundaries delineating species (Sanderson et al. 1992; Howard 

et al. 2004).  Though the importance of communication in the maintenance of species is 

clear, we have an inadequate understanding of how communication systems diverge in 

nature and how the evolution of such systems contributes to the process of speciation 

(Howard 1993; Noor 1999).   

Interference of reproductive signals by heterospecific individuals can decrease the 

efficiency of signal propagation and hinder the ability of a receiver to decode information 

(Gerhardt and Huber, 2002).  Individuals may waste time, energy, and gametes attracting, 

approaching, or mating with heterospecifics.  As a result of this interference, species may 

evolve greater differences in signals and signal preferences in sympatry relative to 
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allopatry.  This pattern is called reproductive character displacement (RCD; Brown and 

Wilson 1956).  

Divergence of reproductive characters can result from several evolutionary 

processes (Howard, 1993; Noor, 1999). Selection against signal interference in two non-

hybridizing species may cause divergence (facilitated RCD or noisy neighbors hypothesis: 

Littlejohn, 1965; Howard, 1993; Noor 1999; Amezquita 2006). Selection against 

ecological interference in two non-hybridizing species may indirectly cause divergence of 

reproductive characters if they are correlated with non-reproductive characters, such as 

body size, during ecological adaptation in sympatry (ecological RCD hypothesis: Brown 

and Wilson 1956; Schluter, 2001). Selection against hybridization can also drive 

divergence, causing evolution of greater prezygotic isolation in sympatry (reinforcement 

hypothesis: Dobzhansky 1940; Blair 1955, 1958). The amount of data implicating each of 

these factors varies.  Because the processes are not mutually exclusive, most studies 

attempt to identify the primary selective force driving the pattern of RCD. 

Substantial effort has been invested in documenting patterns of RCD in sympatry.  

Patterns observed include symmetric signal divergence (both species; Littlejohn, 1965; 

Gerhardt and Huber, 2002), asymmetric signal divergence (one species; Fouquette, 1975; 

Butler, 1988; Loftus-Hills and Littlejohn, 1992), displacement of the receiver preference 

but not displacement of the signal (Marquez and Bosch, 1997; Ratcliffe and Grant, 1983; 

Gerhardt, 1994), and displacement of both the preference and the signal (Littlejohn and 

Loftus-Hills, 1968; Sætre et al., 1997; Marshall and Cooley, 2000; Höbel and Gerhardt 
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2003). Evidence supporting a role for reinforcement (Waage, 1975, 1979; Gerhardt, 1994; 

Noor, 1995; Sætre et al., 1997; Rundle and Schluter, 1998; Hoskin et al. 2005; Kronforst 

et al. 2007) or ecological factors (Nagel and Schluter, 1998; Podos, 2001) in driving these 

patterns is accumulating rapidly. Only a few studies, however, have tested whether levels 

of RCD vary among sympatric populations (Fouquette, 1975; Waage, 1975, 1979; 

Loftus-Hills and Littlejohn, 1992; Gabor and Ryan, 2001). Additionally, it is unclear 

whether the same components of the signal always diverge in different populations or 

whether different signal components may evolve (Pfennig and Ryan 2006). 

Here, I examine geographic variation in patterns of RCD in the acoustic signals of 

chorus frogs (Pseudacris). I focus on interactions between Pseudacris feriarum and P. 

nigrita, which form a narrow contact zone in the southeastern United States. In addition, I 

test one criterion for reinforcement (Howard 1993) by examining the evolution of female 

P. feriarum preferences in sympatry. Previous research in this contact zone demonstrated 

a strong pattern of RCD in sympatric populations of P. feriarum in a localized area of 

southern Alabama/Georgia and the Florida Panhandle (Fouquette 1975). I extend this 

work by examining sympatric and allopatric populations of both species across a broader 

geographic area, from Florida to Virginia.  

I address three questions regarding evolution of reproductive signals: 1) Is there 

heterogeneity in the amount of sympatric divergence among localities? 2) Does RCD 

occur in both species? 3) Have the same signal components diverged across the contact 

zone? With respect to female preference evolution, I ask: 4) Do females prefer 
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conspecific males? 5) Has the female preference evolved in sympatry? 6) Has the 

propensity to hybridize been reduced? 7) Is the displacement perceptible to the opposite 

sex? I address these questions by measuring levels signal divergence across multiple 

transects spanning the contact zone and by testing female preferences in one of these 

transects. 

 

5.2 MATERIALS AND METHODS 

Male Signal Analyses 

Sampling. To examine geographic variation in acoustic signals, male Pseudacris 

feriarum and P. nigrita were recorded and collected from eight populations in allopatry 

(four per species) and eight populations from sympatry (four per species) in the 

southeastern United States (Fig. 5.1). These populations correspond to four rough 

transects spanning the contact zone; each transect includes an allopatric P. feriarum 

population, an allopatric P. nigrita population, and sympatric P. feriarum and P. nigrita 

from the same locality. The transects span the following geographic regions: 1) 

Alabama/Florida (transect studied by Fouquette [1975]), 2) Georgia/Florida, 3) South 

Carolina/Georgia, and 4) Virginia (Fig. 5.1). Hereafter, the first state listed will be used 

as the transect name. Because P. nigrita do not exist in allopatry in Virginia and because 

loss of suitable habitat in eastern North Carolina hindered my ability to locate P. nigrita 

at historic localities, this population was lacking from the Virginia transect. Instead, I 

increased the number of allopatric P. nigrita populations by including one from southern 
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Mississippi. None of the statistical analyses described below depend on the geographic 

layout of the transects, which are presented here for visual purposes only. Representative 

calls of each species are presented in Figure 5.2. 

During the course of this study, our genetic work revealed that populations of 

putative P. feriarum in Louisiana and Mississippi are actually an undescribed, cryptic 

species (Moriarty et al. in press) that hybridizes with P. nigrita in a narrow contact zone 

(Gartside 1980). Genetic analysis of all other putative P. feriarum and P. nigrita 

populations included here along with a broader population and species sample (250+ 

populations) revealed that each species forms a monophyletic group (Moriarty et al. in 

press). Therefore, in this study, I am examining interactions between only two species. 

Areas of sympatry between the two species were located based on published 

studies, museum databases, personal communications, and my field surveys. In the 

contact zone, P. feriarum and P. nigrita can be found calling in close proximity, often 

alternating calls with each other (Crenshaw and Blair 1959; E. Moriarty, unpub. data). 

The species show some ecological separation in sympatry: P. feriarum prefers 

cypress/gum swamps, whereas P. nigrita prefers pine flatwoods ponds (Carr 1940; 

Crenshaw and Blair 1959). Interaction between the species most often occurs at the 

interface of these habitats or in artificial habitats, such as roadside ditches (E. Moriarty, 

unpub. data). At several of these sites (in Florida and Virginia), putative hybrids have 

been found that are morphologically and acoustically intermediate between the parental 

species (E. Moriarty, unpub. data). Where possible, individuals calling syntopically were 
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sampled; to obtain a large enough sample, however, frogs were collected from some 

ponds that were dominated by one of the species. 

A total of 318 individuals were recorded from the 16 populations. Each 

population included 5 to 43 individuals (mean=18 frogs). Between 2 and 17 calls were 

sampled per individual (mean=10 calls), depending on the quality of the recording and 

activity level of the frog (Supplemental Data 5.1). Calls were recorded onto TDK MA90 

metal bias tape cassettes with a Sony stereo cassette-recorder (WM-D6C) using a 

Sennheiser ME67 directional microphone. The microphone was held roughly one meter 

from the calling individual during recording. When possible, the frog was then captured. 

In all cases, the temperature of the frog’s calling location (aquatic or terrestrial) was 

measured. Tissue samples were taken from euthanized frogs (following IACUC protocol 

06022701) and voucher specimens were deposited into the Texas Memorial Museum 

(Austin, Texas). 

Acoustic Analyses. Recordings were digitized using SoundEdit16 version 2 

(Macromedia) with a sample size of 16 bits at a sampling rate of 44100 Hz. Calls were 

analyzed using SoundRuler version 0.941 (http://soundruler.sourceforge.net/; reviewed 

by Bee 2004). Frequency measurements were taken from spectrograms generated with 

FFT length of 1024 and 900 samples of overlap among subsequent FFTs. All call 

variables were taken directly or calculated from SoundRuler’s raw data output. 

Each individual call file was analyzed twice: the first time, only the highest 

quality calls were analyzed (though calls were not necessarily sequential) to collect data 
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related to the spectral (e.g., dominant frequency) and temporal structure (e.g., pulse rate) 

within calls. The second time, the longest series of sequential calls was measured, to 

collect information related to the temporal spacing between calls (e.g., call rate). In some 

cases, the quality of a recording was high enough that both categories of data could be 

measured at once. The two datasets, containing 3046 and 2751 calls, respectively, were 

merged after averaging call characters within individuals (Supplemental Data 5.1). 

A total of 16 call variables were examined to explore patterns of evolution in 

acoustic signals. These variables were chosen for two reasons: 1) they show high 

interspecific and low intra-population variation and/or 2) they are known to be important 

for species recognition in other frogs (Loftus-Hills and Littlejohn 1971; Klump and 

Gerhardt 1987; Gerhardt 1991; Gerhardt 1994; Gerhardt 1996; Murphy and Gerhardt 

2000; Gerhardt and Huber 2002). The call variables, described in Supplemental Data 5.2, 

include both spectral characters and temporal characters.  

Several components of the frog’s acoustic signal are influenced by changes in 

temperature (Gerhardt and Huber 2002). To control for this effect, I tested for 

correlations between temperature and each call variable. If the effect of temperature was 

strong (p<0.01), I adjusted the variable to a common temperature of 14ºC, using species-

specific slopes. Regression slopes used in the corrections are shown in Supplemental 

Data 5.3.  

Statistical Analyses. Randomization tests were performed to address two questions: 1) Is 

there variation in the amount of divergence between sympatric Pseudacris feriarum and 
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P. nigrita among localities? and 2) In each sympatric locality, does reproductive 

character displacement occur in P. feriarum and/or P. nigrita? 

Normality of signal variables was first assessed using a Shapiro-Wilk’s test in R 

Version 1.16 (R Foundation for Statistical Computing), then a principal components 

analysis (PCA) was conducted for all individuals using JMP 5.1 (SAS Institute Inc.).  

To address the first question, the standard deviation in level of divergence 

between sympatric populations was calculated and compared to a null distribution. For 

each sympatric locality, the level of divergence was quantified as follows: a random P. 

feriarum and a random P. nigrita were selected and the distance between the pair along 

PC1 was calculated (d). This was repeated 10,000 times (with replacement) and the mean 

d was calculated (

! 

d ). The variation in the level of divergence among localities was then 

calculated as the standard deviation of 

! 

d , denoted 

! 

"
d 
, which was used as the test statistic. 

