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Abstract.—Accuracy of phylogenetic methods may be assessed in terms of consistency, efficiency, and
robustness. Four principal methods have been used for assessing phylogenetic accuracy: simulation,
known phylogenies, statistical analyses, and congruence studies. Simulation studies are useful for
studying accuracy of methods under idealized conditions and can be used to make general predic-
tions about the behavior of methods if the limitations of the models are taken into account. Studies of
known phylogenies can be used to test predictions from simulation studies, thus providing a check on
the robustness of the models (and possibly suggesting refinements for future simulations). Statistical
analyses allow general predictions to be applied to specific results, facilitate assessments as to
whether or not sufficient data have been collected to formulate a robust conclusion, and indicate
whether a given data set is any more structured than random noise. Finally, congruence studies of .
multiple data sets can be used to assess the degree to which independent results agree and thus the
minimum proportion of the findings that can be attributed to an underlying phylogeny. These differ-
ent methods of assessing phylogenetic accuracy are largely complementary, and the results are consis-
tent in identifying a large class of problems that are amenable to phylogenetic reconstruction. [Phy-
logeny; accuracy; simulations; experimental evolution; statistics; congruence; consistency; efficiency;

robustness.]

Phylogenetic analyses have become com-
monplace throughout the biological disci-
plines during the past few decades. This in-
creased emphasis on evolutionary history is
a direct result of the realization of the im-
portance of understanding phylogenetic
background as a prerequisite to interpreting
virtually any biological system in a compar-
ative context. However, the increased uti-
lization of phylogenetic approaches has
been driven at least as much by technologi-
cal and methodological advances as by con-
ceptual advances. In particular, advances in
algorithm development, computer technol-
ogy, and molecular biology have made phy-
logenetic analyses feasible for almost any
problem involving biological lineages, from
viral epidemics in extant human popula-
tions (e.g., Ou et al., 1992) to the origins of
the earliest lineages of life (e.g., Olsen,
1987). Phylogenetic applications depend on
accurate reconstructions of phylogenetic
trees; therefore, it is natural that systema-
tists should wonder about the accuracy of
their reconstructed trees. This issue of Sys-
tematic Biology contains reviews of the four
approaches that systematists have explored
to examine phylogenetic accuracy and as-
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sess confidence in their results: evolution-
ary simulations (Huelsenbeck, 1995), explo-
ration of known (observed) phylogenies
(briefly reviewed here), statistical evalua-
tions (Li and Zharkikh, 1995), and congru-
ence studies (Miyamoto and Fitch, 1995).

In evaluating phylogenetic accuracy,
there are two common goals: one may ask
about general properties of phylogenetic
methods or about a specific phylogenetic es-
timate. A systematist may address how well
a given method works under different cir-
cumstances (e.g., different evolutionary
conditions, different amounts of informa-
tion; different types of trees, etc.). Such
studies may ask about phylogenetic perfor-
mance of a single method or may compare
several methods. This approach primarily
involves numerical simulations and investi-
gation of known phylogenies. On the other
hand, statistical and congruence studies
tend to address specific questions of phylo-
genetic accuracy, i.e., how much confidence
can be placed in a specific phylogenetic re-
sult? Of course, the distinction is not always
clear because simulations can be used to ad-
dress confidence in a particular empirical
result (e.g., Hillis et al., 1994a) and general
conclusions about the relative accuracy of
phylogenetic methods can come from statis-
tical or congruence studies (e.g., Penny et
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al., 1982; Allard and Miyamoto, 1992; Miya-
moto et al., 1994). Nonetheless, the distinc-
tion is valid for the majority of studies to
date.

The purpose of this paper is to review
progress in investigations of phylogenetic
accuracy, to introduce the major approaches
that have been developed, to explore the
logical relationships among these methods,
and to address their possible advantages,
disadvantages, and future directions.

