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Abstract.—Despite the proliferation of increasingly sophisticated models of DNA sequence evolution, choosing among
models remains a major problem in phylogenetic reconstruction. The choice of appropriate models is thought to be
especially important when there is large variation among branch lengths. We evaluated the ability of nested models
to reconstruct experimentally generated, known phylogenies of bacteriophage T7 as we varied the terminal branch
lengths. Then, for each phylogeny we determined the best-fit model by progressively adding parameters to simpler
models. We found that in several cases the choice of best-fit model was affected by the parameter addition sequence.
In terms of phylogenetic performance, there was little difference between models when the ratio of short:long terminal
branches was 1:3 or less. However, under conditions of extreme terminal branch-length variation, there were not only
dramatic differences among models, but best-fit models were always among the best at overcoming long-branch
attraction. The performance of minimum-evolution-distance methods was generally lower than that of discrete max-
imum-likelihood methods, even if maximum-likelihood methods were used to generate distance matrices. Correcting
for among-site rate variation was especially important for overcoming long-branch attraction. The generality of our
conclusions is supported by earlier simulation studies and by a preliminary analysis of mitochondrial and nuclear
sequences from a well-supported four-taxon amniote phylogeny.
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Recent computational and theoretical advances have made
it practical to apply increasingly realistic models of DNA
sequence evolution to the problem of phylogenetic recon-
struction. Although it is well known that serious systematic
error can be introduced when data violate the assumptions
of a reconstruction model (Felsenstein 1978; Penny et al.
1987; Yang 1995), it is by no means obvious that more com-
plex models always improve phylogenetic accuracy (Yang et
al. 1994; Gaut and Lewis 1995; Yang 1997). There are at
least two circumstances where simpler models may be more
accurate. First, if long branches are actually adjacent in the
true phylogeny, then the well-known phenomenon of long-
branch attraction may reinforce the correct tree, even though
the length estimate of the joining internal branch will be
exaggerated (Felsenstein 1978; Penny et al. 1987; Yang
1996a). Second, complex models require that more param-
eters be estimated from the same amount of data than for
simple models. If superfluous parameters are added, the sam-
pling variance increases without providing additional phy-
logenetic signal. Errors in parameter estimation may com-
promise phylogenetic accuracy, especially for small datasets.

In this study, we use DNA sequences from known phy-
logenies of bacteriophage T7 to evaluate the performance of
a likelihood framework that seeks to strike a balance between
realism and the error introduced by parameter estimation. In
this framework, nested models are compared by adding pa-
rameters sequentially (Goldman 1993; Yang 1994). After
each new set of parameters is added, a likelihood-ratio test
is performed that determines whether the additional param-
eters significantly improve the fit between the model and the
data. This process is continued until the addition of param-
eters no longer represents a significant improvement over the
simpler model. The most-complex model that is accepted by
this procedure will be referred to as the best-fit model.

Accepted April 16, 1998.

Evaluating the performance of best-fit models using com-
puter simulations is problematic. Simulations are generally
based on fairly simple models of DNA sequence evolution.
In most cases, the set of models being evaluated include the
models under which the sequences evolved. In the ideal world
of computer simulations, the model-fitting procedure is ex-
pected to choose the true model under which the sequences
evolved (Goldman 1993). In most phylogenetic studies, how-
ever, investigators work with data that cannot be neatly de-
scribed by simple models. Finally, even when rate hetero-
geneity is allowed, computer simulations generally assume
an absence of selection and complete independence among
sites (Gaut and Lewis 1995; Huelsenbeck 1995; but see Mi-
yamoto and Fitch 1995).

In this study, we are interested in applying model-fitting
methods to DNA sequences that have evolved under more
realistic conditions than computer simulations. To this end,
we used DNA sequences from a series of known phylogenies
constructed using lineages of the bacteriophage T7 (Cun-
ningham et al. 1997). Although our experimental phylogenies
are generated under relatively artificial conditions, they pre-
sent a series of challenges to phylogenetic reconstruction
methods.