A point from the null distribution was generated by computing 

! 

"
d 
 after randomizing 

individuals within species across the four localities (sample sizes were maintained). A 

total of 100,000 points were generated from the null distribution for this and all 

randomization tests that follow. The test statistic was considered to be significant for this 

and all subsequent randomization tests if it fell outside the 95% limits of this distribution. 

These analyses were repeated for PC2 and PC3. 

To address the second question, the difference between the allopatric calls of the 

two species was compared to the difference between the allopatric call of one species and 

the sympatric call of the other species. This quantifies how much the signal of a species 
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has changed (displaced) since secondary contact relative to the pre-contact state. 

Allopatric individuals were pooled by species for this test. The test was performed for 

each of the four sympatric populations, for each of the two species, and along the first 

three PC axes for a total of 24 tests. An example of one of these tests follows. First, an 

allopatric P. feriarum and an allopatric P. nigrita were randomly drawn from the pooled 

sample and the distance between the pair along PC1 was calculated. This was repeated 

10,000 times and the mean d was calculated (

! 

d A). Second, a random sympatric P. 

feriarum (e.g., from Florida) and a random allopatric P. nigrita (pooled sample) were 

selected and the distance between the pair along PC1 was calculated (d). This was 

repeated 10,000 times with replacement and the mean d was calculated (

! 

d S). After taking 

the absolute value of 

! 

d S and 

! 

d A, the difference between the values was calculated (!d). 

This number was used as the test statistic. A point from the null distribution was 

generated by computing !d after randomizing individuals between the sympatric and 

allopatric P. feriarum groups (sample sizes were maintained). A sequential Bonferroni 

correction was applied to correct for multiple tests (Rice 1989). 

A discriminant function analysis (DFA) of the 16 call variables was performed to 

test the null hypothesis that the sympatric populations are diverging with respect to the 

same components of the acoustic signal. The analysis was performed on the four 

sympatric P. feriarum populations using JMP 5.1, where call variables were stepped into 

the model until the next variable had a p-value > 0.05. This resulted in five call variables 

that were included in the analysis (pulse rate, pulse number, call rise time, call fall time, 



 

 204 

and dominant frequency peak). Scores on the first two canonical axes (CVs) were saved 

for further analysis.  

To determine which sympatric populations differ significantly from each other, 

Tukey-type randomization tests were conducted. To reduce the number of tests, 

populations were ranked by mean canonical score and only rank neighbors were 

compared. For each pairwise comparison, an individual was drawn randomly from each 

population and the distance between them along CV1 was calculated (d). This was 

repeated 10,000 times with replacement and mean d was used as the test statistic (

! 

d ). A 

point from the null distribution was generated by computing 

! 

d  after randomizing 

individuals between populations. This test was also conducted on CV2.  

To calculate the standardized coefficients from the discriminant analysis, which 

indicate how important a call variable is in discriminating among groups, the canonical 

vector coefficients were multiplied by the pooled standard deviation within groups for 

each variable (equivalent to root mean square error). These coefficients were calculated 

for CV1 and CV2. 

Female Preference Tests 

To determine whether female preference evolution is driving male signal 

divergence, phonotaxis experiments were conducted on Pseudacris feriarum females 

from allopatric and sympatric populations (Macon/Lee Cos., Alabama and Liberty Co., 

Florida, respectively; Fig. 5.1). Following the general methodology of Ryan and Rand 
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(1999), I performed three binary mate-choice experiments on P. feriarum females. The 

females were given a choice between two acoustic stimuli in each experiment as follows: 

A) sympatric P. feriarum vs. P. nigrita, B) allopatric P. feriarum vs. P. nigrita, and C) 

sympatric P. feriarum vs. allopatric P. feriarum. Sympatric P. nigrita calls were used 

because preliminary analyses indicated that sympatric calls did not differ from allopatric 

calls in Florida. Tests were presented in random order for each female. Natural calls from 

these populations are shown in Figure 5.2. 

Construction of Acoustic Stimuli. The three synthetic acoustic stimuli were constructed 

based on natural male calls from the local populations of females as follows: 1) pulse 

number from multiple calls per individual was extracted from the raw SoundRuler output, 

2) the mode number of pulses was determined for the population, and calls containing the 

mode pulse number were extracted (other calls were not used further), 3) homologous 

pulses were aligned (e.g., pulse 1 from individual A was aligned to pulse 1 from 

individual B) and character data (e.g., pulse dominant frequency) were averaged across 

individuals, 4) the average call character values were used to synthesize acoustic stimuli 

for the phonotaxis experiments. Individuals used for constructing the stimuli include: 1) 

allopatric P. feriarum, 101 calls from 13 indivs., mode number pulses = 17, 2) sympatric 

P. feriarum, 178 calls from 18 indivs., mode number pulses = 29, 3) P. nigrita, 205 calls 

from 23 indivs., mode number pulses = 10 (Supplemental Data 5.4).  

Individual pulses were synthesized using the program JOSHSYN (SYN16bt.exe) 

written by Joshua Schwartz that uses the following information: pulse rise time, pulse fall 
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time, rise time to half maximum amplitude, fall time to half maximum amplitude, pulse 

duration, fundamental frequency, dominant frequency, third harmonic frequency, relative 

amplitude of fundamental frequency, relative amplitude of third harmonic, maximum 

amplitude, and relative amplitude of each pulse (obtained from SoundRuler). After 

synthesis, pulses were assembled into calls using appropriate interpulse intervals (spacing 

between pulses) as described below.  

Examination of the relationship between temperature and the call variables 

revealed that call duration is strongly correlated with temperature whereas pulse duration 

is not. This indicates that only the interpulse intervals change with temperature. Therefore, 

to construct stimuli with the proper temporal structure for experimental conditions, the 

following steps were performed: 1) interpulse intervals (IPIs) between successive pairs of 

pulses within the call were calculated, 2) proportion of total IPI time was calculated for 

each IPI, 3) homologous IPI proportions were averaged across individual frogs within the 

population, 4) population-specific regressions were calculated for temperature versus call 

duration, 5) call duration was corrected to the testing temperatures (18ºC and 20ºC, 

respectively) and total pulse duration within the call was subtracted to give the corrected 

total IPI, 6) mean IPI proportions were converted to absolute IPIs using the corrected 

total IPI, 7) mean absolute IPIs were inserted between synthesized pulses to construct the 

full acoustic stimuli. 

Experimental Conditions. Experiments involving allopatric and sympatric females were 

conducted at Auburn University (Auburn, Alabama) and the Florida Department of 
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Environmental Protection research dormitory (Eastpoint, Florida), respectively, in 2004 

and 2005. Each of these testing locations was within an hour drive of the frog collection 

localities. Females were collected from breeding ponds and tested within 48 hours of 

capture. Most females were collected in amplexus but gravid single females were also 

used for the experiments. Upon return to the research station, each female was separated 

from its male, and placed into a 6 x 6 x 2-inch plastic container filled with leaves and 

water and allowed to acclimate to room temperature in a darkened closet for at least two 

hours. A mixed P. feriarum/P. nigrita chorus was played to females during the 

acclimation period. 

Phonotaxis tests were conducted in a 56-inch diameter wading pool containing 

approximately 2 inches of water. The pool was first lined with white duct-tape to permit 

easier visualization of frogs. A 3-inch wide ring of black plastic was taped around the top 

edge of the pool to prevent escape. Two facing Mineroff SME-AFS speakers were set on 

2-inch tall cinder blocks, just above the surface of the water on opposite sides of the pool. 

A Sony CCD-TRV67 infrared video camera with a wide-angle lens and a Sony HVL-

IRM satellite light attached was placed above the pool to allow viewing of female 

responses on a monitor in the next room. Several floating sticks were placed in the pool 

in a symmetric fashion to allow females to perch and listen to stimuli while swimming 

around the pool. This situation mimics the natural habitat of the frogs. Preliminary tests 

indicated that without these perches, females are unresponsive. All tests were performed 

in a completely darkened room (black plastic was taped over all windows and crevices 
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emitting light). All sources of noise (refrigerators, air conditioning, etc.) in the building 

were disconnected prior to testing.  

Test Protocol. Prior to testing, the water temperature in the pool was recorded and the 

appropriate stimuli (corrected to 18ºC or 20ºC) were selected. For each test, a container 

with an acclimated female was placed in the center of the pool and the lid was carefully 

removed. After the researcher left the room, the stimuli were played through the speakers. 

Females that did not make a choice within 20 min. were scored as unresponsive. Females 

that did not climb out of the container within 15 min were also scored as unresponsive. A 

choice was scored if the female exhibited clear phonotactic behavior (head scanning, 

swimming in loops near the speaker, etc.) followed by swimming into physical contact 

with the front of the speaker. If a female simply followed the edge of the pool and 

speaker base to the front of the speaker, a choice was not scored. After each choice, the 

female was gently placed back into the container for the next test. Each female was tested 

until she either failed to respond or completed all three tests.  

Stimuli were played at 75 db, one second apart, on different tracks (right vs. left) 

antiphonally from opposing speakers. Sounds were played from a Macintosh computer 

outside the test chamber using SoundEdit15. Stimulus amplitude of the two speakers was 

standardized using a Radio Shack digital sound pressure level meter. In each experiment, 

a continuous chorus of P. feriarum was played in the background at 9 db less than the 

stimuli. The chorus was played from both speakers, thereby mimicking the natural sound 

environment during the breeding season, where males call in very large choruses. 
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Preliminary tests showed that without the background chorus, females are unresponsive. 

All tests were conducted blind. Female choices were scored in real time. The three 

experiments were presented in random order to each female and the leads to the speakers 

(right or left) were randomized between tests. 

Statistical Analyses. Four questions were addressed with statistical tests, 1) Do females 

prefer conspecific males? 2) Has the female preference diverged in sympatry? 3) Has the 

propensity to hybridize been reduced? 4) Is the displacement in male calls perceptible to 

the females? This last question is derived from a criterion of Howard (1993) for 

demonstrating that reproductive character displacement is due to reinforcement.  

To answer the first question, one-tailed exact binomial tests were conducted on 

the results of experiments A and B under the null hypothesis of no preference (proportion 

= 0.5). One-tailed tests were chosen because the a priori expectation was that females 

would choose the conspecific stimulus. To answer the second question, Fisher’s exact test 

was used to compare the proportion of allopatric females and sympatric females that 

chose the sympatric P. feriarum stimulus in test A. This test was also performed for 

experiment B. To address the third question, Fisher’s exact test was performed to 

compare the proportion of sympatric females that chose the conspecific stimulus in 

experiment A to the proportion of allopatric females that chose the conspecific signal in 

experiment B. To address the last question, a two-tailed exact binomial test was 

conducted on the results of experiment C. A sequential Bonferroni correction was applied 

to correct for multiple (nine) tests (Rice 1989).  
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5.3 RESULTS  

Male signal variation. The first randomization test indicates that there is significant 

heterogeneity in the magnitude of reproductive character displacement among sympatric 

localities of P. feriarum and P. nigrita along the first three principal component axes: 

PC1, p<0.00001; PC2, p=0.00234; PC3, p<0.00001. PC loadings are given in Table 5.1. 

