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Abstract.—We present an analysis of molecular evolution in a laboratory-generated phylogeny of
the bacteriophage T7, a virus of 40 kilo-base pairs of double-stranded DNA. The known biology
of T7 is used in concert with observed changes in restriction sites and in DNA sequences to produce
a model of restriction-site convergence and divergence in the experimental lineages. During lab-
oratory propagation in the presence of a mutagen, the phage lineages changed an estimated 0.5%—
1.5% in base pairs; most change appears to have been G — A or C — T, presumably because of
the mutagen employed. Some classes of restriction-site losses can be explained adequately as simple
outcomes of random processes, given the mutation rate and the bias in mutation spectrum. How-
ever, some other classes of sites appear to have undergone accelerated rates of loss, as though the
losses were selectively favored. Overall, the wealth of knowledge available for T7 biology contributes
only modestly to these explanations of restriction-site evolution, but rates of restriction-site gains
remain poorly explained, perhaps requiring an even deeper understanding of T7 genetics than was
employed here. Having measured these properties of molecular evolution, we programmed com-
puter simulations with the parameter estimates and pseudo-replicated the empirical study, thereby
providing a data base for statistical evaluation of phylogeny reconstruction methods. By these
criteria, replicates of the experimental phylogeny would be correctly reconstructed over 97% of the
time for the three methods tested, but the methods differed significantly both in their ability to
recover the correct topology and in their ability to predict branch lengths. More generally, the
study illustrates how analyses of experimental evolution in bacteriophage can be exploited to reveal
relationships between the basics of molecular evolution and abstract models of evolutionary pro-
cesses.
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Among the most rapidly expanding fields in
evolutionary biology is molecular systematics,
which attempts to reconstruct phylogenies of liv-
ing (and, in some cases, extinct) taxa from DNA
sequences or their encoded gene products (Nei
1987; Doolittle 1990; Hillis and Moritz 1990;
Miyamoto and Cracraft 1991). From a cold and
cruel perspective of the scientific method, the
major weakness of this field is its difficulty in
unambiguously falsifying hypotheses of phylo-

! Department of Microbiology, University of Texas,
Austin, Texas 78712 USA. -

genetic relationships, and hence, of molecular
evolution. In almost no cases is a phylogeny
known a priori (Baum 1984; Fitch and Atchley
1987; Atchley and Fitch 1991), and thus recon-
structions and models of molecular evolution that
require knowledge of ancestry cannot be defini-
tively tested. A common approach to circumvent
some of these difficulties has been to generate
pseudo-phylogenies with a computer and then to
test methods of reconstruction against these
pseudo-phylogenies (Li et al. 1987; Fitch and Ye
1991; Jin and Nei 1991; Nei 1991; Sidow and
Wilson 1991). The advantage of this approach
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is that methods can be tested against millions of
independent phylogenies, but a drawback is that
the underlying models of molecular evolution
must be assumed a priori and lack the complex-
ities of natural biological evolution (Fitch and
Atchley 1987; Nei 1987; Hillis et al. 1992).

An alternative approach is to develop a lab-
oratory system in which lineages of rapidly
evolving organisms are propagated so that the
phylogenetic history is known. We have de-
scribed an empirical system using the bacterio-
phage T7 which allowed us to create such phy-
logenies (White et al. 1991; Hillis et al. 1992).
In this system, first described by Studier (1980),
bacteriophage are grown in the presence of a mu-
tagen that enhances the rate of base-pair substi-
tutions. The phage are thus subjected to intense
mutation pressure while maintaining selection
for viability, and this rapid laboratory system
may be regarded as an approximation to long-
term evolution with low mutation rates. Because
the underlying model of molecular evolution is
biological, this system is expected to incorporate
a level of complexity and reality not attainable
in numerical simulations of evolution.

Our prior studies focused on a description of
the experimental design, presentation of a set of
data from one experimental phylogeny, and eval-
uation of five reconstruction methods applied to
the data. The goal of the present study is to iden-
tify the properties of molecular evolution in this
system as they pertain to phylogenetic history.
Fulfillment of this goal broadens our understand-
ing of molecular evolution in general and enables
us to appreciate the complexity of evolutionary
processes that must be addressed by phylogeny
reconstruction methods. The measurement of
evolutionary parameters has also enabled us to
return to one goal of our previous study: com-
puter simulations can be programmed with the
estimates of evolutionary parameters and used
to generate replicates of the empirical phylogeny,
enabling further tests of reconstruction methods.

Perspective: The Utility of a
Laboratory System

As a model of evolutionary history, the T7
system has an advantage over computer simu-
lations because its molecular evolution is bio-
logical. Computer simulations assume simple
models of evolution: typically random changes
in nucleotide sequences being fixed stochastical-
ly, with constant probabilities. Variations in pa-
rameters through time, effects of selection, and
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many other potential complexities are omitted.
An essential question is whether such omissions
lead to serious misrepresentations of evolution-
ary history, and an important application of the
T7 system is thus to examine the pitfalls of this
assumed simplicity. There is an extensive back-
ground of genetic work on T7 that can be brought
to bear on experimental studies: the wild-type
sequence has been published, open reading frames
in the sequence correspond to genes studied
through classical means, and the biochemical
functions of many gene products are understood
as are the consequences of null mutations in those
genes (Dunn and Studier 1983). One can thus
conduct experiments on molecular evolution and
then evaluate how many of these genetic details
are required to account for the observations. Per-
haps it will be found that the simplest models of
molecular evolution are adequate, and the
knowledge of T7 biology is superfluous. Alter-
natively, T7 biology may offer indispensable in-
formation about the course of molecular evo-
lution. In the latter case, the study would provide
motivation for striving to improve models ap-
plied to other systems as well.

The central goal of this paper is to apply ex-
perimental data obtained using T7 to a model of
restriction-site evolution, that is, a model spec-
ifying the rates of site gains and losses that in
turn reflect evolutionary history. To take advan-
tage of the many levels of data and background
information available in this study, our pursuit
of this goal requires several steps: presentation
of a basic model, assessment of change at the
nucleotide level, and identification of genetic fac-
tors influencing rates of restriction-site evolu-
tion. Each of these steps is undertaken in a sep-
arate section below. Ultimately, estimation of
the model’s parameters enables us to program
computer simulations to generate numerical rep-
licates of the data (parametric bootstraps); these

.data are then applied to statistical evaluations of

reconstruction methods.

METHODS AND MATERIALS

Review of T7 Experimental Phylogeny.—T7 is
an obligately lytic bacteriophage of 39,937 base
pairs of double-stranded DNA whose complete
sequence is known (Dunn and Studier 1983;
Moffatt et al. 1984; Beck et al. 1989). From a
combination of classical and molecular genetic
methods, 51 genes have been identified. Ap-
proximately 8% of the total DNA sequence is
noncoding (intergenic), but many of these inter-
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genic regions are involved in vital functions such
as gene regulation, ribosome binding, and so forth.
The nucleotide composition of the + strand is
27% A, 23% C, 26% G, and 24% T, hence almost
50% GC for the double-stranded molecule.