First, selection in these bacteriophage lineages has resulted
in parallel evolution at the DNA sequence level (Cunningham
et al. 1997), which poses a challenge to methods of estimating
among-site rate variation (Yang 1996b). Second, the skewed
mutational bias of the mutagen nitrosoguanidine (Bull et al.
1993) challenges methods of estimating nucleotide transfor-
mational probabilities and the number of invariable sites
(Fitch and Markowitz 1970; Fitch 1986; Shoemaker and Fitch
1989; Gu et al. 1995; Lockhart et al. 1996). These are similar
to the challenges produced by skewed mutational biases seen
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Fic. 1. Experimentally generated phylogeny of six independent
bacteriophage T7 lineages. Each lineage was propagated from the
same wild-type (WT) isolate and bifurcated once. The lengths of
branches correspond to the number of lytic cycles, as described in
Cunningham et al. (1997). The internal branches of the six lineages
are not identical: IJ and KL = 10 cycles; ST and UV = 20 cycles;
WX and YZ = 30 cycles. These lineages can be assembled into
four-taxon phylogenies as shown in Figure 2.

in some natural systems (Gojobori et al. 1982; Moriyama et
al. 1991). The phylogenies were designed so that the internal
branches are very small and have long external branches.
Furthermore, ancestors were collected at several points dur-
ing the construction of each external branch. These features
allow models to be compared when variation between branch
lengths becomes progressively more extreme.

The experimental phylogenies were analyzed as three rep-
licated four-taxon phylogenies and together as a 12-taxon
phylogeny. For each phylogeny, we compared nested models
that differed in parameters associated with base composition,
models of substitution, and among-site variation. Among-site
variation was incorporated in two ways, first by estimating
the proportion of invariable sites and then by using a discrete
gamma distribution to estimate the rate variation among the
variable sites. Finally, although our experimental phylogenies
are much more realistic than computer simulations, they may
not be subjected to the same constraints as DNA sequences
that have evolved over millions of years. Because of this, we
investigated the generality of our conclusions with mito-
chondrial and nuclear genes from a widely accepted four-
taxon amniote phylogeny.

MATERIALS AND METHODS

Experimental Phylogeny

Six lineages of bacteriophage T7 were propagated in the
presence of the mutagen nitrosoguanidine from a single wild-
type (WT) isolate as illustrated in Figure 1 (Cunningham et
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al. 1997). Each lineage was bottlenecked to a single indi-
vidual (by random plaque selection) after either 10 (IJ and
KL), 20 (ST and UV), or 30 lytic cycles (WX and YZ). A
lytic cycle represents the time to fully lyse a culture of bac-
teria, which requires several generations of viruses. Each
bottlenecked isolate was divided into two descendant ter-
minal lineages as shown in Figure 1. Each of these terminal
lineages was bottlenecked to a single individual at intervals
of 50 lytic cycles. The purpose of this design was to create
six independent pairs of sister taxa that could be assembled
into various four-taxon phylogenies or analyzed together as
shown in Figure 1.

Because we periodically bottlenecked the terminal lineages
we had certain knowledge of the ancestral states at several
points during propagation. This allowed us to vary branch
lengths by simply considering these ancestors as terminal
taxa. For each phylogeny, the pair of opposing branches that
experienced the most convergence to one another remained
long and the length of the other pair was progressively short-
ened. In each phylogeny, two opposing branches remained
long and two branches were progressively shortened. For the
KLWX, STUV, and IJYZ phylogenies, the LX, SU, and JY
branches, respectively, remained long.

The Bacteriophage Data

DNA sequences were collected from both the Early and
Late Regions of the T7 genome to yield a total of 2733
aligned nucleotide positions as described in Cunningham et
al. (1997). The first segment ranged from position 797-3100
in the T7 genome (Dunn and Studier 1983). Because each
lineage experienced deletions in the Early Region (Cunning-
ham et al. 1997), the segment from 1210-2979 was not pres-
ent in every lineage and was therefore omitted from the anal-
ysis. The remaining portion of the Early Region included 128
bp of intergenic sequence as well as portions of the 0.3 and
0.7 genes. The Late Region sequence extended from positions
34624-36822 and included the entire 17.0, 17.5, and 18.0
genes as well as some intergenic sequences. The Early Region
data were presented in Cunningham et al. (1997), and the
Late Region data are described here for the first time. The
aligned sequences for all 2733 aligned positions are available
from the EBI FTP server under accession code DS33256
either by anonymous ftp from FTPEBIL.AC.UK in directory
/pub/databases/embl/align, from the world wide web at ftp:
//ftp.ebi.ac.uk/pub/databases/embl/align/, or by sending an e-
mail message to netserv@ebi.ac.uk including the line GET
ALIGN:DS33256.DAT.