CRITERIA FOR COMPARING METHODS

Penny et al. (1992) identified five criteria
for comparing phylogenetic methods: con-
sistency, efficiency (called “power” by
Penny et al.), robustness, computational
speed, and discriminating ability. Hillis and
Huelsenbeck (1994) added versatility to this
list. Although all of these criteria may be im-
portant for selecting a method, the relative
weight an individual investigator applies to
each criterion is likely to vary depending on
the desired application. In the current con-
text, the focus is on the accurate reconstruc-
tion of branching relationships, so the first
three criteria are of the greatest relevance.

Consistency

A phylogenetic method is consistent for a
given evolutionary model if the method
converges on the correct tree as the data
available to the method become infinite. All
methods are consistent when their assump-
tions (explicit and implicit) are met, and all
methods are inconsistent when these as-
sumptions are violated sufficiently. Perhaps
because it is relatively easy to evaluate con-
sistency of a method under a given model of
evolution, consistency has been emphasized
relative to other criteria in comparing phy-
logenetic methods (Felsenstein, 1978, 1983b;
DeBry, 1992; Sidow, 1993). Certainly, it is of
interest to identify particular conditions

.that may lead to inconsistency for a given
method, particularly if the conditions that
result in consistency are highly restrictive.
However, knowing that a method will ob-
tain a correct tree given an infinite amount
of data when its assumptions are met per-
fectly is probably of less interest to most sys-

tematists than knowing how the method
will perform given limited data under more
realistic conditions (Hillis et al., 1994b). Ob-
viously, it makes no sense to say that one
method is consistent and another is not
without reference to a particular tree and
model of evolution. Stated another way,
consistency studies provide a means for
identifying the underlying implicit assump-
tions of phylogenetic methods.

Efficiency

Statistical efficiency is a measure of how
quickly a method converges on the correct
solution as more data are applied to the
problem. In the case of phylogenetic meth-
ods, efficiency may be measured in terms of
the number of characters required to find
the correct solution at a given frequency or
in terms of the frequency of correct solu-
tions at a given sample size. It may seem in-
tuitive that consistency and efficiency are
closely related, but this intuition is wrong.
Two methods may both be consistent for a
given tree and model of evolution (i.e., they
will both converge on the correct solution
given infinite data), but nonetheless they
may differ dramatically in the amount of in-
formation (e.g., length of nucleotide se-
quence) needed to find the correct solution
at high probability. Hillis et al. (1994b) pre-
sented an example of a simple four-taxon
tree with all branches of equal length evolv-
ing under a Kimura model of evolution
(Kimura, 1980). Even with relatively high
rates of evolution and a strong transition
bias, all studied methods of phylogenetic in-
ference are consistent for this tree and
model. However, the number of nucleotides
needed to find the correct tree (with a proba-
bility of >0.99) ranges from about 200 to
more than 10°, depending on the method
used! In this case, knowledge of the relative
efficiency of the methods is clearly much
more important than knowledge of their
consistency.

Robustness

Perhaps of greatest interest to practicing
systematists is the relative robustness of
phylogenetic methods. All methods are
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based on explicit or implicit assumptions
about the evolutionary process, and yet we
know these assumptions are violated to one
degree or another in real data. For instance,
virtually all methods assume that individ-
ual characters are evolving independently,
and yet sources of nonindependence are
known for both molecular and morphologi-
cal data (Wheeler and Honeycutt, 1988;
Dixon and Hillis, 1993). We also know that
real patterns of substitution frequencies
often differ significantly from the simple
models assumed by many phylogenetic
methods (Gojobori et al., 1982; Lietal., 1984;
Moriyama et al., 1991; Hillis et al., 1994a).
However, the degree to which these viola-
tions of assumptions will affect perfor-
mance of phylogenetic methods is still
largely an open question. Although specific
departures from assumed models can be ex-
amined through simulations, biological
data are required to compare the expecta-
tions of performance under ideal conditions
to the limitations of the real world. Thus, ex-
perimental phylogenies and congruence
studies are critical for evaluating robustness
of methods in the real world.