The procedure for introducing mutations in
this phage is to grow it in a bacterial culture
containing the potent mutagen N-methyl-N'-ni-
tro-N-nitrosoguanidine (NG). Phages in the re-
sulting lysate are then used to infect a similar
culture. The latent period of T7, which is nor-
mally 20 min at 37°C, increases somewhat in the
presence of NG. Nevertheless, in a relatively short
period, a stock of phage may be grown for hun-
dreds of successive cycles in the presence of mu-
tagen, potentially accumulating hundreds of mu-
tations.

The size of the evolving T7 population may
be varied simply by adjusting the number of phage
particles in a lysate that is used to initiate the
succeeding infection. Alternatively, the phage
may be plated on semisolid medium to generate
plaques, each of which is derived from a single
phage. Plating is done in the absence of mutagen;
thus, a clonal stock of phage is present in each
plaque, which usually contains 107—-108 particles.
These clonal stocks can then be studied directly
or can be used to continue a lineage.

In the study of Hillis et al. (1992), an experi-
mental phylogeny was constructed that consisted
of nine terminal lineages (eight ingroup, one out-
group), whose common ancestor was a clonal
isolate of a wild-type stock of T7 (fig. 1). Begin-
ning with this wild-type isolate, the ingroup taxa
were created as follows: two independent lin-
eages were propagated for 40 mutagenic cycles
(referred to as the two primary branches). After
40 cycles, phage were plated, and a single plaque
isolate was chosen from each lineage; two in-
dependent lineages were then initiated from each
isolate, thus creating four lineages (four second-
ary branches). Each of these four lineages was
propagated as before, and after 40 additional cy-
cles of mutagensis, each was split again, creating
eight terminal branches. Forty cycles after this
last split (120 cycles from the wild-type ancestor),
propagation of the eight lineages was stopped.
The outgroup was also propagated from wild-
type, but passaged for only 105 mutagenic cycles.

Plaque isolates were obtained and used to con-
tinue the lineages after every five mutagenic cy-
cles on the ingroup branches and after every cycle
on the outgroup branch. The presumed advan-
tage of plaque purification is twofold. First, it
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Fig. 1. Model of the experimental phylogeny using
T7. Nodes are indicated by letters, and lineages be-
tween adjacent nodes are referred to as branches. Node
R constitutes the single outgroup taxon, J-P the in-
group taxa (A-F are nodes of the ingroup as well). Each
ingroup branch consisted of 40 mutagenic cycles; the
outgroup branch was 105 mutagenic cycles. Numbers
adjacent to branches represent the numbers of changes
in restriction sites and deletions that were detected
between the two ends of the branches; these numbers
correct some of the branch lengths presented in Hillis
et al. (1992).

reduces the effective population size of phage, so
that natural selection is greatly weakened (and
random drift is conversely strengthened) as a fac-
tor in determining whether a mutation becomes
incorporated in the T7 lineage. As a conse-
quence, the rate of fixation of deleterious mu-
tations should be enhanced over that which would
occur in the absence of plaque purification. Since
most mutations in this system are likely to be
either neutral or somewhat deleterious, plaque
purification should thereby enhance the overall
rate of nucleotide substitution. (Based on the
crude assays of time from infection to lysis and
plaque size, the fitness of every mutated lineage
declined substantially during the course of prop-
agation.) The second motivation for plaque pu-
rification applies only at the branch points of the
phylogeny, where it ensures that all descendants
in a lineage have a single, defined ancestor. Fur-
ther details of the methods of propagation of T7
were provided previously (White et al. 1991; Hil-
lis et al. 1992).

Nucleotide Sequences.—Sequences of the ter-
minal lineages and ancestors were obtained for
nucleotide positions 36,014-36,464 and 36,622~
36,837. In choosing this region for sequencing,
we were motivated to study a region that was
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likely to evolve at a high rate but which was also
sufficiently important to the phage that deletions
would not be favored (a comparison of published
sequences for T7 and for the closely related phage
T3 was used as the basis for this inference). PCR
was then used to amplify the region between nu-
cleotide positions 35,941 and 36,905 from the
phage genome, and DNA sequences were ob-
tained from parts of the amplified product.

THE EVOLUTIONARY PARAMETERS MODEL

The data set from Hillis et al. (1992) consisted
of 199 variable restriction sites throughout the
genome and three deletions that arose in one
specific region. Thus, the experimental phylog-
eny presented a large set of characters. However,
the retrieval of evolutionary history, which is the
objective of the systematist, depends more on
the rates of change at individual sites than on
the overall amount of change. In this section, we
introduce a simple model of evolution for ap-
plication to the experimental phylogeny. This
model is of a single two-state character (states O
or 1, such as the absence or presence of a restric-
tion site), with probabilities of change in each
direction. The step undertaken here is to derive
a model that defines the parameters of interest
and reveals how they are related to the obser-
vations. Application to the data will be under-
taken in a later section.

Consider a specific restriction enzyme and an
arbitrary site in the sequence of the phage an-
cestor of our phylogeny (wild-type). The site will
either be recognized (cleaved) by the restriction
enzyme or not. Whichever the ancestral state
(cleaved or not cleaved), we define a conversion
as a change from the ancestral state to the alter-
native state and a reversion as a change from the
converted state back to the ancestral state. Con-
versions and reversions are measured only at the
endpoints of branches; hence changes that arise
and are lost between the endpoints of a branch
are not recorded.

To associate these concepts with symbols, we
use the following definitions:

probability per branch that the site
undergoes a conversion
probability per branch that a for-
merly converted site reverts to its
ancestral state

probability that the site experi-
ences [ conversions and j rever-
sions in the phylogeny

PG ) =
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n(i, j) = the number of times the site is ob-
served to undergo i conversions
and j reversions

Our analysis must be confined to the ingroup part
of the phylogeny, because internal nodes are not
characterized for the outgroup, and there are con-
sequently no branches within the outgroup lin-
eage that are similar in length to the ingroup
branches. Note that ¢ and r are per-site proba-
bilities. They have no bearing on the numbers
of sites likely to be converted elsewhere in the
phage genome, rather they determine the rates
of evolution at one site.