The second test indicates that signal divergence has occurred along PC1 in sympatric P. 

feriarum from Florida (p<0.00001), Georgia, (p<0.00001), and South Carolina 

(p<0.00024) but not Virginia (p=1.0000). The South Carolina population has also 

diverged significantly along PC2 (p<0.00001) and PC3 (p<0.00001) and Georgia has 

diverged along PC3 (p<0.00001). There was no evidence for displacement of P. nigrita at 

any locality, although sympatric Virginia P. nigrita approached significance (Table 5.2). 

General patterns of divergence across the four transects are shown in Figure 5.3.  

The discriminant analysis shows that the four sympatric P. feriarum populations 

separate along both the first and second canonical axes, which explain 98.82% of the 

variation (Fig. 5.4; Table 5.3). The standardized coefficients indicate that pulse rate 

contributes substantially to the first axis but little to the second axis whereas pulse 

number loads heavily on the second axis, but contributes little to the first (Table 5.4).  

The multiple comparison randomization test indicates that the Georgia population 

is significantly higher (p<0.00001) along the pulse rate-dominated axis (CV1), whereas 

the Virginia population is significantly lower (p<0.00001) than the other two populations. 

In contrast, the South Carolina and Florida populations are significantly different from 
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each other (p<0.00001) and higher than the other two populations (p<0.00001) along the 

pulse number-dominated axis (CV2; Table 5.5). Raw temperature-corrected pulse rate 

and pulse number data are presented in Table 5.6. 

Female preference tests. Results of the phonotaxis experiments indicate that allopatric 

and sympatric Pseudacris feriarum females prefer conspecific signals over heterospecific 

signals in both experiments A and B (A, allopatric females, p=0.00469962; A, sympatric 

females, p=1.63x10-9; B, allopatric females, p=0.02443695; B, sympatric females, 

p=1.55x10-8). Female preferences have evolved in sympatry such that sympatric females 

choose the conspecific stimulus significantly more often than allopatric females 

(experiment A, 0.87 vs. 0.67, p=0.01502; experiment B, 0.88 vs. 0.63, p=0.003949). The 

propensity of females to hybridize has been substantially reduced from 37% in allopatric 

females (experiment B) to 13% in sympatric females (experiment A; p= 0.00367). 

Finally, displacement of the signal in sympatry is perceptible to females: sympatric 

females have a strong preference for the sympatric signal (p=1.35 x 10-7), whereas 

allopatric females exhibit a weak preference (p=0.046). The results are summarized in 

Fig. 5.5.  

 

5.4 DISCUSSION 

I have shown that sympatric Pseudacris feriarum exhibits a pattern of acoustic 

reproductive character displacement in three of four localities where the species is 
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sympatric with P. nigrita. The displaced populations not only vary in the magnitude of 

character displacement but also in the direction of divergence. The Georgia population 

has diverged significantly in pulse rate, the South Carolina population has diverged 

substantially in pulse number, and the Florida population has diverged to a lesser degree 

along both axes of the signal. This indicates that heterospecific overlap can generate 

divergent selection on populations of the same species, resulting in displacement along 

different signal axes.  

The female preference tests support a role for reinforcement driving the pattern of 

reproductive character displacement. I found that preferences have diverged in sympatry 

to such a degree that females choose the heterospecific signal ~60% less than allopatric 

females. When given a choice between an allopatric or sympatric conspecific call, 

sympatric females show a strong preference for the divergent sympatric signal, 

suggesting they exert strong directional selection on the male signal. Females make the 

same number of mating mistakes whether they are presented with an allopatric or 

sympatric conspecific signal. This implies that evolution of the female preference rather 

than evolution of the male signal has led to reduced hybridization. Additional research is 

needed to determine the cost of hybridizing to females and quantify the frequency of 

hybridization in the field. 

Why does the degree of sympatric signal displacement vary geographically? 

Our results show geographic variation in the degree of RCD among populations. 

In particular, the northernmost population (Virginia) shows no divergence in sympatry, 
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whereas the other three populations show strong divergence. There are several possible 

reasons for this pattern. First, hybrid fitness may vary geographically (Parris 2001; 

Sweigart et al. 2007). In this situation, we would expect high fitness of hybrids in non-

divergent populations and low fitness in divergent populations. Second, depth of the 

population within the contact zone (distance from allopatry) may be related to the degree 

of divergence (Littlejohn 1965). Gene flow from allopatry may swamp divergent alleles 

in shallow sympatry but not in deep sympatry, thus causing variation in the degree of 

displacement, depending on where populations were sampled (e.g. Hoskin et al. 2005). 

Third, relative abundance of each species can affect divergence. In areas where a species 

is relatively rare, it may be under stronger selection to diverge from conspecific signals 

than in areas where it is common (Howard 1993; Noor 1995). Selection may be 

counterbalanced, however, by gene flow from heterospecific populations (when 

heterospecific individuals are more abundant), such that the greatest divergence occurs 

when relative abundances are nearly equal (Nosil 2003). Fourth, ecological overlap 

between species may vary geographically (Gow et al. 2006; Taylor et al. 2006). For 

example, extrinsic factors, such as preferred breeding habitat or timing of optimal 

breeding conditions for two species, may be discrete in space or time one region and 

continuous in another, thereby affecting the probability of interaction between species 

and the strength of selection promoting divergence. Finally, the two species may have 

come into secondary contact at different times in different parts of the contact zone, 

resulting in a greater degree of divergence in the older contact area because populations 

have had more time to evolve differences (Borge et al. 2005).  



 

 214 

The first hypothesis could be tested by performing controlled hybridization 

experiments in different parts of the contact zone and testing for variation in hybrid 

fitness (e.g., Parris 2001). The second hypothesis could be examined by testing for a 

positive correlation between distance to allopatry versus degree of displacement across 

multiple populations. Similarly, the third hypothesis could be tested, by looking for a 

negative correlation between density of conspecific individuals and displacement in that 

species. The expected pattern may be confounded, however, by interaction of these two 

factors (distance to allopatry and density) because density should decline near the edges 

of species ranges (Kirkpatrick and Barton 1997). The fourth hypothesis could be tested 

by estimating the ecological niches of sympatric species in different parts of the contact 

zone and by determining the degree of spatial and temporal overlap (and probability of 

interaction) during the breeding season. The last hypothesis could be evaluated using 

multi-gene phylogeographic data to test for population stability or recent expansion in 

different parts of the zone.   

Available data lend support for several hypotheses (2, 3, and 5) in the Pseudacris 

feriarum/P. nigrita contact zone, which are not mutually exclusive. Within the Florida 

transect, Fouquette (1975) found increasing displacement with distance from allopatry in 

P. feriarum. This pattern may also occur in other parts of the contact zone. Published 

distributions (Crenshaw and Blair 1959; Lannoo 2005), phylogeographic data (Moriarty 

et al. in press), and my field surveys indicate that P. feriarum only penetrate the Coastal 

Plain distribution of P. nigrita along river corridors. Although population densities are of 

P. feriarum are high within the river floodplain, the species is surrounded by P. nigrita 
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outside of this area, suggesting in that P. feriarum is the relatively rarer species. The 

Virginia locality is an exception to this rule. In this region, P. nigrita populations are 

isolated from their main distribution and form a sympatric island, surrounded by P. 

feriarum. For this reason, P. nigrita is predicted to be the rarer species in Virginia and 

may therefore be under stronger selection to diverge. Data supporting the timing of 

secondary contact hypothesis are the strongest. Phylogeographic and population genetic 

data indicate that P. feriarum underwent a recent expansion into the northern part of its 

range, probably in response to climate change since the last glacial maximum (Moriarty 

et al. in press). Therefore, the two species came into contact only recently in Virginia, 

whereas they have been interacting for a longer period in the southern part of the range. 

This suggests that speciation-in-action may be observed in this system, where populations 

are in an early stage of divergence in northern areas and in a later stage in the southern 

region.  

Why is reproductive character displacement asymmetric? 

I have shown evidence for asymmetric RCD in sympatry, where only Pseudacris 

feriarum has diverged substantially in the contact zone. This pattern is found frequently 

in taxa that have undergone RCD (Fouquette, 1975; Butler, 1988; Loftus-Hills and 

Littlejohn, 1992). Several hypotheses have been proposed to explain this pattern, some of 

which invoke maladaptive hybridization as the selective force driving divergence, 

whereas others require only reduced mating efficiency due to interference of signals in 

sympatry. First, taxa may experience asymmetric postzygotic isolation. In this case, the 
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species experiencing the greater cost to hybridization may be under stronger selection to 

evolve more effective communication mechanisms (Gabor and Ryan, 2001). Second, 

species may face asymmetric prezygotic isolation (but equal postzygotic isolation). In 

this situation, the species with poor species recognition ability is predicted to diverge in 

sympatry. Third, as described above, when relative abundances are unequal, the rarer 

species may undergo RCD. If one species is consistently less abundant in sympatry, that 

taxon may diverge in all populations. Fourth, there may be a greater cost to evolving in 

one species (fitness tradeoff), so selection acts more efficiently to cause displacement in 

the other species. Finally, divergent characters may spread from sympatry to allopatry in 

one species, either because they are preferred by allopatric females or because 

demographic factors (such as extinction in allopatry) lead to colonization of allopatry by 

sympatric individuals. 

Because these factors are not mutually exclusive, identifying a single process that 

caused asymmetric RCD can be difficult. To determine the primary forces driving the 

pattern, each hypothesis can be tested individually. To test the first hypothesis, symmetry 

of fitness effects can be assessed through reciprocal hybridization experiments. The 

second hypothesis can be tested through species recognition tests on allopatric 

populations of each species. The third hypothesis can be assessed by quantifying levels of 

reproductive isolation across populations that vary in relative abundance (e.g., Peterson et 

al. 2005). The fourth hypothesis is perhaps the most difficult to test. One approach would 

be to examine the energetic costs of different signals (Wells 2001). If the extreme calls 

(most different from the heterospecific) of the putatively constrained species are more 
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costly to produce, this would suggest that the signal of this species is physiologically 

constrained. For testing the fifth hypothesis, phylogeographic data from multiple genes 

could be used to determine directions of gene flow, into or out of the contact zone. 

Future behavioral, ecological, and genetic work will test each of these hypotheses 

in turn, however, some data are available regarding the emigration the displaced signal 

from sympatry to allopatry (hypothesis 5). Ancestors of Pseudacris feriarum and P. 

nigrita speciated in the late Miocene, ~8 million years ago (Moriarty et al. in press). 