METHODS FOR ASSESSING PERFORMANCE

Simulations

The major problem in studying the relative efficien-
cies [of phylogenetic methods] is that the true tree is
usually unknown for any set of real organisms or
any set of real DNA sequences, so that it is difficult
to judge which tree is the correct one. However, this
problem can be avoided if we use computer simula-
tion. (Nei, 1991:90)

The evolutionary models used in many simulation
studies are exceedingly simple, and even though
they will surely become more sophisticated (e.g.,
more “realistic”) in the future, such studies will still
face a credibility gap. (Miyamoto and Cracraft,
1991:11) ‘ .

One of the most common methods of com-
paring phylogenetic methods is through nu-
merical simulations under explicitly stated
evolutionary models (e.g., Peacock and
Boulter, 1975; Blanken et al., 1982; Tateno et
al., 1982, 1994; Sourdis and Nei, 1988; Jin
and Nei, 1990; Rohlf et al., 1990; Nei, 1991;
Huelsenbeck and Hillis, 1993; Kim, 1993;

Kim et al., 1993; Schoniger and von Haesel-
er, 1993; Charleston et al., 1994; Hillis et al.,
1994a, 1994b; Kuhner and Felsenstein,
1994). Simulations are useful because they
can exhaustively explore the effects of mod-
els of evolution, tree topologies, relative or
absolute rates of evolution, or any other pa-
rameters that are thought to affect the per-
formance of phylogenetic methods. Al-
though the models of evolution always will
be gross oversimplifications of actual evolu-
tionary processes, the goal of simulations is
to detect generalizations about the perfor-
mance of methods that will be widely ap-
plicable to real world situations. An exam-
ple of such a generalization was the
conclusion that long branches attract each
other in many phylogenetic methods, lead-
ing to a bias in favor of trees with connected
long branches (Hendy and Penny, 1989).
This discovery has resulted in caution on
the part of systematists when faced with es-
timated trees that unite long branches (e.g.,
Allard and Miyamoto, 1992). It is appropri-
ate to ask in these circumstances if the ap-
parent signal is greater than could be ex-
plained by the bias in the methods alone.
Many systematists dismiss the results of
simulation studies because the conclusions
of such studies all too often seem to match
preexisting preferences of the authors. This
problem arises because all methods have
conditions for which they work well and
other conditions for which they work poor-
ly. It is relatively easy to identify the optimal
conditions of a favorite method and then to
present simulation results that compare
competing methods only at this optimum.
Such results are of very limited interest, but
the conclusions drawn from such studies
often are presented as if they were general.
For instance, the UPGMA algorithm is now
well known to be highly sensitive to un-
equal rates of evolution among the branches
of a tree, and numerous simulation studies
have shown that this method performs very
poorly in comparison to most other compet-
ing methods if even relatively small differ-
ences in rates of evolution are introduced
(e.g., Saitou and Nei, 1987; Rohlf et al., 1990;
Nei, 1991; Hillis et al., 1994a, 1994b).
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Nonetheless, it is possible to find simulation
studies that conclude UPGMA is “generally
superior to the other methods” (Heijerman,
1991:96). Similar general claims can be
found for almost every major method, with
simulation studies to back up the disparate
conclusions. Obviously, then, such conclu-
sions are not very general, and some source
or sources of bias must exist in the individ-
ual studies.

Studies often may be biased in the selec-
tion of parameters that describe the simulat-
ed tree; branching order, branch lengths, and
number of terminal taxa each have a strong
influence on simulation results. For some
simple situations, such as the four-taxon,
two-rates problem first outlined by Felsen-
stein (1978), it is possible to examine the en-
tire parameter space for combinations of
branch lengths (see Huelsenbeck, 1995). For
more complex trees, it is not as obvious how
tree space can or should be delimited. Even
within the parameter space of the simple sit-
uations, however, different regions can be
identified where the rankings of methods
switch based on their relative efficiency
(Huelsenbeck and Hillis, 1993; Hillis et al,,
1994b). Studies that only examine trees with-
in one region of this parameter space are
likely to draw conclusions that are not gen-
erally applicable (e.g., Tateno et al., 1994).