The procedure adopted in estimating the two
parameters (c and r) is to calculate a priori like-
lihoods of the observations as a function of the
parameters and to find values of the parameters
that maximize these likelihoods. The likelihood
function depends on P(i, j), which in turn depend
on ¢ and r. We begin by illustrating how to cal-
culate P(i, j) as functions of c and r. The simplest
case is that in which no mutations occur, P(0,
0). As there are 14 ingroup branches, and in this
case no conversions occur on any of these
branches,

PO,0)=(1 — )" 0]

A slightly more complicated case is that of a
single conversion, P(1, 0). This probability is the
sum of three terms. One term represents the
probability that the site is converted along a pri-
mary branch:

[2c(@ = OI(T — N*(1 — c)]
(@ —n*a - oyl (2a)

The quantity in the first pair of brackets is the
probability that the site is converted on either of
the two primary branches. The quantity in the
second pair of brackets is the probability that no
further changes occur on any of the four second-
ary branches, and the quantity in the third pair
of brackets is the probability that no changes
occur on any of the eight terminal branches. P(1,
0) also includes the probability that the conver-
sion occurs on a secondary branch:

[(1 — o)?l[4c(1 = o)’l[(1 — o)*(1 — r)*]1 (2b)
Finally, P(1, 0) includes the probability that the
conversion occurs on a terminal branch:

[ = oll(1 — o)*l[8c(1 — ¢)'] (2¢)

The probability P(1, 0) is therefore the sum of
probabilities (2a), (2b),and (2¢). The probabili-
ties for any P(i, j) may be calculated similarly,
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although the number of terms typically exceeds
three.
The likelihood of a set of observations is

L(c, » = K [1 PG, jye», 3)

where the product is extended over all observed
classes, and the constant K is independent of ¢
and r. P(i, j) varies according to ¢ and r, so L(+)
will also vary with ¢ and r, and values of these
parameters that maximize the likelihood are
chosen as the estimates. Since [P(i, j)]° = 1 re-
gardless of ¢ and r [for P(i, j) > 0], individual
terms of P(i, j) need to be calculated explicitly
as functions of ¢ and r only if n(i, j) > 0. For a
small data set such as that of Hillis et al. (1992),
the maximume-likelihood estimates may be cal-
culated to an acceptable precision from an ex-
haustive numerical search of the feasible param-
eter space.

To this point, the model has been developed
for a single, arbitrary site in the phage, and it is
at this juncture that the application becomes
complicated. With data from a very large num-
ber of replicate phylogenies, the likelihood in
equation (3) would be applied separately to each
defined site in the phage. Then, x(i, j) would be
the number of phylogenies observed with i con-
versions and j reversions for that site. With only
one phylogeny, however, each site is represented
by just one observation, and application of this
model to individual sites is virtually meaning-
less. We therefore group sites into sets and apply
the model collectively to these sets, in essence
treating them as though every member of the set
shares the same values of ¢ and r. Then n (i, j)
isthe number of sites in the set with i conversions
and j reversions. Although ¢ and r are undoubt-
edly unique for each site, some sites may have
sufficiently similar ¢ and r values to be regarded
as homogeneous, and statistical tests may be ap-
plied post hoc to evaluate the legitimacy of this
assumption. -

This need to partition restriction sites accord-
ing to different evolutionary characteristics
requires that application of the model be post-
poned for a better understanding of restric-
tion-site evolution in this system. The next few
sections thus explore the molecular basis of nu-
cleotide changes in the T7 system and bring that
information to bear on restriction-site evolution.

NUCLEOTIDE DATA

Table 1 lists the base-pair changes observed
and branches of their origins for the 665 bases
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TABLE 1. Base-pair changes in the T7 phylogeny. Nu-
cleotide positions are from Dunn and Studier (1983).
The “mutation” column refers to the change as ob-
served in the sense strand of T7 DNA. The column
“AA impact” denotes whether the nucleotide change
resides within a gene and whether changes within genes
affect the deduced amino-acid sequence. Three differ-
ences were detected between the sequence of our wild-
type T7 DNA and that determined by Dunn and Stu-
dier (1983): C instead of T at positions 36163 and
36461, and G instead of A at 36388. When the changes
in this table are added to the branch lengths (numbers
of restriction-site changes) in figure 1, there is no sig-
nificant heterogeneity in branch lengths in the ingroup.

Co-
don
posi-
Branch Position Mutation  AA impact Gene tion
A-M 36122 C—T silent 17 3
36281 G — A silent 17 3
36288 G — A intergenic
36378 G — A silent 175 3
36441 C—T silent 175 3
B-L 36176 C—T silent 17 3
C-N 36689 C—T Ala— Val 18 2
D-O 36137 C—T silent 17 3
36441 C—T silent 175 3
36716 G —>A Ser — Asn 18 2
D-P 36745 C—T silent 18 1
F-C 36175 C—T Ala— Val 17 2
E-B 36142 T—G Phe—Cys 17 2
W-E 36398 C—T Thr— Met 17.5 2
36705 G — A silent 18 3
36826 C—T intergenic
W-F 36412 G—A Val—Ile 175 1
36818 G —> A silent 18 3
W-R 36321 T—G intergenic
36395 G—A Gly—Glu 17.5 2
36647 C—T silent 18 3

assayed. A total of 21 changes were observed, 19
of which were G — A or C — T transitions. NG
is known to cause G-C — AT transitions pref-
erentially in DNA (Horsfall et al. 1990). It is, of
course, not possible to distinguish between G —
A and C— T mutations in double-stranded DNA
after one or more rounds of replication, because
a G — A mutation is replicated in the other
strand as a C — T change, but this ambiguity is
not important here. The observed rate of change
per base is just under 0.002 per ingroup branch
(18 changes per 14 lineages per 665 bases), but
as nearly all changes are confined to just two
bases, the rate per G/C is approximately 0.004.
The rate per ingroup lineage would be nearly
three times these values because each ingroup
terminal taxon is three branch lengths removed
from the wild-type ancestor.

The background information on T7 genetics



998

enables us to consider some properties of selec-
tion on the evolution of base-pair change even
in this small sample. The sequenced regions
overlap with the coding regions for T7 genes 17
(nucleotide positions 34,623-36,284), 17.5
(36,343-36,546), and 18 (36,552-36,821). Gene
17 codes for a tail fiber protein, gene 17.5 for a
lysis function, and gene /8 for a maturation func-
tion in DNA packaging (Dunn and Studier 1983).
Genes 17 and 18 are essential for viability,
whereas gene 7.5 is nonessential or only con-
ditionally essential for producing viable phage
progeny. Of the 21 mutations, 3 occurred in in-
tergenic regions, 11 of the 18 changes in coding
regions comprise silent substitutions, and the
other 8 are missense mutations. For G — A and
C — T mutations in the sequenced portions of
these genes, the expected proportion of silent
substitutions is only 0.36 if changes occur ran-
domly, versus the observed 0.61, and the excess
of silent substitutions in the data is marginally
significant (0.03 < P < 0.05, omitting intergenic
changes and transversions, based on a Fisher’s
exact test of the totals). Missense mutations oc-
curred in all three genes, and the proportion of
silent substitutions to missense mutations is not
appreciably different across the three genes, even
though only two of them are essential for progeny
phage production. These observations are not
implausible, as not all misense mutations are
deleterious, and a nonessential gene may none-
theless confer a fitness advantage to the phage
despite that fact that the phage can reproduce
without it.

The sequence data provide two potentially im-
portant insights in explaining restriction-site
evolution. First, most mutations are G — A or
C — T. The rate of loss of restriction sites may
thus increase with the number of G and C bases
in the recognition sequence, and the rate of gain
may increase with the number of A and T bases.
Second, nucleotide changes in coding regions de-
pend on the impact of the mutation on the ami-
no-acid composition of the protein. If this latter
effect is widespread and strong, rates of restric-
tion-site evolution may vary greatly between sites
in T7 DNA, depending on how the changes affect
underlying genes.