Since this time, multiple sea level fluctuations have covered much of the current 

distribution of P. nigrita throughout the Coastal Plain (Dowsett and Cronin 1990), likely 

causing local extinction in all but more inland areas. Genetic data support this prediction: 

P. nigrita has extremely low genetic variation per unit geographic area compared to other 

Pseudacris species, suggesting population contraction and re-expansion (Moriarty et al. 

in press; Lemmon and Moriarty, manuscript). Given that marine inundation of large areas 

of allopatry would have forced P. nigrita inland toward P. feriarum, it is probable that 

after sea level recession, sympatric P. nigrita recolonized coastal regions, spreading the 

diverged signal through allopatry.  

Why does the axis of signal divergence vary?  

A novel finding of this study is that different acoustic signal components may 

diverge in different sympatric populations. This pattern may be the result of stochastic 

processes or geographic variation in the fitness landscape. In the first scenario, there may 

be multiple solutions to the problem of signal interference, and the component of the 
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signal that diverges depends on the level of genetic variation at loci controlling these 

components. Therefore, selection may be more efficient at one locus in some populations 

and at a different locus in other populations simply due to the level of variation at these 

loci at the time of secondary contact. Alternatively, different components may displace 

due to geographic variation in the fitness of signal types. For instance, if habitat varies 

geographically, some types of signals may transmit more efficiently in some habitats than 

others, leading to environmental selection on signal components (Ryan and Wilczynski 

1991). Additionally, signal-oriented predators may vary spatially, such that individuals 

with one signal phenotype are disfavored in one area but not another (Jiggins et al. 2001). 

Another important factor is the presence of multiple heterospecific taxa in the breeding 

habitat. If a species interacts with more than one other taxon in some parts of its range, 

this third species could drive evolution of the signal in a new direction (Pfennig and Ryan 

2006).  

These hypotheses can be assessed through several experimental approaches. To 

test for stochastic divergence in nature, experiments with replicate captive populations 

could be conducted, where unidirectional and bidirectional strengths of selection are 

imposed on each population. This would elucidate whether populations always evolve 

along the same signal paths. To test the environmental selection hypothesis, signal 

transmission experiments could be conducted in the different sympatric habitats to 

determine whether signals degrade more rapidly with distance in non-native habitats and 

which values of signal components transmit most effectively at each site. To test the 

acoustic-predation hypothesis, acoustic playback tests of the sympatric signals could be 



 

 219 

performed to determine the proportion of predators attracted by each signal type. Testing 

the multiple heterospecific overlap hypothesis requires several steps. First, candidate 

species with acoustically similar signals should be identified. Second, populations with 

two and three species should be examined to determine whether signals in three-species 

contacts diverge consistently in a different direction from two-species contacts. Third, 

female preference tests should be performed to identify which signal components are 

salient to females in different sympatric regions. 

Although the proposed hypotheses still need to be thoroughly tested in the chorus 

frog system, some evidence supports the multiple heterospecific overlap hypothesis. 

Sympatric Pseudacris feriarum and P. nigrita overlap with a third species of chorus frog, 

P. brimleyi, from South Carolina and northward. Pseudacris feriarum has a higher pulse 

rate signal than P. nigrita, but a lower pulse rate than P. brimleyi. This suggests that 

divergence from P. nigrita along the pulse rate axis may cause P. feriarum to experience 

acoustic interference from P. brimleyi, and therefore, selection may favor a different 

signal component to evolve. In the sympatric South Carolina population, this is indeed 

the case: P. feriarum has displaced in pulse number rather than pulse rate (Fig. 5.3). 

Further tests should be done to ascertain whether P. brimleyi has influenced this direction 

of signal evolution. At least one other empirical study, however, has found evidence that 

overlap with multiple heterospecific taxa causes divergent selection on signals. In 

Heliconius butterflies, sister species H. melpomene and H. cydno have diverged in visual 

signals to mimic different sympatric model species. This divergence has led to assortative 

mating based on theses signals and speciation in their ancestor (Jiggins et al. 2001; 
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Jiggins et al. 2004). Additionally, neural network simulations by Pfennig and Ryan (2006) 

found that signals of conspecific populations diverged along different axes in response to 

overlap with different heterospecifics. These data suggest that variation in the type of 

species interactions can can promote the evolution of reproductive isolation among 

conspecific populations and potentially lead to speciation. 

Patterns of female preference evolution 

The mate choice experiments indicate that the preferences of female Pseudacris 

feriarum have undergone reproductive character displacement, such that sympatric 

females make significantly fewer mating mistakes than allopatric females. The propensity 

to hybridize has been reduced through evolution of the female preference in sympatry 

and not through evolution of the male trait itself. This can be seen by the fact that 

whether females are given allopatric or sympatric conspecific calls paired with the 

heterospecific call, they make the same number of mistakes. This result begs the question, 

“Why then did the male signal evolve?” The answer can be found in experiment C, where 

sympatric females strongly prefer the sympatric over the allopatric signal. This suggests 

that sympatric females exert directional selection on the male call, causing it to diverge 

from that of P. nigrita. 

Physiological data from a close relative to Pseudacris, Hyla versicolor, indicate 

that increasing the number of pulses within calls is metabolically costly (Taigen and 

Wells 1985; Wells and Taigen 1986), suggesting that males are energetically constrained 

in the degree of divergence along the pulse number axis. The Pseudacris preference data 
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are consistent with this finding: allopatric females have a weak preference for the 

sympatric call. This provides evidence for stabilizing selection on the male signal—

female preference drives the signal in one direction and metabolic limitations constrain 

the signal in the other. Because female preferences have diverged in sympatry, the male 

signal has evolved to a new optimum in this tradeoff. Additional work will be done to 

elucidate the energetic costs of allopatric versus sympatric calls and to identify the costs 

of diverging along the pulse rate versus the pulse number axis. 

Through a series of female preference tests on Georgia frogs, Martof and 

Thompson (1964) found that pulse number and pulse rate are not essential for species 

recognition by allopatric Pseudacris feriarum. Instead, frequency, call rate, call duration, 

and intensity were implicated as important to females. In contrast, our results based on 

male call divergence suggest that in sympatric regions, pulse number and pulse rate may 

be critical to females for identifying conspecifics. Further experiments will be conducted 

to identify the specific call characters used by females. Because the critical components 

may vary geographically (Pfennig and Ryan 2007), experiments will be performed in 

multiple sympatric populations to determine the direction of the female preference in 

different regions. 

Why has the female preference evolved? 

The pattern of reproductive character displacement in both the male signal and the 

female preference may be caused by selection against signal interference (facilitated 

RCD: Howard 1993), selection against ecological interference (ecological RCD: Brown 
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and Wilson 1956), or a consequence of reinforcement (Dobzhansky 1940). Evidence to 

date supports that reinforcement is driving divergence in chorus frogs. First, putative 

hybrids, which are morphologically and acoustically intermediate (Fig. 5.3), have been 

found in nature, thereby ruling out the facilitated RCD hypothesis. Second, comparative 

analyses of acoustic signal evolution across the entire genus Pseudacris indicate that 

pulse rate and pulse number are uncorrelated with body size, which is related to the 

ecological niche in frogs (Parmelee 1999). This suggests that signal displacement is not 

merely a byproduct of ecological character divergence. Third, preliminary data from 

ongoing laboratory experiments suggest that hybrids have lower viability (developmental 

problems) and decreased fertility (sperm disfunction; E. Moriarty Lemmon, unpub. data), 

supporting the idea that reinforcement is driving the evolution of premating isolation in 

this system. Further research on the degree of natural and sexual selection against 

hybridization and on the frequency of hybridization in the field is currently underway. 

 

5.5 CONCLUSION 

This study demonstrates disparate directions and levels of acoustic reproductive 

character displacement among populations of sympatric Pseudacris feriarum in different 

parts of the contact zone with P. nigrita. The data shows that female P. feriarum 

preferences have diverged in sympatry, resulting in reduced probability of hybridization 

and greater discrimination among conspecific signals. Additionally, results indicate that 

divergence of the female preference and not the male signal has reduced the frequency of 
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hybridization between species. Together, the signal and preference data suggest that 

female preference evolution drives divergence of the male signal, and this has resulted in 

displacement of the signal along different, uncorrelated axes, potentially leading to 

reproductive isolation among conspecific populations. 
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Table 5.1. Loadings for the first five principal components from the multivariate analysis 
of 16 call variables.  

 I II III IV V 
Call Duration -0.11778 0.17442 0.57065 0.15823 0.20002 
Call Duty Cycle 0.30068 0.27963 0.10249 0.09426 0.24682 
Call Fall Time -0.22475 -0.17671 0.02628 0.23356 0.34591 
Call Rate 0.35266 0.13813 -0.29511 0.00594 -0.03008 
Call Rise Time 0.06556 0.31677 0.53826 -0.02834 -0.03261 
Dom Freq Beg -0.29563 0.16204 -0.203 0.28288 0.07181 
Dom Freq End -0.24575 0.24131 -0.27826 0.34668 0.16185 
Dom Freq Peak -0.23838 0.3689 -0.22711 0.27619 0.01863 
Pulse Duration 0.22076 -0.34827 0.09348 0.45338 0.11451 
Pulse Duty Cycle 0.3889 0.07678 -0.17279 0.12058 0.01289 
Pulse Fall Time 0.22376 -0.27481 0.06351 0.37387 0.33738 
Pulse Number 0.33678 0.2813 0.07313 0.01472 0.16151 
Pulse Rate 0.36717 0.18309 -0.20303 0.01799 -0.01896 
Pulse Rise Time 0.1144 -0.32407 0.08376 0.28781 -0.41079 
Pulse Shape Off 0.02034 0.31446 0.11115 0.29121 -0.35979 
Pulse Shape On -0.01177 0.02988 0.08699 0.32581 -0.54222 
 
Eigenvalue 5.5984 2.5013 2.0343 1.578 1.2217 
Percent of Variance 34.99 15.63 12.71 9.86 7.64 
Cumulative Percent 34.99 50.62 63.34 73.20 80.84
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Table 5.2. Results of randomization test for detecting reproductive character 
displacement in different sympatric populations. Populations that were significant after 
sequential Bonferroni correction are denoted with asterisks. A * indicates significance at 
p<0.0001 and ** means significance p<0.00001.  
 