The Amniote Data

One criticism of an experimental viral system is that our
conclusions may not extend to naturally evolving DNA se-
quences. For this reason, it is especially important to analyze
sets of extant taxa whose relationships are relatively non-
controversial. We applied our methods to DNA sequences
from two nuclear (18S and 28S) and three mitochondrial
genes (128, 16S, valine tRNA) taken from representative taxa
from a relatively noncontroversial and well-studied four-tax-
on amniote phylogeny (Sceloporus undulatus, Alligator mis-
sissippiensis, Gallus gallus, and Mus musculus: alignments
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TABLE 1.

C. W. CUNNINGHAM ET AL.

Model fitting for the KLWX phylogeny with highly unequal branch lengths. JC, Jukes and Cantor 1969; F81, Felsenstein

1981; HKY, Hasegawa et al. 1985; GTR, general time reversible model, Lanave et al. 1984; INV, invariable-sites method, Hasegawa et
al. 1985; GAM, discrete gamma distribution, four categories, Yang 1994. Data for the best-fit model appears in bold.

Estimated parameters Additional df Likelihood P-value
Sequence 1: Adding rate variation after increasing number of substitutional classes from two to six
JC 4253.8
F81 Base composition 3 4241.2 < 0.001
Substitution classes
HKY 2 substitution classes 1 4162.2 < 0.001
GTR 6 substitution classes 4 4157.2 < 0.04
Among-site rate variation
GTR/INV % of invariable sites 1 4148.6 < 0.001
GTR/INV/GAM discrete gamma distribution 1 4148.6 > 0.90
Sequence 2: Adding rate variation before increasing number of substitutional classes from two to six
JC 4253.8
F81 Base composition 3 4241.2 < 0.001
Substitution classes
HKY 2 substitution classes 1 4162.2 < 0.001
HKY/INV % of invariable sites 1 4152.5 < 0.001
HKY/INV/GAM discrete gamma distribution 1 4152.5 > 0.90
GTR/INV 6 substitution classes 4 4148.6 > 0.10

and GENBANK accession numbers as described in Hedges
et al. 1990; Hedges 1994; Huelsenbeck and Bull 1996).

Model Fitting

Because the topology has a strong effect on likelihood
values, most approaches to model fitting compare likelihoods
on the same topology (Yang, 1996b). First, a maximum-like-
lihood tree was estimated using a test version of PAUP*
4.0d61 (written by David L. Swofford, Smithsonian Insti-
tution) using the Jukes-Cantor (JC) model (Jukes and Cantor
1969). We then used the topology of this tree as a basis for
calculating maximum-likelihood scores for progressively
more complex models (see Table 1). The parameters added
include base composition, numbers of substitutional classes
(e.g., transitions vs. transversions represent two classes), and
two approaches to incorporating among-site rate variation:
the invariable sites method (Hasegawa et al. 1985; Palumbi
1989; Gu et al. 1995) and the four-category discrete gamma
distribution (Yang 1994, 1996b).

As each new set of parameters was added, a likelihood-
ratio test was performed to determine whether the simpler
model could be rejected (Goldman 1993; Yang 1996b). These
tests were carried out assuming that the likelihood-ratio sta-
tistic (8 = 2[InL; — InLg]) is distributed according to a chi-
square distribution, which is valid because the likelihoods
are calculated on the same topology (Yang 1996b). If the
simpler model could not be rejected, any remaining param-
eters were added to the simpler model. For example, if in-
creasing the substitutional classes from two to six types did
not represent a significant improvement, rate variation was
added to the model with two substitutional types. This pro-
cedure is illustrated in Table 1.

Some of these parameters are hierarchically nested. For
example, the JC model, which assumes equal base frequen-
cies, must be nested within the F81 model, which allows for
unequal base frequencies. Similarly, models with different
numbers of nucleotide substitution classes must be nested
within one another in a hierarchical manner. For example,

the F81 model (one class) is nested within the HKY model
(two classes), which is nested within the GTR model (six
classes). Finally, the invariable-sites method of accommo-
dating rate variation can be nested within a combined model
that not only estimates the proportion of invariable sites, but
assumes a gamma distribution for the remaining sites.

It is important to note that these categories are not hier-
archically nested with respect to one another. For example,
rate variation can be added either before or after increasing
the number of nucleotide substitutions from two to six (as
in Table 1). Varying the parameter addition sequence can
affect the choice of best-fit models. If these two sequences
differed in their choice of best-fit model, the simplest of the
best-fit models was preferred. Although the two addition se-
quences we used do not exhaust all of the possibilities, they
are representative of the parameter-addition sequences found
in the literature (Goldman 1993; Yang 1996b; Huelsenbeck
1997).