The evolutionary model also can be a
source of bias. Most simulations assume a
model of evolution that perfectly matches
the assumptions of one or more methods.
This is a useful starting point, because it al-
lows the investigator to assess performance
of the method under a best-case scenario.
The robustness of the method can then be ex-
amined in a systematic fashion by violating
the assumptions of the method one at a time.
This approach leads to problems only when
the conclusions drawn from the study are
purported to be more general than they real-
ly are. For instance, it makes no sense to sim-
ulate a tree using a gamma distribution of
evolutionary rates across sites and then to

conclude that a method that assumes a

gamma distribution is generally better than
a method that does not because the gamma-
assuming method performs better under

this simulation. The simulation does not
demonstrate that nature obeys a gamma dis-
tribution.

An alternative method of simulation that
attempts to incorporate information from
the real world is known as parametric boot-
strapping (Efron, 1985; Felsenstein, 1988;
Bull et al., 1993a). In this approach, a model
of evolution and a model tree are construct-
ed based on parameters estimated from
data, and then replicates are generated
through simulation (differences among
replicates occur because of stochastic varia-
tion). The method should not be confused
with nonparametric (traditional) bootstrap-
ping, in which the pseudoreplicates are not
independent and thus introduce bias into
the distributions generated from the sub-
samples (Efron, 1979, 1987; Hillis and Bull,
1993). Parametric bootstrapping offers a
method of producing independent repli-
cates of observed data sets, which can be
used to test the performance of competing
methods (e.g., Hillis et al., 1994a) or to ex-
tend the conclusions of an experimental
study (e.g., Bull etal., 1993a).

A less obvious source of bias in simula-
tions results from poor implementation of a
method. For instance, many simulation
studies that compare clustering algorithms
and optimality criteria involve highly ineffi-
cient searches for optimal trees. Many stud-
ies that supposedly compare the results of
maximum parsimony, maximum likelihood,
or minimum evolution (all optimality crite-
ria) with those of a clustering method such
as neighbor joining (a heuristic algorithm
for approximating minimum evolution
trees; Nei, 1991) actually are using approxi-
mate solutions to the optimality-based ap-
proaches. Although these approximate solu-
tions may be necessary because of the
complexity of the problem, it should be
made clear in such cases that the optimal so-
lutions have not necessarily been obtained,
and the algorithms used to approximate the
solutions should be clearly specified.

Some methods are more likely than others
to find multiple, equally good solutions,
making the treatment of ties a potential
source of bias. Some authors count a method
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as incorrect if it finds more than one solu-
tion, even if one of the solutions is the cor-
rect tree. Other authors count a method as
completely correct if the correct tree is
among the solutions. (There is also variation
among authors as to whether they score the
percentage of time an entire tree is correct or
the proportion of a tree’s component clades
that are correct.) Clearly, the two exireme
methods of counting ties will bias the re-
sults either against or in favor of the meth-
ods that find more than one solution, re-
spectively. An obvious way to avoid such
bias is to use the average number of correct-
ly resolved components across all optimal
solutions to score each method. Thus, if a
method finds two optimal two-component
trees, one with both components correct and
one with only one component correct, this
scoring system would indicate a 75% suc-
cess rate for the method (as opposed to 0%
or 100% success rates indicated by the ex-
treme scoring methods).