  P. feriarum P. nigrita 

Axis Population P-value  P-value 

PC1 Florida 0.00001 ** 0.55342 
PC1 Georgia 0.00001 ** 0.11231 
PC1 South Carolina 0.00024 * 0.79796 
PC1 Virginia 1  0.00507 
 
PC2 Florida 0.89705  0.44288 
PC2 Georgia 0.10654  0.5018 
PC2 South Carolina 0.00001 ** 0.87185 
PC2 Virginia 0.53837  0.97422 
 
PC3 Florida 0.84688  0.13446 
PC3 Georgia 0.00001 ** 0.90916 
PC3 South Carolina 0.00001 ** 0.28278 
PC3 Virginia 0.06276  0.86451 
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Table 5.3. Loadings for canonical variates analyses. These are unstandardized 
eigenvectors. 
 I II III 
Call Fall Time 0.76843 -3.23757 4.96293 
Call Rise Time 2.53892 -0.16805 7.57221 
Dom Freq Peak 0.00037 -0.00357 0.00222 
Pulse Number -0.02908 0.32090 -0.24022 
Pulse Rate 0.43479 -0.11495 0.07638 
 
Eigenvalue 17.95393 4.10132 0.26353 
Percent of Variance 80.44 18.38 1.18 
Cumulative Percent 80.44 98.82 100.00 
Canonical Correlation 0.97326 0.89664 0.45669 
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Table 5.4. Standardized coefficients for the three canonical axes from the discriminant 
analysis. Variables that are more important for distinguishing groups have higher values 
(positive or negative, in bold). The percent of variation explained by each axis is listed 
below the call variables.  
 
Call Variable Std. Coeff. 1 Std. Coeff. 2 Std. Coeff. 3 

Pulse Number -0.095 1.050 -0.786 
Dom Freq Peak 0.058 -0.561 0.349 
Call Fall Time 0.096 -0.405 0.621 
Call Rise Time 0.452 -0.030 1.347 
Pulse Rate 1.091 -0.288 0.192 
 
Percent Var. 80.44% 18.37% 1.18%   
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Table 5.5. Pairwise comparisons of populations along canonical axes 1 and 2 with 
randomization tests. For each canonical axis, populations were compared in rank order 
from low mean canonical scores to high mean scores. Significant comparisons at 
p<0.00001 are indicated with an asterisk. 
 
Axis Comparison P-value  

CV1  Virginia vs. South Carolina 0.00001* 
CV1  South Carolina vs. Florida 0.20925  
CV1  Florida vs. Georgia 0.00001* 
    
CV2  Georgia vs. Virginia 0.15049  
CV2  Virginia vs. Florida 0.00001* 
CV2  Florida vs. South Carolina 0.00001* 
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Table 5.6. Temperature-corrected raw data for two call variables. The mean ± standard 
deviation and range (on line below) of pulse number and pulse rate are shown for each of 
the 16 populations examined. Transect numbers correspond to those listed in the Methods 
and position refers to allopatry (A) or sympatry (S). State refers to the location of the 
population and N indicates the number of individuals recorded from the population. 
 
Species Transect Position State N Pulse Number Pulse Rate 

P. feriarum 1 A FL 13 17.40±1.97 21.83±1.78 
     14.75–22.00 16.96–23.65 
P. feriarum 1 S FL 20 24.33±3.60 30.68±2.46 
     19.13–31.00 26.92–35.84 
P. nigrita 1 A FL 9 10.22±1.28 10.34±0.79 
     8.37–12.25 8.74–11.23 
P. nigrita 1 S FL 20 9.65±1.47 8.54±1.10 
     7.24–11.68 6.47–10.62 
Hybrid ECM2326 1 S FL 1 15.54 18.97 
     — — 
Hybrid ECM2327 1 S FL 1 14.16 14.91 
     — — 
P. feriarum 2 A GA 14 21.97±2.16 25.43±1.41 
     18.73–25.50 23.38–27.93 
P. feriarum 2 S GA 14 24.68±3.17 50.69±3.04 
     20.90–30.60 44.01–54.94 
P. nigrita 2 A FL 5 9.33±1.51 10.46±1.50 
     8.12–11.91 8.99–12.95 
P. nigrita 2 S GA 17 8.24±0.59 8.51±1.24 
     7.10–9.19 4.84–9.84 
P. feriarum 3 A SC 20 20.17±2.32 25.65±1.28 
     15.20–25.33 23.99–27.66 
P. feriarum 3 S SC 17 32.79±3.94 27.73±2.13 
     25.25–40.80 23.54–30.54 
P. nigrita 3 A GA 20 9.97±0.78 8.26±0.53 
     8.94–11.65 6.95–9.17 
P. nigrita 3 S SC 21 8.77±0.90 8.86±1.69 
     7.08–10.10 5.61–11.32 
P. feriarum 4 A VA 20 18.58±2.44 24.79±1.69 
     12.67–23.33 21.58–27.46 
P. feriarum 4 S VA 44 17.50±2.85 21.79±2.48 
     13.67–32.14 16.67–26.77 
P. nigrita 4 S VA 41 8.06±1.03 7.58±1.05 
     6.10–11.19 5.08–9.90 
Hybrid ECM1984 4 S VA 1 13.00 13.08 
     — — 
Hybrid ECM2003 4 S VA 1 15.53 15.59 
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     — — 
P. nigrita n/a A MS 19 10.36±1.04 9.39±1.20 
     8.81–12.32 6.69–11.86  
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Supplemental Data 5.1. List of male Pseudacris feriarum, P. nigrita, and putative hybrids examined for signal variation. 

Specimens are organized by field number. Position indicates whether the individual was found in allopatry (A) or sympatry (S). 

Transect refers to the geographic transects listed in Fig. 5.3 and described in the Methods. Recording temperature (Temp.) is 

listed in degrees Celcius. Signal indicates whether the individual was included in the call variation portion of the study. 

Preference tests (Pref. Tests) indicates whether the individual’s call was used to synthesize stimuli for the female phonotaxis 

tests. Dataset 1 and 2 list the number of calls extracted from a frog’s calling sequence for quantifying within-call variation (1) 

and between call-variation (2) within individuals. The distinction between these datasets is explained further in the methods 

section. 

 

Field No. Species Position Transect State County Temp. Signal Pref. Tests Dataset 1 Dataset 2 

ECM0024 P. nigrita A 3 FL Brevard 12.6 Y N 9 11 

ECM0025 P. nigrita A 3 FL Brevard 12.8 Y N 9 12 

ECM0026 P. nigrita A 3 FL Brevard 12.6 Y N 11 14 

ECM0027 P. nigrita A 3 FL Brevard 13.2 Y N 10 13 

ECM0028 P. nigrita A 3 FL Brevard 19 Y N 11 11 

ECM0218 P. feriarum S 2 FL Calhoun 11.8 N Y 10 n/a 

ECM0221 P. feriarum S 2 FL Calhoun 11.8 N Y 10 n/a 

ECM0222 P. feriarum S 2 FL Calhoun 11.8 N Y 10 n/a 

ECM0224 P. nigrita S 2 FL Liberty 12.4 N Y 2 n/a 

ECM0225 P. nigrita S 2 FL Liberty 12.4 Y Y 6 6 

ECM0226 P. nigrita S 2 FL Liberty 12.4 N Y 6 n/a 

ECM0227 P. nigrita S 2 FL Liberty 12.4 Y Y 4 4 

ECM0228 P. nigrita S 2 FL Liberty 12.4 Y Y 5 5 

ECM0229 P. nigrita S 2 FL Liberty 12.4 Y Y 10 5 

ECM0230 P. nigrita S 2 FL Liberty 12.4 Y Y 11 11 

ECM0231 P. nigrita S 2 FL Franklin 19 N Y 10 n/a 

ECM0232 P. feriarum S 2 FL Liberty 12.4 Y Y 15 8 

ECM0233 P. feriarum S 2 FL Liberty 12.4 Y Y 12 11 

ECM0234 P. feriarum S 2 FL Liberty 12.4 Y Y 8 12 

ECM0235 P. feriarum S 2 FL Liberty 12.4 Y Y 5 10 

ECM0236 P. nigrita S 2 FL Liberty 15.8 Y Y 7 3 
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ECM0237 P. nigrita S 2 FL Liberty 15.8 Y Y 12 13 

ECM0238 P. nigrita S 2 FL Liberty 15.8 Y Y 9 13 

ECM0239 P. nigrita S 2 FL Liberty 15.8 Y Y 10 7 

ECM0240 P. nigrita S 2 FL Liberty 15.8 Y Y 7 11 

ECM0241 P. nigrita S 2 FL Liberty 15.8 Y Y 9 11 

ECM0244 P. feriarum S 2 FL Liberty 12.2 Y N 5 5 

ECM0245 P. feriarum S 2 FL Liberty 12.2 Y Y 6 10 

ECM0248 P. feriarum S 2 FL Liberty 12.2 Y Y 6 6 

ECM0262 P. nigrita A 1 MS Harrison 20 Y N 11 11 

ECM0280 P. nigrita A 1 MS Harrison 15.4 Y N 11 11 

ECM0281 P. nigrita A 1 MS Harrison 12.4 Y N 11 11 

ECM0282 P. nigrita A 1 MS Harrison 12.4 Y N 4 3 

ECM0283 P. nigrita A 1 MS Harrison 13.8 Y N 11 11 

ECM0284 P. nigrita A 1 MS Harrison 13 Y N 11 7 

ECM0285 P. nigrita A 1 MS Harrison 13 Y N 12 12 

ECM0286 P. nigrita A 1 MS Harrison 13 Y N 11 7 

ECM0287 P. nigrita A 1 MS Harrison 12.2 Y N 11 7 

ECM0288 P. nigrita A 1 MS Harrison 12.2 Y N 7 5 

ECM0289 P. nigrita A 1 MS Harrison 12.2 Y N 10 10 

ECM0290 P. nigrita A 1 MS Harrison 19.2 Y N 11 11 

ECM0291 P. nigrita A 1 MS Harrison 19.2 Y N 12 12 

ECM0292 P. nigrita A 1 MS Harrison 19.8 Y N 11 11 

ECM0293 P. nigrita A 1 MS Harrison 19.8 Y N 12 12 

ECM0294 P. nigrita A 1 MS Harrison 19.8 Y N 11 11 

ECM0295 P. nigrita A 1 MS Harrison 19.8 Y N 11 8 

ECM0296 P. nigrita A 1 MS Harrison 19.8 Y N 11 11 

ECM0297 P. nigrita A 1 MS Harrison 19.8 Y N 11 11 

ECM0336 P. feriarum S 2 FL Liberty 14.4 Y Y 8 11 

ECM0337 P. feriarum S 2 FL Liberty 14.4 Y Y 10 11 

ECM0338 P. feriarum S 2 FL Liberty 17.8 Y Y 11 11 

ECM0340 P. nigrita S 2 FL Liberty 17.8 Y Y 12 11 



 