Phylogenetic Analysis, Tree Support, and
Data Transformation

The performance of each model was evaluated by deter-
mining the support for correct internal branches across boot-
strap pseudoreplicates (Hillis et al. 1994; Cunningham 1997).
The starting seed for all bootstraps was always the same.
This means that exactly the same pseudoreplicate datasets
were evaluated by each reconstruction method being com-
pared. For the four-taxon phylogenies, 10,000 bootstrap pseu-
doreplications were performed with PAUP* 4.0d61 (Swof-
ford 1997) using exact search strategies. Distance searches
were carried out using the minimum-evolution criterion
(Kidd and Sgaramella-Zonta 1971; Rzhetsky and Nei 1992).
During each bootstrap pseudoreplicate, if more than one res-
olution of a polytomy was equivalent with respect to the
minimization criterion being applied, each alternative reso-
lution was included in the final bootstrap consensus (the ‘‘no-
collapse’ option in PAUP* 4.d61).

For the 12-taxon phylogeny, bootstrapping was performed
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for 100 pseudoreplicates with heuristic searches using a start-
ing tree obtained by stepwise addition and tree-bisection-
reconnection branch swapping with ‘“‘no steepest descent”
option in effect. Due to the time required for swapping during
maximum-likelihood searches, all heuristic searches were
performed with a maximum limit of 20 trees saved. Esti-
mating tree support for the 12-taxon phylogeny was less
straightforward. Because the six lineages are all descended
from WT, the internal branches form a polytomy (Fig. 1).
For this reason, only the bootstrap support values for each
of the six pairs of sister taxa were considered.

Because the bootstrap support for the correct tree across
the models and phylogenies varied from 0.04 to 0.99, boot-
strap proportions were transformed to allow comparison
across replicates and treatments. This was necessary because
proportions are bounded, so that the difference between 0.49
and 0.50 is not comparable to the difference between 0.99
and 1.00. This bounded effect can be easily overcome by
performing an arcsine transformation on the bootstrap pro-
portion for every method being compared. This allowed the
performance of each model to be expressed in terms of the
deviation from the mean of all models being compared for
a particular branch length/phylogeny combination.

Parameter Estimation

Before bootstrapping with maximum likelihood, all param-
eters were estimated in an iterative fashion. First, each pa-
rameter was estimated on the JC tree. Then the parameters
were set to their estimated values and the search was repeated
to yield a new tree. This process was repeated twice before
setting the parameters to their final values for bootstrapping.
Only base composition was estimated for every bootstrap
pseudoreplicate. In most cases, it was prohibitively time con-
suming to estimate other parameters while bootstrapping. On
limited runs, we found that estimating substitutional and rate
variation anew for every bootstrap pseudoreplicate made lit-
tle or no difference to our estimates of tree support (results
not shown).

For all minimum-evolution searches, maximum-likelihood
distances were calculated. These distances are calculated as
the length of the single ‘‘branch’ in a tree composed of the
two taxa being compared, as estimated under the given model
(Felsenstein 1995; Swofford et al. 1996). Maximum likeli-
hood was used to estimate the appropriate parameters in the
following manner. First, the shortest tree was determined un-
der the minimum-evolution criterion for maximum-likeli-
hood distances under the JC model. Then, the criterion was
shifted to maximum likelihood to estimate the appropriate
parameters. The criterion was shifted back to minimum evo-
lution, and searches were performed with maximum-likeli-
hood distances with the estimated parameter settings. This
iteration was repeated again before setting the parameters for
bootstrapping.

RESULTS

Four-Taxon Analyses: Tree with the
Smallest Internal Branch

Because each of the six pairs of sister taxa are descended
from the same WT individual, they can be assembled to form
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any of 15 possible four-taxon phylogenies. Of these possible
phylogenies, the one with the smallest internal branch should
be the most difficult to reconstruct when terminal branch
lengths are allowed to vary (Felsenstein, 1978; Huelsenbeck
and Hillis 1993). The phylogeny with the smallest internal
branch (in terms of actual substitutions, not time) is formed
by joining the lineages KL and UV. This phylogeny expe-
rienced only two substitutions during the 30 lytic cycles that
compose its internal branch, compared with seven parallel
evolutionary events between its two longest branches. Many
of our major conclusions can be illustrated using this phy-
logeny.