Despite the limitations of simulation
studies, they have been very useful for for-
mulating hypotheses about the behavior of
phylogenetic methods under a wide range
of model conditions. Obviously, there is a
need to explore more complex models of
evolution than have been examined to date,
as well as to investigate the effects of more
complex and larger trees. But a more basic
question concerns the degree to which the
results based on idealized evolutionary
models of simulations match the results ex-
pected from real evolving organisms. To an-
swer this question effectively, the predic-
tions generated through simulations must
be tested empirically.

Known Phylogenies

There are some fundamental philosophical and em-
pirical differences between simulations of fictitious
taxa and their DNA sequences, on the one hand; and
real-world taxa and their sequence characteristics,
on the other. (Miyamoto and Cracraft, 1991:11)

Although I am skeptical that the results of [experi-
mental phylogenies] “directly support the legitima-
cy of methods for phylogenetic estimation,” it re-
mains to be seen what experimental phylogenetics
can teach us about the problem of phylogenetic in-
ference. (Sober, 1993:89)

Simulations are best suited for assessing
consistency and efficiency of methods
when their assumptions are met perfectly
or for examining robusiness of methods
when the assumptions are violated in very
specific (but perhaps not realistic) ways.
However, no simulation will approach in
complexity the evolutionary constraints
and processes experienced by real organ-
isms (Hillis et al., 1993b). Of course, the spe-
cific evolutionary processes will differ
among each group of organisms and will
also vary through time in response to varia-
tion in the external environment. Simula-
tions allow us to describe the behavior of
methods in an ideal world that we know
differs from the real world in most of the
details, but the hope is that we can make
generalizations from simulations about the
relative behavior of methods that will
apply to the real world. Known phylog-
enies of actual organisms allow direct ex-
perimental tests of these generalizations.

There are two major types of known phy-
logenies: agricultural or laboratory lineages
for which records have been kept (e.g.,
Baum, 1984; Fitch and Atchley, 1985, 1987;
Atchley and Fitch, 1991; Hillis and Bull,
1991) and experimental phylogenies gener-
ated for the purpose of testing phylogenetic
methods (e.g., Hillis et al., 1992, 1994a; Bull
et al., 1993a). Neither of these approaches
begins to cover the diversity of phylogenies
that are estimated from the real world, but
they do involve real, evolving biological or-
gariisms and situations for which phyloge-
netic methods are supposed to be applica-
ble. Thus, known phylogenies provide an
opportunity to test predictions made from
simulations in systems where the evolu-
tionary processes are constrained by bio-
logical organisms rather than by the mind
of the investigator. If predictions made
from simulations are falsified with known
phylogenies, then it is clear that the predic-
tions are not generally applicable to all of
life. However, if predictions from simula-
tions are supported by studies of known
phylogenies, then we know that the predic-
tions from the idealized model conditions
apply to at least part of the real world.
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Moreover, differences in the results be-
tween simulations and experimental phy-
logenies may suggest ways that the simula-
tions can be made more realistic, just as
simulations can suggest conditions of inter-
est for testing with known phylogenies.

Experimental or other known phylog-
enies clearly have major limitations. Histor-
ical records of cultivated organisms are se-
verely limited, and such organisms
typically have undergone many reticula-
tions and relatively little genetic diver-
gence. This situation provides a testing
ground for methods designed to reconstruct
networks (i.e., graphs with cycles) of closely
related organisms (e.g., Templeton et al.,
1987, 1992; Hein, 1990, 1993; Bandelt and
Dress, 1992; Crandall, 1994; Crandall et al.,
1994), but it is very limiting for studies of
phylogenetic trees. Experimentally generat-
ed phylogenies, however, are limited pri-
marily by mutation rates. For an experimen-
tal phylogeny to be useful, the lineages must
undergo a significant amount of divergence
in a short period of time (preferably mea-
sured in months rather than millennia).
Most systematists are accustomed to the
very slow mutation rates of typical eukary-
otes, which for gene sequences are often on
the order of 10-° mutations/site/year. How-
ever, all of life is not evolving so slowly, and
the genes of some RNA viruses are evolving
up to tens of millions of times faster
(Domingo and Holland, 1994). Most DNA
viruses evolve at a somewhat slower pace,
but their mutation rate can be controlled to
some degree by manipulating their muta-
genic environment (e.g., Studier, 1980) or
through selection for a novel environment.
These manipulations allow the controlled
study of the effects of differing mutation bi-
ases and selection pressures, but under the
constraints imposed by biological function.
In a simulation, investigators may impose a
particular mutation model, but then they
have no way of knowing which substitu-
tions would be tolerated by a real organism
or how substitutions in different parts of a
gene might interact. Experimental phylog-
enies overcome this limitation.