MUTATIONAL BiAs EXPLAINS
RESTRICTION-SITE LOSSES

The question at hand is whether the nucleotide
data provide unique insights to restriction-site
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evolution in this system. We begin by consid-
ering restriction sites present in the wild-type
ancestor of the phylogeny and the rates at which
they were lost. The sequence data presented above
revealed that most nucleotide-level changes were
G — A or C — T, so it is a straightforward
prediction that the rate of loss of a restriction
site should increase with the number of G and
C bases in the recognition sequence: a recogni-
tion sequence with four G or C bases can be lost
with a mutation at any of the four G/C positions,
whereas a recognition sequence lacking G and C
cannot be lost with such mutations. The expec-
tation is met: 0 of 22 sites lacking G/C were lost,
16 of 65 sites with 2 G/C were lost at least once
in the phylogeny, and 7 of 14 sites with 4 G/C
were lost. The probability of observing hetero-
geneity this extreme under the null model (no
effect of G/C content) is less than 0.002 (x2,), so
we reject the null model in favor of the alter-
native that the G/C content of a restriction-en-
zyme recognition sequence influences the prob-
ability of site loss.

The next issue is whether the probability of
site loss is determined adequately by the number
of G and C bases in the recognition sequence, or
whether the impact of the mutation on T7 coding
regions also needs to be considered. Each G (C)
in a wild-type restriction site was thus evaluated
as to whether a G — A (C — T) change would
occur in an intergenic region, would generate a
silent substitution in a coding region, or would
cause a missense mutation. Because recognition
sequences for the enzymes studied contained ei-
ther 0, 2, or 4 G or C bases, each site (i) was
classified according to the number of intergenic
(G), silent (S,), and missense and nonsense (M)
substitutions by which G — A and C — T mu-
tations could individually prevent cleavage of the
site (table 2). These data were then fit to the
following model:

. Define R, as the probability that site i is re-
tained throughout the phylogeny, and let

R, =k — )51 — m)*(1 — g%, (4)

where k is a constant (0 < k < 1), and s is the
probability that a G — A or C — T conversion
occurs somewhere in the phylogeny (causing loss
of the site), the impact of which would be a silent
substitution. Similarly, m is the probability for
a missense substitution, and g for an intergenic
substitution.
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TaBLE 2. Restriction enzymes and T7 characteristics. Categories are as follows. Wt sites: number of wild-type
restriction sites whose mutation to a noncleaved state would have been detectable in our assays (hence less than
or equal to the number of wild-type restriction sites). GC status: characteristics of wild-type sites according to
the number of G — A and C — T mutations that could cause loss of the site, plus the consequences of those
mutations on coding sequences (key is listed at the end of this paragraph). Losses: the number of assayable wild-
type sites observed to be lost at least once in the phylogeny; key is listed below. S: number of 1-off sites for
which a site gain would have resulted in a silent substitution in a known gene (coding regions from Dunn and
Studier 1983). M: number of 1-off sites for which a site gain would have resulted in an amino-acid change in a
known gene. G: number of 1-off sites in intergenic regions. Gains: number of sites in the molecule not cleaved
in wild-type but which evolved to be cleaved at some later point in the phylogeny. Multiple gains at the same
site (convergences) are listed as a single gain. Key for “GC status” and “Losses” categories: (in each of the
following triplets, the first entry is the number of G — A or C — T mutations that would cause loss of the
restriction site with a silent substitution in a T7 gene, the second entry is the number corresponding to missense
mutations, and the third entry is the number corresponding to mutations in intergenic regions) A = (0,0,0), B
=(1,1,0), C = (0,1,1), D = (2,0,0), E = (0,2,0), F = (0,0,2), G = (0,4,0), H = (2,2,0), I = (1,3,0).

1-Off sites
Enzyme Wt sites GC status Losses S M G Gains
Apall 1 11 0 2 6 2 0
Asel 10 10A 0 31 17 8 7
BamHI 0 — - 9 4 1 3
Bcell 1 1B 0 12 44 1 10
Bglll 1 1B 0 5 15 5 4
BstBI 5 4B, 1E 1B 8 21 1 2
BstEIl 1 11 11 17 58 9 1
BstNI 1 11 11 6 1 2 0
Clal 3 1B, 2E 1E 20 24 1 7
Dral 6 6A 0 27 16 13 3
EcoNI 1 1H 1H 2 5 1 1
EcoRI 0 — — 34 35 3 11
EcoRV 0 — — 25 46 3 7
HindIIl 0 — — 19 23 1 4
Hpal 17 15B, 1E, IF 3B 12 49 9 6
Kpnl 3 31 11 4 21 1 1
Mbol 4 2B, 1D, 1E 1D 141 233 42 88
Miul 1 1H 0 2 7 0 1
Ncol 1 11 11 7 15 3 0
Ndel 7 SE, 2C 1E, 1C 10 21 1 0
Nhel 1 11 11 14 23 0 0
Nsil 7 SE, 2F IF 17 15 3 6
Pst1 0 — — 5 5 1 1
Pyul 0 - — 5 12 0 3
Pvull 3 3G 1G 13 4 0 1
Sacl 0 — - 1 0 0 3
Sall 0 — — 1 9 0 4
Scal 3 2D, 1E 2D 9 48 0 2
Spel 2 1B, 1E 1E 6 51 4 3
Sspl 6 6A 0 24 17 8 6
Stul 1 1I 0 3 10 5 0
Xbal 3 1B, 1E, IF (VI 20 24 3 2
Xhol 0 — — 1 3 0 0
Xmnl 12 1B, 6D, SE 1B, 2D, 1E 10 16 1 8

The likelihood of a set of observations is thus
Lk, s, m, g =« [ Rii1 = R)'", (5)

where « is a constant and r, is unity if the site
was retained throughout the phylogeny, zero if
lost.

The four parameters were estimated from the

data by maximum likelihood using a compre-
hensive, systematic search of the parameter space
(k=0.955,5=0.23, i1 = 0.07, ¢ = 0.16). The
parameterized model was then used to predict
the number of losses in each category and was
found to offer an acceptable fit to the data by a
x> criterion. However, a model constrained so
that s = m = g = x was also found to provide
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an acceptable fit to the data, a fit that was not
significantly worse than the fit provided by the
full model (¥ = 0.120, k = 0.955 for the full
phylogeny; respective values for the ingroup taxa
alone are 0.1056 and 0.955). Thus, this simpler
model of two parameters is preferred over the
four-parameter model, and the success of the two-
parameter model indicates that the probability
of site loss is adequately approximated merely
by counting the number of G and C bases in the
recognition sequence regardless of their effects
on T7 genes. The rate of change per G/C cal-
culated from this model is approximately 1.1%
per ingroup branch (3% per lineage), three times
the rate calculated from the nucleotide data (cal-
culated as 1 — [13(1 — X)]V'*). We do not attach
significance to the difference between these es-
timates, given the limited sampling base for each
set of data; in particular, both sets have been
obtained from too limited a set of genes/sites for
us to be confident that either represents the av-
erage for the entire molecule.