Model Fitting

The phylogeny was subjected to three branch-length treat-
ments: equal, with all terminal branches 150 lytic cycles in
length; intermediate, with two branches 150 cycles long and
two 50 cycles long; and highly unequal, with two branches
150 cycles long and two branches of length zero. Best-fit
models were determined separately for each branch-length
treatment. The GTR with invariable sites model was the best-
fit model for the equal treatment (Fig. 2A), with HKY with
invariable sites being preferred for the intermediate and high-
ly unequal treatments (Fig. 2B,C). For these phylogenies,
estimating a discrete gamma distribution for rate heteroge-
neity did not significantly improve the likelihood over simply
estimating the proportion of invariable sites (e.g., Table 1).

Relative and Absolute Performance

For both the intermediate and equal branch-length treat-
ments, the differences between the models were small (Fig.
2A,B). For the intermediate treatment, adding parameters im-
proved tree support until the number of substitutional classes
was increased from two to six, whereupon it dropped. For
the equal treatment, adding parameters actually decreased
performance relative to parsimony.

In contrast, adding model parameters to the highly unequal
branch treatment had dramatic effects. When parsimony was
applied, the incorrect phylogeny was supported in 96% of
the bootstrap pseudoreplicates (Fig. 2C). The best-fit model,
HKY with invariable sites, supported the correct tree with
86% bootstrap support. Of the parameters added, estimating
the proportion of invariable sites most improved performance
(Fig. 2C). For all three treatments, the performance of the
most parameter-rich model—GTR with invariable sites—was
lower than simpler models (Figs. 2B,C). The decreased per-
formance of the most parameter-rich model is consistent with
the hypothesis that too many parameters can have a negative
effect.

Four-Taxon Analyses: Three Replicate Phylogenies
Model Fitting

Of the 15 possible rearrangements of the six lineages, three
were chosen to form identical, replicate four-taxon phylog-
enies with internal branches of 40 lytic cycles in length
(KLWX, STUV, IIYZ). Each of the three replicate phylog-
enies was subjected to the branch-length treatments described
above. As before, in no case did estimating a discrete gamma



982

C. W. CUNNINGHAM ET AL.

2 Substitution 6 Substitution

1 Substitution Classes Classes
Class AND AND
Parsimony Invariable Sites Invariable Sites
0 *Best-Fit
© g A K u K u K U ok u
S5O
w ©
o
L v L v L \ L \
Q B *Best-Fit
® g K K K K
S < 84 u 86 | 90 v 86 u
o ¢
g © L L L y L
3 m \ \Y \%
£

96, 78
(OF u
.

Y
wrong tree

Highly Unequal
Branches

*Best-Fit

K K
86 80 y
L L
\' \

Fic.'2. Adding parameters to nested models can overcome long-branch attraction, especially when branch lengths are highly unequal
(see trees in shaded box). Of the 15 possible four-taxon phylogenies that can be assembled from the six lineages, the phylogeny shown
was the one with the smallest number of substitutions along the internal branch. The numbers represent bootstrap support (10,000

pseudoreplicates).

distribution for rate heterogeneity significantly improve the
likelihood over simply estimating the proportion of invariable
sites. The GTR model with invariable sites was preferred in
six phylogeny/treatment combinations, and the HKY with
invariable sites was preferred in three.

Relative Performance

For each branch-length treatment and model, the relative
levels of support for the correct tree are shown in Figure 3.
The choice of models made little difference in performance
when the branch lengths were equal (Fig. 3A), but made
increasingly more difference as the branches became more
unequal (Fig. 3B,C). In all the phylogenies, adding the dis-
crete gamma distribution for rate heterogeneity gave virtually
the same performance as estimating the proportion of invar-
iable sites alone. These results are shown from a different
perspective for a subset of these models in Figure 4. The
standard errors of the performance of the various models
overlapped considerably for the equal treatment and were
progressively more distinct in the intermediate, highly un-
equal branch treatments. For the highly unequal treatment,
the best-fit model had either the highest level of performance
or nearly so for every phylogeny (Figs. 3C, 4).

12-Taxon Analysis
Model Fitting

To investigate the effect of increasing number of taxa, the
six lineages were analyzed simultaneously so that their in-
ternal branches formed a polytomy (Fig. 1). For this phy-
logeny, the addition of the discrete gamma distribution for
rate heterogeneity was only rejected for the highly unequal
treatment (Fig. 5).