 233 

ECM0343 P. feriarum S 2 FL Liberty 17.8 Y Y 11 11 

ECM0344 P. feriarum S 2 FL Liberty 17.8 Y Y 10 12 

ECM0345 P. feriarum S 2 FL Liberty 17.8 Y Y 10 11 

ECM0346 P. feriarum S 2 FL Liberty 17.8 Y Y 7 11 

ECM0347 P. feriarum S 2 FL Liberty 17.8 Y N 11 11 

ECM0348 P. feriarum S 2 FL Liberty 17.8 Y Y 8 6 

ECM0359 P. nigrita S 2 FL Liberty 16 Y Y 8 11 

ECM0360 P. nigrita S 2 FL Liberty 16 Y Y 8 11 

ECM0361 P. nigrita S 2 FL Liberty 16 Y Y 2 3 

ECM0362 P. nigrita S 2 FL Liberty 16 Y Y 11 11 

ECM0363 P. nigrita S 2 FL Liberty 16 Y Y 11 11 

ECM0364 P. nigrita S 2 FL Liberty 16 Y Y 9 8 

ECM0365 P. nigrita S 2 FL Liberty 16 Y Y 9 11 

ECM0366 P. nigrita S 2 FL Liberty 16 Y Y 9 11 

ECM0367 P. feriarum S 2 FL Liberty 16 Y Y 6 11 

ECM0372 P. nigrita A 2 FL Jefferson 17 Y N 12 13 

ECM0373 P. nigrita A 2 FL Jefferson 17 Y N 10 9 

ECM0374 P. nigrita A 2 FL Jefferson 17 Y N 11 12 

ECM0375 P. nigrita A 2 FL Jefferson 17 Y N 9 13 

ECM0376 P. nigrita A 2 FL Jefferson 17 Y N 10 14 

ECM0377 P. nigrita A 2 FL Jefferson 17 Y N 10 13 

ECM0378 P. nigrita A 2 FL Jefferson 16 Y N 9 13 

ECM0379 P. nigrita A 2 FL Jefferson 16 Y N 9 14 

ECM0381 P. nigrita A 2 FL Jefferson 16 Y N 11 12 

ECM0387 P. feriarum A 2 AL Macon 14 Y Y 12 12 

ECM0388 P. feriarum A 2 AL Macon 14 Y Y 12 14 

ECM0389 P. feriarum A 2 AL Macon 14 Y Y 6 4 

ECM0390 P. feriarum A 2 AL Macon 14 Y Y 9 12 

ECM0391 P. feriarum A 2 AL Macon 14 Y Y 10 12 

ECM0392 P. feriarum A 2 AL Macon 14 Y Y 7 5 

ECM0393 P. feriarum A 2 AL Macon 14 Y Y 5 13 
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ECM0394 P. feriarum A 2 AL Macon 14 Y Y 4 10 

ECM0395 P. feriarum A 2 AL Macon 14 Y Y 10 9 

ECM0396 P. feriarum A 2 AL Macon 14 Y Y 2 8 

ECM0397 P. feriarum A 2 AL Macon 14 Y Y 6 12 

ECM0398 P. feriarum A 2 AL Macon 14 Y Y 4 7 

ECM0400 P. feriarum A 2 AL Macon 18 Y Y 9 14 

ECM0401 P. feriarum S 3 GA Baker 18 Y N 11 11 

ECM0402 P. feriarum S 3 GA Baker 18 Y N 12 11 

ECM0403 P. feriarum S 3 GA Baker 18 Y N 12 12 

ECM0404 P. feriarum S 3 GA Baker 18 Y N 11 11 

ECM0405 P. feriarum S 3 GA Baker 18 Y N 11 5 

ECM0406 P. feriarum S 3 GA Baker 18 Y N 10 4 

ECM0407 P. feriarum S 3 GA Baker 18 Y N 12 8 

ECM0408 P. feriarum S 3 GA Baker 18 Y N 10 4 

ECM0409 P. feriarum S 3 GA Baker 18 Y N 11 6 

ECM0410 P. feriarum S 3 GA Baker 18 Y N 12 12 

ECM0411 P. feriarum S 3 GA Baker 18 Y N 12 12 

ECM0412 P. feriarum S 3 GA Baker 18 Y N 11 11 

ECM0413 P. feriarum S 3 GA Baker 18 Y N 11 11 

ECM0414 P. feriarum S 3 GA Baker 18 Y N 10 10 

ECM0422 P. nigrita S 3 GA Baker 18.6 Y N 12 12 

ECM0423 P. nigrita S 3 GA Baker 18.6 Y N 13 13 

ECM0424 P. nigrita S 3 GA Baker 18.6 Y N 12 12 

ECM0425 P. nigrita S 3 GA Baker 18.6 Y N 12 12 

ECM0426 P. nigrita S 3 GA Baker 18.6 Y N 11 11 

ECM0427 P. nigrita S 3 GA Baker 18.6 Y N 7 7 

ECM0428 P. nigrita S 3 GA Baker 18.6 Y N 12 12 

ECM0429 P. nigrita S 3 GA Baker 18.6 Y N 12 8 

ECM0430 P. nigrita S 3 GA Baker 18.6 Y N 11 11 

ECM0431 P. nigrita S 3 GA Baker 18.6 Y N 11 11 

ECM0432 P. nigrita S 3 GA Baker 18.6 Y N 12 12 
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ECM0433 P. nigrita S 3 GA Baker 18.6 Y N 10 10 

ECM0434 P. nigrita S 3 GA Baker 18.6 Y N 10 10 

ECM0435 P. nigrita S 3 GA Baker 18.6 Y N 11 11 

ECM0436 P. nigrita S 3 GA Baker 18.6 Y N 12 12 

ECM0437 P. nigrita S 3 GA Baker 18.6 Y N 11 11 

ECM0438 P. nigrita S 3 GA Baker 18.6 Y N 11 11 

ECM0441 P. feriarum S 4 SC Dorchester 15 Y N 8 4 

ECM0442 P. nigrita S 4 SC Dorchester 14.8 Y N 6 6 

ECM0443 P. nigrita S 4 SC Dorchester 14.8 Y N 6 6 

ECM0444 P. nigrita S 4 SC Dorchester 14.8 Y N 9 7 

ECM0481 P. feriarum S 5 VA York 18.6 Y N 11 7 

ECM0482 P. nigrita S 5 VA York 18.6 Y N 11 11 

ECM0483 P. nigrita S 5 VA York 18.6 Y N 11 9 

ECM0487 P. nigrita S 5 VA York 15.8 Y N 11 11 

ECM0488 P. nigrita S 5 VA York 15.8 Y N 11 11 

ECM0489 P. feriarum S 5 VA York 15.8 Y N 10 7 

ECM0490 P. feriarum S 5 VA York 16 Y N 9 8 

ECM0491 P. feriarum S 5 VA York 16 Y N 11 11 

ECM0492 P. feriarum S 5 VA York 16 Y N 9 9 

ECM0493 P. feriarum S 5 VA York 16 Y N 7 7 

ECM0494 P. feriarum S 5 VA York 15.2 Y N 11 10 

ECM0495 P. feriarum S 5 VA York 15.2 Y N 10 10 

ECM0496 P. feriarum S 5 VA York 15.2 Y N 17 10 

ECM0497 P. feriarum S 5 VA York 16 Y N 11 11 

ECM0498 P. nigrita S 5 VA York 16.6 Y N 10 6 

ECM0996 P. feriarum A 5 VA Prince Edward 7.2 Y N 10 4 

ECM0997 P. feriarum A 5 VA Prince Edward 7.2 Y N 3 4 

ECM0998 P. feriarum A 5 VA Prince Edward 7.2 Y N 11 11 

ECM0999 P. feriarum A 5 VA Prince Edward 7.2 Y N 10 11 

ECM1000 P. feriarum A 5 VA Prince Edward 7.2 Y N 8 11 

ECM1002 P. feriarum A 5 VA Prince Edward 7.2 Y N 14 6 
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ECM1003 P. feriarum A 5 VA Prince Edward 8.2 Y N 3 2 

ECM1004 P. feriarum A 5 VA Prince Edward 8.2 Y N 5 2 

ECM1005 P. feriarum A 5 VA Prince Edward 8.2 Y N 10 13 

ECM1006 P. feriarum A 5 VA Prince Edward 8.2 Y N 6 5 

ECM1007 P. feriarum A 5 VA Prince Edward 8.2 Y N 2 4 

ECM1008 P. feriarum A 5 VA Prince Edward 8.2 Y N 8 11 

ECM1009 P. feriarum A 5 VA Prince Edward 8.2 Y N 3 10 

ECM1010 P. feriarum A 5 VA Prince Edward 8.2 Y N 10 11 

ECM1013 P. feriarum A 5 VA Prince Edward 10.6 Y N 10 11 

ECM1014 P. feriarum A 5 VA Prince Edward 10.6 Y N 11 4 

ECM1015 P. feriarum A 5 VA Prince Edward 10.6 Y N 10 4 

ECM1016 P. feriarum A 5 VA Prince Edward 10.6 Y N 7 4 

ECM1017 P. feriarum A 5 VA Prince Edward 10.6 Y N 4 9 

ECM1018 P. feriarum A 5 VA Prince Edward 10.6 Y N 3 8 

ECM1022 P. feriarum S 5 VA York 9.2 Y N 10 14 

ECM1023 P. feriarum S 5 VA York 9.2 Y N 10 8 

ECM1024 P. feriarum S 5 VA York 9.8 Y N 10 6 

ECM1026 P. feriarum S 5 VA York 8.8 Y N 11 8 

ECM1027 P. feriarum S 5 VA York 8.8 Y N 3 8 

ECM1028 P. feriarum S 5 VA York 8.8 Y N 8 11 

ECM1029 P. feriarum S 5 VA York 8.8 Y N 14 12 

ECM1030 P. feriarum S 5 VA York 9 Y N 10 10 

ECM1031 P. feriarum S 5 VA York 9 Y N 10 11 

ECM1389 P. feriarum S 4 SC Dorchester 10 Y N 5 5 

ECM1390 P. feriarum S 4 SC Dorchester 10 Y N 6 6 

ECM1392 P. feriarum S 4 SC Dorchester 10 Y N 7 7 

ECM1393 P. feriarum S 4 SC Dorchester 10 Y N 6 6 

ECM1396 P. feriarum S 4 SC Dorchester 10 Y N 11 11 

ECM1397 P. feriarum S 4 SC Dorchester 10 Y N 7 3 

ECM1399 P. feriarum S 4 SC Dorchester 10 Y N 11 11 

ECM1401 P. feriarum S 4 SC Dorchester 10 Y N 10 10 
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ECM1405 P. feriarum S 4 SC Dorchester 8 Y N 7 3 