Many of the interesting problems in phy-
logenetic reconstruction concern organisms
that differ by a large percentage of their
genome. To date, most experimental phy-
logenies have involved comparisons of or-
ganisms that are relatively closely related.
However, many viral genomes do not seem
to be greatly constrained in the amount of
divergence that is tolerated, and in the fu-
ture we can expect to see experimentally
generated viral lineages that differ for given
genes by as much as ribosomal RNA genes
differ across all of life.

Unfortunately, it will be difficult to con-
struct experimental phylogenies of cellular
organisms that incorporate much genetic di-
vergence, and it will be particularly difficult
to extend the approach to a eukaryotic sys-
tem. The generation times of many viruses
are measured in minutes, rather than hours,
days, or years, and with their small
genomes they seem to require less time to
accommodate new substitutions than do
cellular organisms. Bacteria hold consider-
able promise for experimental phylogenies,
but assessing the genetic variation across
their comparatively large genomes will be
much harder than with viruses. Among the
eukaryotes, small organisms with rapid
generation times (e.g., Saccharomyces) have
potential for experimental phylogenies, but
it is unlikely that highly divergent lineages
can be created without considerable time
and effort.

An additional role for experimental phy-
logenies is in providing information about
molecular evolutionary processes and how
these processes can affect phylogenetic
analyses. For instance, molecular systema-
tists sometimes claim that molecular data
are immune to selective convergence (e.g.,
Sibley and Ahlquist, 1987), despite some ev-
idence to the contrary (e.g., Stewart and Wil-
son, 1987). Experimental phylogenies pro-
vide an opportunity to test this assertion
directly by manipulating viral environ-
ments in parallel and then comparing phe-
notypic convergence (e.g., growth charac-
teristics) with molecular convergence. Such
studies have considerable potential for
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identifying the limits and possibilities of
phylogenetic analyses.

Statistical Approaches

As DNA sequences accumulate, there will be an in-
creasing demand for statistical methods to estimate
evolutionary trees from them, and to test hypotheses
about the evolutionary process. (Felsenstein,
1981:368)

It is remarkable that, in a century which has seen
such a large growth in the application of statistics to
the natural sciences, the fundamental issues of sta-
tistical inference have not been resolved. There are
not many more statisticians than opinions as to how
to assess rival hypotheses in the light of data. (Ed-
wards, 1969:1233)

Statistical approaches typically are used
to address phylogenetic accuracy in a par-
ticular case rather than to identify general
conditions where methods perform well or
poorly. There has been rapid development
of statistical tests for phylogenetic analyses
over the past decade (see reviews by Felsen-
stein, 1988; Li and Guoy, 1991; Hillis et al.,
1993a; Li and Zharkikh, 1995). This develop-
ment has not been without controversy, and
debates about statistical approaches in sys-
tematics have in many ways paralleled
more general debates within the field of sta-
tistics. One topic of debate is whether phy-
logenetic results should be evaluated in
probabilistic or relativistic terms. In the
probabilist framework (which tends to
dominate the field), statistical tests seek to
provide a probability of a particular hypoth-
esis being true given the observed data (ac-
curacy), or at least the probability that a
given result would be supported by a partic-
ular method upon repeated trials (repeata-
bility). In the relativist framework (dis-
cussed in various forms by Fisher [1956],
Birnbaum [1962], Hacking [1965], and Ed-
wards [1969, 1992]), tests examine the rela-
tive support (e.g., the likelihood ratio) of a
given data set for one hypothesis versus an-
other, without any statement about the ab-
solute probability of either. Both approaches
have their advocates, among statisticians in
general as well as among phylogeneticists.
Some approaches, such as likelihood, have