Relative Performance

The best-fit model never resulted in the most support for
the correct tree under any of the three treatments (Fig. 5A—
C). When branches were equal or intermediate, the best-fit
models showed among the lowest levels of performance (Fig.
5A,B). In contrast, in the highly unequal branch treatment,
the best-fit model was among the best performing models
(Fig. 5C).

As with the four-taxon analysis, the differences among
models were much greater in the highly unequal branch treat-
ment. Also, as before, adding the discrete gamma distribution
for rate heterogeneity made little difference relative to simply
estimating the proportion of invariable sites.
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FiG. 3. Performance of nested models averaged across three rep-
licate four-taxon phylogenies, each with an internal branch of 40
lytic cycles. Performance for each model/phylogeny combination
was measured relative to the mean performance of all seven re-
construction methods shown. Units are in arcsine-transformed boot-
strap proportions. As in Figure 2, the effect of adding parameters
was the strongest when branch lengths are highly unequal. The
abbreviations for the models are from Table 1.

Absolute Performance of Parsimony and Maximum
Likelihood in the Bacteriophage Phylogenies

Although the main focus of this study is to evaluate the
relative performance of phylogenetic methods, their absolute
performance is also of interest (summarized in Table 2). In
the four-taxon phylogenies, the range of support for the cor-
rect tree is very low for the KLWX phylogeny (with four
substitutions on the internal branch, and six parallel substi-
tutions between the L150 and X150 lineages). The degree of
parallel evolution is not sufficient to overwhelm the phylo-
genetic signal from the much larger internal branches of the
STUV and IJYZ phylogenies (13 and 15 substitutions, re-
spectively).

The absolute performance of the various methods is much
lower in the 12-taxon phylogenies, where the percentage of
bootstrap support for two of the correct nodes is sometimes
in the single digits and rarely rises above 30%, no matter
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FiG. 4. The relative performance of a subset of the models shown
in Figure 3: the best-fit model for each four-taxon phylogeny; the
most succesful model for each phylogeny; and two simple models
for comparison (PARS and JC). The means and standard errors are
calculated from the three replicate phylogenies used in Figure 3.
Units are in arcsine-transformed bootstrap proportions. As before,
adding parameters makes the biggest difference when branches are
highly unequal, although a smaller advantage was already apparent
in the intermediate treatment.

what method is appliezd (nodes 1J, KL, Table 2). This finding
is consistent with the expected difficulty of estimating a
“‘star-burst” phylogeny with any method, especially when
parallel substitutions are common among long branches con-
nected by very small internal branches. Improvement in phy-
logenetic accuracy under these conditions is expected only
by subdividing the long branches by adding appropriate taxa
(Hillis 1996).

Likelihood versus Distance

When identical models were applied to each of the four-
taxon phylogenies, the performance of likelihood and min-
imum-evolution-distance methods only differed when branch
lengths were highly unequal (shown for three models in Fig.
6). In the highly unequal treatment, however, likelihood
methods showed considerably higher levels of support for
the correct tree than did the minimum-evolution criterion for
all of the models shown in Figure 6 as well as for every other
model being compared (results not shown). Virtually the
same pattern was also observed in the 12-taxon phylogeny
(results not shown).

In the 12-taxon analyses above, performance was measured
by the bootstrap support for each of the six pairs of sister
taxa. Another consideration is the extent to which methods
falsely resolved the basal polytomy. In the highly unequal
treatment, the strongest bootstrap support for an incorrect
resolution of the basal polytomy ranged from only 20% to
34% under the likelihood criterion, but ranged from 52% to
64% under the minimum-evolution criterion. This suggests
that the distance methods may be more likely to incorrectly
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Fic. 5. Performance of each model when applied to the 12-taxon

phylogeny shown in Figure 1. Because this phylogeny has a basal
polytomy, performance was measured for the nodes supporting each
of the six pairs of sister taxa. Deviations from mean are calculated
as described in Figure 3. All performance is calculated from 100
pseudoreplicates.

resolve a true polytomy caused by the simultaneous diver-
gence of lineages.

Amniote Phylogeny

When the amniote genes are mapped onto the expected
phylogeny, the branch lengths for the mitochondrial genes
are nearly equal and the branch lengths for nuclear genes are
highly unequal (Fig. 7). For both nuclear and mitochondrial
genes, adding the discrete gamma distribution for rate het-
erogeneity did not significantly improve the likelihood when
compared to estimating the proportion of invariable sites
alone.