Whereas the G/C bias provides a useful sup-
plement to our understanding of wild-type site
losses, it cannot account for the two cases in
which a lost site was regained. If a site loss stems
from a G — A or C — T change, regain of the
site must result from the reverse transition. The
fact that even two reversions were observed for
such a rare class of mutation suggests that the
reversions may have been strongly selected, but
there are insufficient data to warrant serious eval-
uation of this possibility. We thus emerge from
this part of the analysis with three partitions
among restriction sites present in wild-type: sites
whose recognition sequences contain zero, two,
or four G or C bases. For example, all wild-type
Asel, Dral, and Sspl sites are lumped in the same
partition, because the recognition sequences for
all three enzymes lack G and C entirely.

SITE GAINS

Most of the data presented in Hillis et al. are
gains of new restriction sites rather than losses
of ancestral sites. In this section we will attempt
to analyze site gains along the lines of our pre-
ceding analysis of site losses, but one difference
is immediately apparent. With site losses, it was
possible to begin with an a priori knowledge of
all sites at which changes might occur, whereas
for site gains, there is no exact counterpart. We
therefore consider whether we can identify a set
of defined positions to which all gains are con-
fined.
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The strong bias in mutation spectrum suggests
one possibility: sequences that are a single G —
A or C — T mutation from becoming a recog-
nition sequence (1-off sites) for a particular re-
striction enzyme may account for nearly all gains.
For example, the sequence GATC is cleaved by
Mbol and its isoschizomers. The sequence GGTC
is one G — A mutation from GATC, and GACC
is one C — T mutation from GATC. Might the
set of GGTC and GACC sequences in T7 con-
stitute a complete set of the sites at which all
Mbol gains occur? As Mbol gains are otherwise
possible only for changes other than G — A or
C — T (which are uncommon) or for double
mutations (which should be rare), these 1-off sites
offer the best hope of identifying a set of T7
positions at which site gains may be expected.

Restriction-site mapping does not yield a pre-
cise location of each restriction site, so it is not
possible to directly assess whether each gain oc-
curred at a 1-off site. However, because of the
large number of sites gained, it is possible to
extract the relevant information statistically, with
a model in which numbers of 1-off sites are used
to predict numbers of site gains. Consequently,
T7 was searched for the number of 1-off sites for
each of the 34 enzymes used in the study. Each
1-off site was further classified according to
whether it would cause a silent, missense (plus
nonsense), or intergenic substitution (table 2).
The data were analyzed with multiple regression
for the following model:

Number of sites gained

=c, + ¢S + ;M + ;G + error, 6)

where S, M, and G were the numbers of silent,
missense (plus nonsense), and intergenic 1-off
sites, respectively. Owing to multiple regression’s
sensitivity to extreme correlations among the in-
dependent variables, 1-off sites for AMbol were
excluded from the analysis, because they con-
tributed exceptionally high values for S, M, and
G: the three correlations ranged from 0.88 t0 0.92
when Mbol 1-off sites were included, but only
0.33 to 0.52 when Mbol was excluded. The most
important conclusions follow:

1. S is the best single predictor.—The regres-
sion with just .S (M and G omitted, or ¢, = ¢; =
0) explained 37% of the variance (¢, = 0.89, ¢,
= 0.20, P < 0.001), whereas the regression with
just M explained only 15% of the variance (P <
0.03), and the regression with just G explained
less than 4% of the variance (P < 0.29).

2. M and G do not offer a significant improve-
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ment.—The full model in (6) explained only 5%
additional variance above that explained by S
alone, and the increase afforded by both M and
G or by either alone is not statistically significant.

3. The effects of S, M, and G are significantly
heterogeneous.—The full model in (6) explains
significantly more variance than does the re-
duced model requiring that .S, A, and G all have
the same effect (¢, = ¢, = ¢;), although only mar-
ginally so (P < 0.05).

4. The regression model does not adequately
explain all the variance.—By a x? criterion, the
fitted full model leaves a significant amount of
variance in site gains unexplained. This result is
not surprising, as more than half the variance
remains unexplained by the model. Table 2 even
reveals one enzyme (Sacl) for which the number
of sites gained actually exceeds the total number
of 1-off sites.

We conclude that the rate of gain in restriction
sites is likely affected by both the G/C bias in
mutation spectrum and also by the impact of the
mutation on T7 proteins (hence T7 biology is
important), but the models do not adequately
account for all of the observed site gains. This
leaves us with two problems, (1) how to adapt
the evolutionary parameters model to the case
in which there is no a priori set of T7 sites at
which gains may be expected, and (2) how to
partition site gains into meaningful categories
when applying them to the model. The first of
these challenges has a straightforward solution.
In the context of the evolutionary parameters
model, it means that we cannot observe the class
P(0, 0) and the maximum likelihood formula in
(3) must be corrected to avoid this bias:

P, j) "
1 —[1 — PO, 0)]** ’

L*e =K [

+,J#0,0
Q)

Once a maximume-likelihood estimate ¢ is ob-
tained from (7), an effective number of “pre-
sites” present in wild-type may be estimated sim-
ply as N,:

N, = No 8
C1-0-é6 ®)
where N, is the observed number of sites gained
in the phylogeny. This effective number of sites
estimates the total number of sites in the phage
that share the same ¢ values, even though no
conversions were observed at some of those sites
in our single experimental phylogeny. In this
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sense, IV, is a sample of the larger set of sites (V,)
at which gains would be observed in an infinite
number of replicates.

The second concern—that is, partitioning site
gains into classes sharing similar conversion and
reversion rates—is more difficult to address in a
meaningful way. For the most part, each site gain
(conversion) is likely due to a single base-pair
change, and the conversion probability for that
site is independent of the number of other sites
in T7 DNA at which gains are observed. So there
is no basis for partitioning enzymes according to
the number of positions in T7 DNA at which
gains are observed. Likewise, there is no basis
for grouping enzymes according to the G/C con-
tent of the recognition sequence, since each site
gain likely has a unique possible origin (given
the low mutation rate). One may indeed choose
to partition among enzymes with different G/C
content on the grounds that reversions will be
differentially affected, but reversions were so un-
common and heterogeneous in the data that this
hypothesis lacks support.

Only one partition of the site-gain data was
made: Mbol sites were distinguished from all
others. This distinction was made for two rea-
sons. First, there were many Mbol site gains,
enabling meaningful estimates—nearly half of the
site gains in the phylogeny were Mbol sites. Sec-
ond, the recognition sequence of Mbol is GATC,
a sequence which has important regulatory func-
tions in the host including being the recognition
sequence for the host’s dam methylation system.
Wild-type T7 DNA possesses an overwhelming
deficiency in Mbol sites—only six sites are pres-
ent versus the nearly 160 expected in a random
sequence of 40 kbp—and it is plausible that gains
of GATC sequences in T7 carry special fitness
consequences that do not accrue to other en-
zymes. If so, then the true evolutionary param-
eters for gained Mbol sites may differ system-
atically from those of other enzymes.