ECM1407 P. feriarum S 4 SC Dorchester 8 Y N 12 12 

ECM1410 P. feriarum S 4 SC Dorchester 8.6 Y N 8 3 

ECM1411 P. feriarum S 4 SC Dorchester 8 Y N 12 12 

ECM1412 P. feriarum S 4 SC Dorchester 8 Y N 11 11 

ECM1422 P. nigrita S 4 SC Dorchester 7.8 Y N 11 5 

ECM1423 P. nigrita S 4 SC Dorchester 7.8 Y N 8 2 

ECM1424 P. nigrita S 4 SC Dorchester 7.8 Y N 7 3 

ECM1425 P. nigrita S 4 SC Dorchester 7.8 Y N 2 2 

ECM1426 P. nigrita S 4 SC Dorchester 7.8 Y N 7 7 

ECM1427 P. nigrita S 4 SC Dorchester 7.8 Y N 11 5 

ECM1428 P. nigrita S 4 SC Dorchester 7.8 Y N 11 3 

ECM1429 P. nigrita S 4 SC Dorchester 7.8 Y N 11 4 

ECM1430 P. feriarum A 4 SC Greenwood 6.8 Y N 3 2 

ECM1431 P. feriarum A 4 SC Greenwood 6.8 Y N 6 3 

ECM1432 P. feriarum A 4 SC Greenwood 7 Y N 4 4 

ECM1433 P. feriarum A 4 SC Greenwood 7 Y N 2 2 

ECM1434 P. feriarum A 4 SC Greenwood 8 Y N 11 7 

ECM1435 P. feriarum A 4 SC Greenwood 8 Y N 14 8 

ECM1436 P. feriarum A 4 SC Greenwood 8 Y N 10 8 

ECM1437 P. feriarum A 4 SC Greenwood 8 Y N 9 9 

ECM1438 P. feriarum A 4 SC Greenwood 8 Y N 11 7 

ECM1439 P. feriarum A 4 SC Greenwood 8 Y N 11 4 

ECM1440 P. feriarum A 4 SC Greenwood 8 Y N 8 8 

ECM1441 P. feriarum A 4 SC Greenwood 8 Y N 12 12 

ECM1442 P. feriarum A 4 SC Greenwood 8 Y N 4 4 

ECM1443 P. feriarum A 4 SC Greenwood 9.2 Y N 8 8 

ECM1444 P. feriarum A 4 SC Greenwood 9.2 Y N 9 9 

ECM1445 P. feriarum A 4 SC Greenwood 9.2 Y N 10 6 

ECM1446 P. feriarum A 4 SC Greenwood 9.2 Y N 11 11 

ECM1447 P. feriarum A 4 SC Greenwood 9.2 Y N 10 10 
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ECM1448 P. feriarum A 4 SC Greenwood 9.2 Y N 11 5 

ECM1449 P. feriarum A 4 SC Greenwood 9.2 Y N 10 5 

ECM1454 P. feriarum A 3 GA Greene 11 Y N 11 7 

ECM1455 P. feriarum A 3 GA Greene 11 Y N 8 4 

ECM1456 P. feriarum A 3 GA Greene 11 Y N 5 5 

ECM1457 P. feriarum A 3 GA Greene 11 Y N 6 4 

ECM1458 P. feriarum A 3 GA Greene 11 Y N 10 10 

ECM1459 P. feriarum A 3 GA Greene 11 Y N 6 3 

ECM1460 P. feriarum A 3 GA Greene 10.8 Y N 13 6 

ECM1461 P. feriarum A 3 GA Greene 10.8 Y N 10 10 

ECM1462 P. feriarum A 3 GA Greene 10.8 Y N 10 10 

ECM1463 P. feriarum A 3 GA Greene 10.8 Y N 11 11 

ECM1464 P. feriarum A 3 GA Greene 11 Y N 11 11 

ECM1465 P. feriarum A 3 GA Greene 11 Y N 8 4 

ECM1466 P. feriarum A 3 GA Greene 11 Y N 10 4 

ECM1467 P. feriarum A 3 GA Greene 11 Y N 10 5 

ECM1468 P. nigrita S 4 SC Dorchester 12 Y N 13 13 

ECM1469 P. nigrita S 4 SC Dorchester 12 Y N 11 11 

ECM1470 P. nigrita S 4 SC Dorchester 13 Y N 8 6 

ECM1471 P. nigrita S 4 SC Dorchester 13 Y N 9 6 

ECM1472 P. nigrita S 4 SC Dorchester 13 Y N 11 11 

ECM1477 P. nigrita S 4 SC Dorchester 14 Y N 9 9 

ECM1478 P. nigrita S 4 SC Dorchester 14 Y N 13 13 

ECM1479 P. nigrita S 4 SC Dorchester 14 Y N 11 11 

ECM1480 P. nigrita S 4 SC Dorchester 14 Y N 8 4 

ECM1481 P. nigrita S 4 SC Dorchester 14 Y N 12 12 

ECM1482 P. feriarum S 4 SC Colleton 15 Y N 5 3 

ECM1483 P. feriarum S 4 SC Colleton 15 Y N 11 11 

ECM1484 P. feriarum S 4 SC Colleton 15 Y N 5 5 

ECM1491 P. nigrita A 4 GA McIntosh 12.2 Y N 11 11 

ECM1492 P. nigrita A 4 GA McIntosh 12.2 Y N 3 3 
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ECM1493 P. nigrita A 4 GA McIntosh 12.8 Y N 11 4 

ECM1494 P. nigrita A 4 GA McIntosh 12.8 Y N 8 3 

ECM1495 P. nigrita A 4 GA McIntosh 12.8 Y N 11 11 

ECM1496 P. nigrita A 4 GA McIntosh 12.8 Y N 12 12 

ECM1497 P. nigrita A 4 GA McIntosh 12.8 Y N 11 11 

ECM1498 P. nigrita A 4 GA McIntosh 12.8 Y N 11 11 

ECM1800 P. nigrita A 4 GA McIntosh 12.8 Y N 5 5 

ECM1801 P. nigrita A 4 GA McIntosh 12.8 Y N 9 6 

ECM1802 P. nigrita A 4 GA McIntosh 12.8 Y N 11 11 

ECM1803 P. nigrita A 4 GA McIntosh 12.8 Y N 10 10 

ECM1804 P. nigrita A 4 GA McIntosh 12.8 Y N 10 10 

ECM1805 P. nigrita A 4 GA McIntosh 12.2 Y N 11 9 

ECM1806 P. nigrita A 4 GA McIntosh 12.2 Y N 12 12 

ECM1807 P. nigrita A 4 GA McIntosh 12.2 Y N 9 9 

ECM1808 P. nigrita A 4 GA McIntosh 12.2 Y N 10 10 

ECM1809 P. nigrita A 4 GA McIntosh 12.2 Y N 10 10 

ECM1811 P. nigrita A 4 GA McIntosh 12.2 Y N 9 6 

ECM1812 P. nigrita A 4 GA McIntosh 12.2 Y N 11 11 

ECM1982 P. feriarum S 5 VA Sussex 11.4 Y N 11 9 

ECM1983a P. nigrita S 5 VA Sussex 11.4 Y N 11 11 

ECM1983b P. nigrita S 5 VA Sussex 11.4 Y N 11 4 

ECM1984 P. hybrid S 5 VA Sussex 11.4 Y N 13 7 

ECM1985 P. feriarum S 5 VA Sussex 15.8 Y N 11 11 

ECM1986 P. feriarum S 5 VA Sussex 15.8 Y N 11 11 

ECM1988 P. feriarum S 5 VA Sussex 11 Y N 11 11 

ECM1989 P. feriarum S 5 VA Sussex 11 Y N 12 8 

ECM1990 P. feriarum S 5 VA Sussex 10.4 Y N 11 3 

ECM1991 P. feriarum S 5 VA Sussex 10.2 Y N 11 5 

ECM1992 P. feriarum S 5 VA Sussex 10.2 Y N 12 12 

ECM1993 P. feriarum S 5 VA Sussex 10.2 Y N 12 6 

ECM1994 P. feriarum S 5 VA Sussex 10.2 Y N 11 5 
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ECM1995 P. feriarum S 5 VA Sussex 10.2 Y N 13 13 

ECM1996 P. feriarum S 5 VA Sussex 10.4 Y N 11 8 

ECM1997 P. feriarum S 5 VA Sussex 10.4 Y N 10 4 

ECM1998 P. feriarum S 5 VA Sussex 10.4 Y N 12 5 

ECM1999 P. feriarum S 5 VA Sussex 10.4 Y N 11 11 

ECM2003 P. hybrid S 5 VA Sussex 8.2 Y N 12 4 

ECM2004 P. nigrita S 5 VA Sussex 8.2 Y N 8 2 

ECM2005 P. feriarum S 5 VA Sussex 8.2 Y N 11 4 

ECM2007 P. feriarum S 5 VA Sussex 10 Y N 11 11 

ECM2008 P. feriarum S 5 VA Sussex 10.4 Y N 11 11 

ECM2009 P. feriarum S 5 VA Sussex 10 Y N 5 5 

ECM2010 P. feriarum S 5 VA Sussex 10 Y N 3 2 

ECM2012 P. feriarum S 5 VA Sussex 10 Y N 4 4 

ECM2013 P. feriarum S 5 VA Sussex 10.6 Y N 10 4 

ECM2031 P. feriarum S 5 VA Sussex 15.8 Y N 10 6 

ECM2032 P. nigrita S 5 VA York 11.4 Y N 11 11 

ECM2033 P. nigrita S 5 VA York 11.4 Y N 10 10 

ECM2034 P. nigrita S 5 VA York 11.4 Y N 11 11 

ECM2035 P. nigrita S 5 VA York 11.4 Y N 9 7 

ECM2036 P. nigrita S 5 VA York 12 Y N 10 10 

ECM2037 P. nigrita S 5 VA York 12 Y N 12 12 

ECM2038 P. nigrita S 5 VA York 12 Y N 11 11 

ECM2039 P. nigrita S 5 VA York 12 Y N 13 13 

ECM2040 P. nigrita S 5 VA York 12 Y N 4 4 

ECM2041 P. nigrita S 5 VA York 12.8 Y N 11 11 

ECM2044 P. nigrita S 5 VA York 12.8 Y N 11 4 

ECM2045 P. nigrita S 5 VA York 12.8 Y N 9 9 

ECM2046 P. nigrita S 5 VA York 12.8 Y N 9 9 

ECM2047 P. nigrita S 5 VA Sussex 12.6 Y N 11 11 

ECM2048 P. nigrita S 5 VA Sussex 12.6 Y N 11 11 

ECM2049 P. nigrita S 5 VA Sussex 12.6 Y N 11 11 
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ECM2050 P. feriarum S 5 VA Sussex 12.6 Y N 11 11 