These data confirm our major conclusions. First, differ-

C. W. CUNNINGHAM ET AL.

ences among models are the greatest when branches are high-
ly unequal (Fig. 7). Second, the best-fit model performs the
best when the differences among the models are the greatest
(Fig. 7). Third, adding a discrete gamma distribution for rate
heterogeneity does not improve performance over estimating
the proportion of invariable sites by itself. Finally, as with
the bacteriophage phylogenies (Fig. 6), the differences be-
tween maximum-likelihood and minimum-evolution-dis-
tance methods were small when branch lengths were equal,
whereas when branch lengths were highly unequal, the best-
fit model was considerably more accurate when applied in a
discrete maximum-likelihood framework than when it was
used to convert DNA sequences to pairwise maximum-like-
lihood distances (results not shown).

DiscussION

We have used experimentally generated bacteriophage phy-
logenies to evaluate the performance of a likelihood frame-
work for choosing among models of DNA sequence evolu-
tion. These phylogenies were designed to examine the per-
formance of various models when branch lengths are allowed
to vary. Because these bacteriophage sequences represent ac-
tual genes evolving under conditions of positive selection,
they represent a far more realistic and complex model system
than is possible in computer simulations.

In every phylogeny we studied, the best-fit models always
included among-site rate heterogeneity. This result is not sur-
prising, because our bacteriophage lineages are known to
contain a large number of invariable sites due to a pronounced
mutagen bias (Cunningham et al. 1997), and is consistent
with empirical studies that have found significant rate het-
erogeneity in most DNA sequences surveyed, ranging from
viruses to mammals (Sullivan et al. 1995; Yang et al. 1995;
Huelsenbeck 1997).

When the branch lengths in our phylogenies were highly
unequal, accounting for among-site variation had a stronger
effect on phylogenetic performance than any other parameter
(Figs. 3, 5). Consider our four-taxon bacteriophage phylog-
eny with the smallest internal branch, where there were only
two substitutions along the internal branch and seven parallel
evolutionary events between the long branches. Parsimony
found 96% bootstrap support for the wrong tree, while the
best-fit model found 86% bootstrap support for the correct
tree (Fig. 2C). Similarly, for nuclear genes in the amniote
phylogeny, with highly unequal branch lengths, accounting
for rate heterogeneity made the most difference (Fig. 7), al-
though no model was able to recover the expected tree (shown
in Fig. 7).

These results are consistent with theoretical expectations
and with simulation studies. Rate heterogeneity is known to
increase the level of parallel evolution between lineages (von
Haeseler and Churchill 1993), which will have the strongest
negative effect on phylogeny reconstruction when some lin-
eages are very long and unbranched. Simulation studies have
also shown that models that do not account for rate hetero-
geneity can perform quite badly when branch lengths are
highly unequal, even when these models are considered in a
likelihood framework (Gaut and Lewis 1995).

Although complex best-fit models performed well with
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TaBLE 2. Range of absolute performance of parsimony and maximum-likelihood methods for each phylogeny.

Four-taxon phylogenies (proportion of 10,000 bootstraps)

KLWX STUV uyz
phylogeny phylogeny phylogeny
Equal branches
range 40.9-51.9 97.8-98.8 94.3-96.8
Intermediate branches
range 36.5-60.8 91.0-95.2 98.9-99.1
Highly unequal branches
range 26.0-97.6 77.0-99.9 93.7-99.9
12-taxon phylogeny (proportion of 100 bootstraps)
1J node KL node ST node UV node WX node YZ node
Equal branches
range 13.0-24.8 10.0-20.8 73.7-89.0 27.0-50.0 15.0-20.0 67.0-89.1
Intermediate branches
range 23.2-36.5 2.3-9.5 69.6-89.0 36.6-45.0 38.0-52.3 92.0-97.3
Highly unequal branches
range 4.0-31.8 7.9-19.6 83.0-99.0 1.0-43.5 36.3-90.5 95.0-100.0

highly unequal branches for both the bacteriophage and am-
niote phylogenies, the difference in performance between
simple and complex models was much smaller when branch
lengths were intermediate and equal (Figs. 2-7), which agrees
with the conclusions of a recent computer-simulation study
(Yang 1997). In general, then, it seems that best-fit models
appear to perform the best when the choice of the appropriate
model is most important.