CONVERSION AND REVERSION RATE
ESTIMATES IN THE EVOLUTIONARY
PARAMETERS MODEL

Once the partitions of restriction-site data were
chosen, estimates of ¢ and r (conversions and
reversions) were obtained for each partition (ta-
ble 3). The ¢ and r values have been converted
into probabilities of site losses and gains: for sites
present in wild-type (class I), the probability of
loss is the probability of conversion, and the
probability of gain is the probability of reversion;
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TaBLE 3. Estimates from the evolutionary parameters model. Probabilities are calculated per site per ingroup
branch. We have translated the probabilities of site conversions and reversions from the text as their corre-
sponding probabilities of gains and losses: a loss means that a site formerly cleaved by a restriction enzyme
changed to one that is not cleaved, and a gain is the reverse process. (There is an obvious order of precedence
here, as a site absent from wild-type must be gained before it can be lost, and so forth.) N, is the observed
number of sites at which gains and/or losses were observed in the ingroup (excluding changes observed only in
the outgroup), and N, is the effective number of sites as defined in the text. (For class I sites, N was calculated
directly from the number of known restriction sites with different G/C characteristics in wild-type T7; see table
2.) Numbers in parentheses are approximate 95% confidence intervals obtained by (nonparametric) bootstrapping
1000 replicates (subject to the discreteness of the distribution of bootstrap samples) except for class Ia. Confidence
limits for class Ia losses are based on a binomial test; no estimate of (re)gain probabilities is provided, because
in the absence of any losses, there is no opportunity to observe gains. Otherwise, nonparametric bootstrap trials
were conducted separately for the class I and class II sites. For the class Ib (Ic) sites, we sampled with replacement
among all Ib (Ic) sites and calculated gain and loss probabilities on each of the bootstrap samples. The lower
confidence limit for the probability of a class Ib and Ic gain is zero, reflecting the fact that only 1 of the sites in
each class observed to converse experienced a reversion, hence the bootstrap samples often failed to include
any reversions (yielding an estimate of zero). For the class II sites at which conversions were observed, we
randomly sampled among the sites and then partitioned them into ITa and IIb sites before computing probabilities
of gains and losses. Some class IIb enzymes cleave sites that are also cut by Mbol. For example, the internal 4
bases in the recognition sequences of BamHI, Bg/Il, Pvull, and Bc/l are GATC (sites cut by these enzymes and
some other sites were highlighted with an asterisk in fig. 3 of Hillis et al.). These sites were classified here as
class Ila sites unless the non-Mbo enzyme revealed a different history of conversion and reversion at the site
than did Mbol, in which case the site was listed as both class Ila and IIb according to the different patterns
(only three such sites).

Restriction-site class Probability of gain Probability of loss Ny Ne
Present in wild-type
Ia (0 G,0) — 0(0.0,0.001) 0 22
Ib (2 G,0) 0.045 (0.0, 0.141) 0.017 (0.010, 0.026) 15 65
Ic (4 G,0) 0.084 (0.0, 0.239) 0.049 (0.016, 0.098) 6 14
Absent in wild-type
I1a (Mbol) 0.033 (0.017, 0.052) 0.108 (0.052, 0.180) 80 213
IIb (non-Mbo) 0.013 (0.003, 0.026) 0.046 (0.008, 0.103) 73 436

these interpretations are reversed for sites absent
in wild-type (class II). Confidence intervals of
some estimates are large, but several conclusions
do emerge:

1. The probability of class Ic losses is signif-
icantly greater than the probability of class Ib
losses, which in turn is significantly greater than
the probability of class Ia losses. This result is
expected from the foregoing analysis of wild-type
site losses, due to the different G/C content of
the class Ia, Ib, and Ic enzymes. (Although con-
fidence intervals for some of these probabilities
overlap, a direct test of the difference by a non-
parametric bootstrap analysis revealed statistical
significance.)

2. The probability of class ITa (AMbol) loss is
significantly greater than the probability of class
Ib loss. Both classes of enzymes have the same
G/C content in their recognition sequences, SO
we must find some other basis for the difference.
The difference may result from selection: class
Ib losses constitute deviations from the wild-type
sequence and may thus be disadvantageous,
whereas losses of Mbol gains may be advanta-

geous: some are reversions to the wild-type se-
quence and, even for losses that do not revert to
wild-type, they at least destroy a GATC sequence
(recall that GATC is notably underrepresented
in the wild-type sequence, suggesting that it is
disadvantageous to T7). In line with this hy-
pothesis, it is not difficult to understand that del-
eterious Mbol sites could have been gained de-
spite their disadvantage, as lineages were
propagated from single plaques every 5 cycles.
3. The probability of a class IIa gain (Mbol)
is significantly greater than the probability of a
class IIb gain. (Again, confidence intervals over-
lap, but a direct test of the difference reveals
significance.) Most site gains probably result from
single base-pair changes from the wild-type se-
quence, so the rates should be similar for both
IIa and IIb enzymes. Why the difference? One
possibility is that we have overestimated the rate
of convergent Mbol gains. The estimated rate of
site gains will be inflated by errors in mapping
that conservatively assign homology to neigh-
boring but distinct sites. Mbol may be more prone
to this error than other enzymes because gained
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Mbol sites are more densely distributed on the
genetic map of the experimental lineages. At the
time this idea was proposed, we had no direct
evidence for or against this possibility; subse-
quently, sequences obtained by CWC have re-
vealed three clustered Mbol sites that had been
scored by us as only one site (position 0.8 in
Hillis et al. 1992). So the higher apparent rate
for Mbol gains may indeed be an artifact of their
high density and our conservative scoring pro-
cedure.

4. The probability of a class Ila (AMbol) loss
is significantly greater than the probability of a
class IIa gain. This result may be anticipated
from the simple fact that each gain likely has a
single possible origin, whereas a loss has two
possible origins (the G and C in the recognition
sequence GATC). However, the excess rate of
IIa losses is also consistent with point (2) above,
in which we suggested that Mbol site gains are
at a selective disadvantage.

From these maximum-likelihood estimates,
we calculated expected numbers of observations
in each class and compared them to the actual
n(i, j). No significant heterogeneity was detected
for any of the classes, so the null model of ho-
mogeneity of ¢ and r within each of these classes
is supported. This procedure of testing for het-
erogeneity can be extended to other subsets of
the data (e.g., the numbers of site gains on pri-
mary, secondary, or terminal branches, and so
on); we have performed a few such additional
tests but again found no evidence for rejecting
the null model.