ECM2051 P. nigrita S 5 VA Sussex 12.6 Y N 11 4 

ECM2052 P. nigrita S 5 VA Sussex 12.6 Y N 10 10 

ECM2053 P. nigrita S 5 VA Sussex 12.6 Y N 10 10 

ECM2054 P. feriarum S 5 VA Sussex 12.6 Y N 11 11 

ECM2055 P. nigrita S 5 VA Sussex 12.6 Y N 11 7 

ECM2056 P. nigrita S 5 VA Sussex 12.6 Y N 11 11 

ECM2057 P. nigrita S 5 VA Sussex 12.6 Y N 11 5 

ECM2058 P. nigrita S 5 VA Sussex 12.6 Y N 11 11 

ECM2059 P. nigrita S 5 VA Sussex 12.6 Y N 12 6 

ECM2060 P. nigrita S 5 VA Sussex 12.6 Y N 10 5 

ECM2061 P. nigrita S 5 VA Sussex 12.6 Y N 15 15 

ECM2062 P. nigrita S 5 VA Sussex 12.6 Y N 10 7 

ECM2063 P. nigrita S 5 VA Sussex 12.6 Y N 11 11 

ECM2064 P. nigrita S 5 VA Sussex 12.6 Y N 12 12 

ECM2065 P. nigrita S 5 VA Sussex 12.6 Y N 11 11 

ECM2066 P. nigrita S 5 VA Sussex 12.6 Y N 12 6 

ECM2067 P. nigrita S 5 VA Sussex 12.6 Y N 7 7 

ECM2068 P. nigrita S 5 VA Sussex 12.6 Y N 12 7 

ECM2326 P. hybrid S 2 FL Liberty 17.2 Y N 9 9 

ECM2327 P. hybrid S 2 FL Liberty 16.2 Y N 11 4 

ECM2388 P. feriarum S 2 FL Liberty 17 Y N 11 11 

ECM2389 P. feriarum S 2 FL Liberty 17 Y N 12 12 

ECM2390 P. feriarum S 2 FL Liberty 17 Y N 11 8 
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Supplemental Data 5.2. Definitions of call characters examined across Pseudacris. All pulse-related variables except pulse 

number were averaged across pulses within the call. 

 

Call Length Duration of call from 10% maximum amplitude (call onset) to 10% maximum amplitude  

  (offset) 

Call Duty Cycle Call length / time from 10% maximum amplitude (call onset) to 10% maximum   

  amplitude (onset) of next call 

Call Fall Time Duration of call from maximum amplitude to 10% maximum amplitude (call offset) 

Call Rate 1 / time from 10% maximum amplitude (call onset) to 10% maximum amplitude (onset)  

   for next call 

Call Rise Time Duration of call from 10% maximum amplitude (call onset) to maximum amplitude 

Call dominant frequency begin Call dominant frequency at 10% maximum amplitude (call onset) 

Call dominant frequency end Call dominant frequency at 10% maximum amplitude (call offset) 

Call dominant frequency peak Call dominant frequency at the call maximum amplitude 

Pulse Duration Duration of pulse from 10% maximum amplitude (pulse onset) to 10% maximum   

   amplitude (offset) 

Pulse Duty Cycle Pulse length / time from 10% maximum amplitude (pulse onset) to 10% maximum  

  amplitude (onset) of next pulse 

Pulse Fall Time Duration of pulse from maximum amplitude to 10% of maximum amplitude (pulse offset) 

Pulse number Number of pulses in the call 

Pulse Rate 1 / time from 10% maximum amplitude (pulse onset) to 10% maximum amplitude (onset)  

  of next pulse  

Pulse Rise Time Duration of pulse from 10% maximum amplitude (onset) to maximum amplitude 

Pulse Shape Offset Duration of pulse from 50% to 10% maximum amplitude (offset) / duration from 90% to  

  10% (offset) 

Pulse Shape Onset Duration of pulse from 10% to 50% maximum amplitude (onset) / duration from 10% to  

  90% (onset) 
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Supplemental Data 5.3. Correlations between temperature and call variables. A * 

indicates significance at p<0.001. Call variables are described in detail in Supplemental 

Data 5.2. 

 

 P. feriarum P. nigrita 

 Slope P-value r2 Slope P-value r2 

Call Length -0.099 0.001* 0.641 -0.068 0.001* 0.572 

Call Duty Cycle 0.001 0.445  0.004 0.008 0.001* 0.172 

Call Fall Time -0.011 0.011  0.044 -0.007 0.098  0.014 

Call Rate 0.040 0.001* 0.842 0.030 0.001* 0.716 

Call Rise Time -0.087 0.001* 0.504 -0.061 0.001* 0.582 

Dom Freq Beg 22.851 0.001* 0.167 25.427 0.001* 0.115 

Dom Freq End 25.139 0.001* 0.152 30.194 0.001* 0.158 

Dom Freq Peak 24.611 0.001* 0.127 20.938 0.001* 0.080 

Pulse Duration 0.000 0.007* 0.049 0.000 0.001* 0.058 

Pulse Duty Cycle 0.014 0.001* 0.520 0.005 0.001* 0.414 

Pulse Fall Time 0.000 0.552  0.002 0.000 0.691  0.001 

Pulse Number 0.009 0.951  0.000 0.177 0.001* 0.064 

Pulse Rate 2.065 0.001* 0.758 0.838 0.001* 0.610 

Pulse Rise Time 0.000 0.001* 0.125 0.000 0.001* 0.140 

Pulse Shape Offset -0.001 0.662  0.001 -0.006 0.001* 0.070 

Pulse Shape Onset -0.003 0.140  0.015 -0.009 0.001* 0.063 
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Supplemental Data 5.4. Female allopatric and sympatric Pseudacris feriarum tested in 

the preference experiments. 

 

Field Number State County 

ECM0672 FL Liberty 

ECM0674 FL Liberty 

ECM0742 FL Liberty 

ECM0750 FL Liberty 

ECM0750 FL Liberty 

ECM0758 FL Liberty 

ECM0759 FL Liberty 

ECM0761 FL Liberty 

ECM0762 FL Liberty 

ECM0766 FL Liberty 

ECM0768 FL Liberty 

ECM0770 FL Liberty 

ECM0774 FL Liberty 

ECM0776 FL Liberty 

ECM0776 FL Liberty 

ECM0778 FL Liberty 

ECM0780 FL Liberty 

ECM0782 FL Liberty 

ECM0782 FL Liberty 

ECM0807 FL Liberty 

ECM0814 FL Liberty 

ECM0821 FL Liberty 

ECM0824 FL Liberty 

ECM0825 FL Liberty 

ECM0827 FL Liberty 

ECM0828 FL Liberty 

ECM0830 FL Liberty 

ECM0832 FL Liberty 

ECM0834 FL Liberty 

ECM0835 FL Liberty 

ECM0840 FL Liberty 

ECM0841 FL Liberty 

ECM0842 FL Liberty 

ECM0843 FL Liberty 

ECM0844 FL Liberty 

ECM0846 FL Liberty 

ECM0847 FL Liberty 

ECM0848 FL Liberty 

ECM0849 FL Liberty 

ECM0850 FL Liberty 
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ECM0851 FL Liberty 

ECM0852 FL Liberty 

ECM0853 FL Liberty 

ECM0854 FL Liberty 

ECM0855 FL Liberty 

ECM0856 FL Liberty 

ECM0879 FL Liberty 

ECM0881 FL Liberty 

ECM0889 FL Liberty 

ECM0890 FL Liberty 

ECM0891 FL Liberty 

ECM0892 FL Liberty 

ECM0893 FL Liberty 

ECM0894 FL Liberty 

ECM0896 FL Liberty 

ECM0897 FL Liberty 

ECM0899 FL Liberty 

ECM0900 FL Liberty 

ECM0901 FL Liberty 

ECM0902 FL Liberty 

ECM0903 FL Liberty 

ECM0904 FL Liberty 

ECM0905 FL Liberty 

ECM0906 FL Liberty 

ECM0908 FL Liberty 

ECM0909 FL Liberty 

ECM0910 FL Liberty 

ECM0936 AL Macon 

ECM0940 AL Macon 

ECM0951 AL Lee 

ECM0952 AL Lee 

ECM0953 AL Lee 

ECM0978 AL Macon 

ECM0980 AL Macon 

ECM0982 AL Macon 

ECM0986 AL Lee 

ECM0987 AL Lee 

ECM0988 AL Lee 

ECM0993 AL Lee 

ECM0994 AL Lee 

ECM1247 AL Macon 

ECM1248 AL Macon 

ECM1258 AL Macon 

ECM1262 AL Macon 
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ECM1264 AL Macon 

ECM1265 AL Macon 

ECM1266 AL Macon 

ECM1267 AL Macon 

ECM1268 AL Macon 

ECM1272 AL Macon 

ECM1278 AL Macon 

ECM1280 AL Macon 

ECM1282 AL Macon 

ECM1284 AL Macon 

ECM1285 AL Macon 

ECM1298 AL Macon 

ECM1304 AL Macon 

ECM1306 AL Macon 

ECM1308 AL Macon 

ECM1312 AL Macon 

ECM1314 AL Macon 

ECM1322 AL Macon 

ECM1326 AL Macon 

ECM1330 AL Macon 

ECM1332 AL Macon 

ECM1333 AL Macon 

ECM1334 AL Macon 

ECM1335 AL Macon 

ECM1336 AL Macon 

ECM1338 AL Macon 

ECM1340 AL Macon 

ECM1348 AL Macon 

ECM1350 AL Macon 

ECM1352 AL Macon 

ECM1354 AL Macon 

ECM1362 AL Macon 

ECM1364 AL Macon 

ECM1366 AL Macon 

ECM1372 AL Macon 

ECM1374 AL Macon 

ECM1383 AL Macon 

ECM1386 AL Macon  
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Figure 5.1. Distributions of Pseudacris feriarum and P. nigrita in the southeastern 

United States and populations sampled in this study. Call transects are indicated by 

dashed lines and state abbreviations. Female preference experiments were conducted in 

the two populations marked with a white star.  
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Figure 5.2. Male acoustic signal structure, represented by oscillograms (column A–10 sec sequence, column B–1.5 sec 

sequence), spectrograms (column C), and power spectra (column D) for allopatric Pseudacris nigrita (Florida), sympatric P. 

feriarum (Florida), and allopatric P. feriarum (Tennessee; by row). Oscillograms in column A show multiple individuals call in 

sequence; the different individuals are indicated by a number below each call. Calls were recorded between 12.4 and 13.8°C, 

therefore, temporal differences are not due to temperature variation. 
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Figure 5.3. Signal divergence in the four call transects: Florida (FL), Georgia (GA), 
South Carolina (SC), and Virginia (VA). Putative hybrids collected in sympatry are 
denoted with a black “X”.  
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Figure 5.4. Divergence of the four sympatric Pseudacris feriarum populations along 
CV1 (pulse rate-dominated axis) and CV2 (pulse number-dominated axis). State 
abbreviations are the same as in Fig. 5.3. 
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Figure 5.5. Summary of female preference results from the three experiments (A, B, and 
C). An oscillogram of a natural call from the respective populations is shown in the box 
at each vertex of the triangle. The proportion of females that chose the more popular 
stimulus is shown outside the triangle and the sample size is indicated inside the triangle 
next to each dot. 
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