Explicit models of DNA sequence evolution can be applied
to discrete characters in a maximum-Ilikelihood framework
or can be used to generate a distance matrix that can then be
analyzed by any number of methods. When we compared the
same models, maximum likelihood generally outperformed
the minimum-evolution criterion of reconstructing phylog-
enies from distance matrices (Fig. 6). The advantage of max-
imum likelihood over distances was especially clear when
branch-length variation was extreme. Our results are consis-
tent with theoretical arguments that important information is
lost when discrete characters are converted to distances. Al-
though it has been argued that the information lost should
increase with the number of taxa (Penny 1982), our results
show that this loss of information is already apparent in the
four-taxon case.

The advantage of discrete-character maximum-likelihood
methods over distance methods incorporating the same mod-
els has been previously observed in simulation studies (Huel-
senbeck 1995). This conclusion was also supported by a re-
cent empirical study. Although the true phylogeny was not
known, Huelsenbeck (1997) found that both simple and com-
plex models were able to separate long branches in a like-
lihood framework, but only the most complex models were
able to separate the long branches in a distance framework.

Conclusions and Recommendations

The best-fit model identified under the framework of a
likelihood-ratio test seems to be a conservative choice of
models. Although best-fit models did not always provide the
highest level of support for the correct tree, their relative

performance was the greatest when the choice of models was
most important. More work is needed to determine whether
it is possible to identify cases where simpler models should
be preferred.

When adding parameters to models, it is important to re-
member that parameters can be added in different addition
sequences. For example, rate variation can be added before
or after increasing the number of substitutional categories
from two to six (Table 1). We have shown that the order in
which the parameters are added can affect the choice of pa-
rameters included in the best-fit model. We recommend vary-
ing the parameter addition sequence as we have and prefer-
ring the addition sequence that yields the simplest model.

Correcting for among-site variation can be extremely im-
portant, especially when branch lengths are highly unequal.
In our phylogenies, the invariable-sites method was usually
sufficient to account for rate heterogeneity, and the addition
of the gamma distribution for the variable sites provided little
or no additional resolution. This is significant because the
invariable-sites method is considerably less computationally
intensive than the discrete gamma method. For the datasets
we examined, the discrete gamma method takes between two
and five times longer than the invariable-sites method to eval-
uate the same number of trees. When we have applied these
models to other datasets, the results of the two methods are
very similar and the gamma method is always much slower.
Nonetheless, we have obviously not examined all possible
conditions, and the addition of a gamma distribution to model
rate heterogeneity among variable sites may be critical for
some datasets.

Finally, we have shown that discrete-character maximum
likelihood methods show a considerable performance advan-
tage over the distance-based minimum-evolution method,
even when maximum-likelihood distances are used for min-
imum evolution. The advantage of discrete-character maxi-
mum likelihood appears to be greater for at least some em-
pirical datasets than the small advantage sometimes seen for
simulated data (e.g., Huelsenbeck 1995). There is a trade-off
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Maximum Likelihood versus Distance:
Four-Taxon Phylogenies
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Fic. 6. Identical models are more successful at overcoming long-
branch attraction in a likelihood framework than under the mini-
mum-evolution criterion. These graphs represent the means and
standard errors across the three replicate four-taxon phylogenies.
Graphs are drawn as described in Figure 5. To allow the most
appropriate comparison, all distances except for the uncorrected p-
distance model were calculated using maximum-likelihood dis-
tances. The best-fit model and estimated parameters were deter-
mined under a maximum-likelihood framework as described in the
text.

between the advantage of distance methods in terms of com-
putational speed and the advantage of discrete maximum like-
lihood in terms of performance. If phylogenetic accuracy is
critical and the number of taxa is relatively small, the higher
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Amniote Phylogeny
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Fic. 7. Performance of nested models for nuclear and mitochon-
drial genes from a widely accepted amniote phylogeny (Hedges et
al. 1990; Hedges 1994; Huelsenbeck and Bull 1996). As shown,
the mitochondrial genes have roughly equal branches and the nu-
clear genes have highly unequal branches. As before, the best-fit
models make the most difference when branches are not equal in
length. The proportional length of the branches shown are estimated
under the best-fit model. The actual lengths of the branches of the
mitochondrial and nuclear genes are not comparable and are drawn
to the same scale for heuristic purposes. M, Mus musculus; S, Sce-
loporus undulatus; A, Alligator mississippiensis; G, Gallus gallus.

performance of maximum likelihood will usually be worth
the additional computational effort.
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