The values in table 3 enable estimates of the
per-base rate of evolution in the phylogeny, as-
suming that the values from these few restriction
sites apply to other positions in the molecule as
well (at least to G/C bases). For example, the loss
rate for wild-type sites with 2 G/C in the rec-
ognition sequence was estimated as 0.017. Given
that nearly all mutations appear to have targeted
G or C, the rate of change per G/C is half 0.017,
or 0.0085. The rate for class Ic is only slightly
higher, at 0.012. (Above, the estimate obtained
for the combined loss data was 0.011, using a
slightly different model.) For sites absent from
wild-type, the (per-site) probability of gain should
reflect the per-base probability of change, which
again likely applies only to G and C bases. How-
ever, as we have reason to doubt the validity of
the Mbol estimate, only the non-Mbol estimate
is honored here (0.013). Thus, estimates from
the restriction site data are similar to each other
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(approximately 1% per G/C per ingroup lineage),
but they are two- to threefold the value estimated
from the nucleotide data (0.004 for G/C).

EXTENDING THE DATA:
PARAMETRIC BOOTSTRAPS

The objective of experimental molecular evo-
lution as it applies to molecular systematics is to
provide known phylogenies of biological taxa that
enable direct tests of phylogenetic methods. Ide-
ally, we would prefer to use empirical data sets
at all levels of method evaluation—not just a few
token data sets to demonstrate that reconstruc-
tion methods do indeed sometimes recover the
correct topology, but sufficient data sets to in-
dicate how often the methods are likely to suc-
ceed as well as to detect subtle differences in
success rates among the methods. The dilemma
that faces experimental phylogenetics is that a
small number of empirical data sets provides
little statistical power in evaluating methods, yet
each data set requires months or years of labo-
ratory work. It is thus desirable to have some
means of maximizing the utility of individual
data sets.

A common statistical approach in overcoming
the limitations of a single data set is to resample
the original data set many times and analyze each
subsample as a different data set (techniques
known as bootstrapping and jackknifing). The
main drawback of this approach is that the dif-
ferent subsamples are not independent of each
other, hence various biases arise in the distri-
bution generated from the subsamples (e.g., Ef-
ron 1979, 1987; Nei 1991; Hillis and Bull 1993).
An alternative approach is suggested by the anal-
ysis underlying table 3: a single data set is used
to parameterize a model. In turn, this parame-
terized model is used to generate new, indepen-
dent data sets. Conversion and reversion rate
estimates are then obtained from each simulated
data set, yielding a distribution of estimates that
can be subjected to statistical tests. This ap-
proach is known as “parametric bootstrapping”
(Efron 1985; Felsenstein 1988). Despite the sim-
ilarity in name, it is fundamentally different from
the traditional bootstrapping approach of merely
resampling data (known as nonparametric boot-
strapping).

To illustrate this approach, we return to the
analysis of reconstruction methods in Hillis et
al. (1992). In that study, we applied five recon-
struction methods to the single, empirical data
set. All methods yielded the correct topology, so
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no differences were evident among the methods,
and there was thus no basis for distinguishing
this aspect of the methods’ performances. We
would like to know how often the methods are
expected to recover the correct topology and
whether they differ in this ability. This question
can be addressed with parametric bootstrapping.
Three methods of phylogenetic reconstruction
will be compared: parsimony, neighbor-joining,
and UPGMA. The latter two methods are known
as distance methods because they estimate an-
cestry from pairwise estimates of genetic dis-
tances among taxa, whereas parsimony predicts
relationships by minimizing numbers of evolu-
tionary changes separating taxa.

One thousand data sets were simulated ac-
cording to the evolutionary parameters model
using the parameter estimates in table 3 and the
topology in fig. 1 (the outgroup was treated as an
independent three-branch lineage whose evolu-
tionary rates were the same as for the outgroup
lineages). Neighbor-joining succeeded in pre-
dicting a single tree with the correct topology in
991 of the trials, parsimony in 978 of the trials,
and UPGMA in 973 of the trials. (In 15 of its
22 ““incorrect” reconstructions, parsimony pro-
duced two best-fit trees, one of which was the
correct one.) The most compelling conclusion is
that all three methods are remarkably successful.
We thus infer that all three methods would usu-
ally predict the correct topology in actual repe-
titions of the T7 study. Furthermore, these small
differences are statistically heterogeneous for these
sample sizes, so we also infer that the methods
would exhibit consistent differences over a large
number of replicates of the original study.

These simulations can also be used to evaluate
branch length predictions. In our original study
(Hillis et al. 1992), we noted that the correlation
between actual and predicted branch lengths was
highest for parsimony (0.89), intermediate for
rate-insensitive distance methods such as neigh-
bor-joining (0.86), and lowest for UPGMA (0.80).
A somewhat unorthodox statistical approach was
applied to the data, which suggested that these
differences were statistically significant. Would
the methods differ consistently in their ability to
predict branch lengths under replications of the
experimental phylogeny? One hundred para-
metric bootstrap simulations were conducted, and
the correlation between predicted and actual
branch length calculated for each method. Cor-
relations were highest for parsimony (mean of
0.94), next highest for neighbor-joining (0.92),
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and lowest for UPGMA (0.87). The simulations
thus produced the same ranking as the experi-
mental data. These differences were also statis-
tically significant: correlations were higher for
parsimony over neighbor-joining in 98 of the
trials, for parsimony over UPGMA in 95 of the
97 trials in which UPGMA predicted the correct
tree, and for neighbor-joining over UPGMA in
83 of the 97 trials for which UPGMA predicted
the correct tree.

DiscussioN

An earlier paper described an in vitro system
using bacteriophage T7 as an experimental mod-
el of molecular evolution. That study constructed
an experimental phylogeny and presented re-
striction site data with the explicit purpose of
evaluating methods of phylogeny reconstruction.
The objective here has been instead to describe
molecular evolution in that system. A specific
goal was to produce a model describing the rates
at which restriction sites were gained and lost,
these rates determining the rates of molecular
divergence and convergence in the experimental
phylogeny (the evolutionary parameters model).

The evolutionary parameters model describes
rates of restriction site loss and gain for the T7
experimental phylogeny. To assist in explaining
those rates, we used the following information:

1. The T7 wild-type DNA sequence, which pro-
vides the numbers and positions of existing
restriction sites as well as positions that can
mutate to become restriction sites with a sin-
gle base-pair change (1-off sites)

2. The T7 coding regions, whereby we can assess
the impact of a base-pair change on T7 genes
(classified here as intergenic mutations, mu-
tations causing a missense mutation, or mu-
tations causing a silent substitution)

3. Limited DNA sequences of the experimental
phylogeny, indicating that most base-pair
changes were G>AorC—T

4. Recognition sequences of the restriction en-
zymes used

The main objective of this model was to quantify
rates of restriction-site gains and losses along the
branches of the experimental phylogeny, and
more specifically, to determine whether those
rates were affected by the data in 1-4. Specifi-
cally, do different classes of restriction sites evolve
at different rates? And how much genetic detail
is warranted in describing molecular evolution
in this system?
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The results can be summarized as follows:

1. Sites present in the wild-type sequence were
lost at different rates, according to the number
of G/C bases in the recognition sequences; no
significant improvement in the model was af-
forded by the impact of these mutations on T7
genes. At present, therefore, the model of wild-
type site loss lacks intricate detail about T7 bi-
ology.

2. Gains of new restriction sites are more dif-
ficult to explain. The total number of sites gained
in T7 DNA varied widely among enzymes, a
phenomenon explained only partly by differ-
ences in the numbers of 1-off sites and the impact
of those changes on T7 genes. In addition, the
rate of convergent site gains was higher for AMbol
than for other enzymes, and we do not neces-
sarily have a satisfactory explanation for this dif-
ference.

3. Subsequent losses of new AMbol sites oc-
curred at a significantly higher rate than did losses
of wild-type sites with similar G/C content. Se-
lection for the wild-type sequence is implicated.

The results thus reveal various levels of com-
plexity in restriction site evolution in the T7 ex-
perimental phylogeny. Some aspects of the data
seem to be adequately represented by purely ran-
dom processes (e.g., relative rates of wild-type
site loss, given the G/C bias in mutations),
whereas other dimensions of the data reflect ad-
ditional complications. The complexity required
to explain these results is greater than that as-
sumed in simple models of restriction site evo-
lution (e.g., Li 1986), but it is not nearly as great
as we might have expected. Of course, a more
detailed understanding of T7 biology might well
lead to further revelations of complexity—a
deeper understanding of the relationship be-
tween amino acid sequence and protein function
would undoubtedly enable us to subdivide mis-

sense mutations into classes of different selective

impact to yield a meaningful improvement in
explanatory power—and further revelations of
complexity.

Parametric Bootstrap

A major objective of studies in experimental
molecular evolution is to provide empirical data
sets for unambiguous tests of evolutionary mod-
els. The experimental approach is labor-inten-
sive, however, and it is not feasible to generate
empirical data with near the ease of computer
simulations. Estimation of evolutionary rates
from one data set enables the investigator to reap

1005

the benefits of both approaches: simulations pa-
rameterized with the estimates from the empir-
ical data can then be used to generate thousands
of independent pseudoreplicates bearing char-
acteristics of the empirical study. They thereby
enable statistical tests not possible by merely re-
sampling the original data (nonparametric boot-
strapping).

The parametric bootstrap offers at least three
applications:

1. Replications of data to evaluate methods of
analysis, as here (Felsenstein 1988)

2. Tests of phylogenetic estimates (Felsenstein
1988); when a phylogenetic reconstruction is
attempted, evolutionary parameters may be
estimated from the best-fit tree and used to
program replicates to evaluate ‘““‘confidence”
in the reconstruction

3. Extensions of data to new designs; for ex-
ample, the observed evolutionary parameters
could be extrapolated to new topologies and
longer-term studies

The first two of these applications provide di-
rect parallels to traditional (nonparametric)
bootstrapping, and it may seem that the para-
metric bootstrap offers no advantages. But there
is an important distinction: nonparametric boot-
strapping is subject to various biases that the
parametric bootstrap avoids. For example, sup-
pose that a single sample of data is obtained, and
the estimate for some statistic is X. Using non-
parametric bootstrapping, we would reject the
hypothesis that the true population value of X is
zero only if 97.5% of the bootstrap replicates of
X were less than zero or if 97.5% of them were
greater than zero (when using a two-tailed test):
because of the bias inherent in the resampling
process, nonparametric bootstrapping is used to
obtain estimates of the variance but not the mean.

The parametric bootstrap works in the follow-
ing way. The data are fit to some underlying
model; this model is parameterized with the es-
timates and used to generate additional data sets.
Pseudoreplicate estimates of X are obtained from
these samples and may be used to test any of
various hypotheses. In this case, we have a much
more powerful statistical basis for testing hy-
potheses, because each replicate can be treated
as an independent data set. For example, we
would reject the hypothesis that the “true’ pseu-
do-replicate value of X is zero if the numbers of
positive and negative trial values merely differed
significantly from 1:1. However, the models be-
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ing tested differ in the two cases: the model un-
derlying a parametric bootstrap is an a priori
model whose few parameters are derived from
the data, whereas the model underlying non-
parametric bootstrapping is merely a sampling
of the original data set.

In a comparison of three reconstruction meth-
ods (neighbor-joining, parsimony, and UPGMA),
parametric bootstrapping established two re-
sults. First, each method predicted the correct
phylogeny in at least 97% of the trials; successful
reconstruction would therefore be expected in
most empirical replicates of the T7 phylogeny.
Second, the methods revealed significant differ-
ences in ability to predict branch lengths, with
parsimony outperforming neighbor-joining, and
both of these methods outperforming UPGMA.

Prospectus

This paper has offered a study of molecular
evolution that combines biological and genetic
details in a phylogenetic context. The analysis
enjoys the advantage that the phylogeny is known
a priori, so it becomes possible to calculate evo-
lutionary parameters in the absence of uncer-
tainties about phylogeny. The experimental or-
ganism is not of special interest by itself, so the
value of the study must rest on its generality to
other systems. Yet, generalities are not imme-
diately apparent precisely because of the incor-
poration of genetic detail. The irony is that, by
increasing the level of molecular resolution, we
have discovered features that render the exper-
iment unique, hence less general. The utility of
the study is further compromised by our use of
a design to enhance the rate of mutation at the
expense of phage fitness.

On further reflection, however, there are two
respects in which the T7 system may generalize.
First the bias in mutation spectrum induced by
the mutagen (nitrosoguanidine) bears a surpris-
ing resemblence to the mutations observed in
some other taxa. A strongG—>Aand C—> T
bias has been observed in eukaryotic pseudo-
genes, presumably reflecting a similar bias in the
mutation spectrum (Gojobori et al. 1982; Li et
al. 1984); likewise, the predominant class of mu-
tation in the HIV virus is G — A (Vartanian et
al. 1991; Moriyama et al. 1991). Second, the T7
system serves as a model for any other system
with unique features. As more is discovered about
the molecular genetic basis of change in different
organisms, the notion of a uniform process of
molecular evolution applying to most taxa is
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vanishing rapidly. Every taxon has its own evo-
lutionary history as regards mutations, popula-
tion structure, and selection. A goal of evolu-
tionary biology is to discover these unusual
features of a taxon’s evolutionary history, which
in most cases is possible only through inference
based on phyletic comparisons. An experimental
phylogeny offers an uncompromising proving
ground for methods that purport to be able to
recover the various nuances of evolution history.

Molecular analysis of experimental evolution
appears to be a feasible endeavor. The accu-
mulated rate of base-pair change achieved in this
study (1%—-3% of G/C bases from wild-type) was
adequate to achieve meaningful levels of restric-
tion site change and to compare different models
of molecular evolution with respect to the role
of selection. The potential exists for achieving
rates five times those observed here and to pro-
vide empirical tests of many compelling ques-
tions about evolution at the molecular and higher
levels.
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