been used in both frameworks (Edwards
and Cavalli-Sforza, 1964; Edwards, 1969,
1992; Felsenstein, 1973a, 1973b, 1981).

Despite (or perhaps because of) the con-
siderable recent development of statistical
methods in phylogenetics, statistical tests
and terminology are widely misapplied in
systematics. It is very common to read that a
result is statistically significant without a
clear indication of what the author means
by this statement. Some statistical methods
are designed to test whether a given data set
is more structured than would be expected
from random data, whereas others test the
strength of a particular result; clearly, “sta-
tistically significant” will mean very differ-
ent things in these two cases. The results of
bootstrap (and other) analyses are often
called confidence limits, even though no
range of results is presented, as would be
expected for the limits of a confidence inter-
val, and no one has suggested how phylog-
enies could be described in terms of a con-
tinuous variable. The precision of a test
statistic is sometimes confused with its ac-
curacy, and authors rarely indicate whether
they are interpreting a given statistic as a
measure of phylogenetic accuracy or re-
peatability or simply as a comparative but
otherwise undefined heuristic (Hillis and
Bull, 1993). The confusion over precision
versus accuracy has led some workers to
recommend very large numbers of boot-
strap replications (e.g.,, Hedges, 1992),
which does nothing to reduce the bias of the
estimates (it merely makes them highly pre-
cise biased estimates). The computation
time would be used much more effectively
by conducting either iterated bootstraps
(Hall and Martin, 1988; Rodrigo, 1993) or
preferably the complete-and-partial boot-
strap technique (Li and Zharkikh, 1995;
Zharkikh and Li, in press).

During the past decade there has been
considerable development of resampling
methods (e.g., Felsenstein, 1985a, 1988; Lan-
yon, 1985; Penny and Hendy, 1985a, 1986;
Zharkikh and Li, 1992a, 1992b, in press;
Hillis and Bull, 1993; Rodrigo, 1993; Steel et
al., 1993; Li and Zharkikh, 1995), random-
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ization methods (e.g., Archie, 1989; Faith,
1991; Faith and Cranston, 1991; Hillis, 1991;
Huelsenbeck, 1991; Hillis and Huelsenbeck,
1992; Kallersjo et al., 1992), analytical meth-
ods (e.g., Felsenstein, 1981, 1983a, 1985b,
1987; Templeton, 1983a, 1983b; Lake, 1987;
Prager and Wilson, 1988; Kishino and
Hasegawa, 1989; Li, 1989; Williams and
Goodman, 1989; Bull et al., 1993a), and rela-
tive support approaches (e.g., Bremer, 1988;
Donoghue et al., 1992; Davis, 1993). Gold-
man (1993) and Yang et al. (1994) recently
presented another approach that involves
testing the model of the phylogenetic
method against the observed data to ask if
the model is adequate to explain the obser-
vations. Other workers (e.g., Sanderson,
1989) have suggested the construction of
“confidence sets” of trees, which would be
analogous to confidence limits of continu-
ous variables. This concept may prove espe-
cially useful in comparing the results from
multiple data sets and forms a logical link
between statistical approaches and congru-
ence studies.

Congruence Studies

Extensive congruence among branching patterns de-
rived from independent data sets and by different
methods of analysis is unlikely to occur for any rea-
son other than phylogeny. (Sheldon and Bledsoe,
1993:256-257)

There may indeed be substantial congruence be-
tween the two data sets, but that “congruence” is not
quite what we had hoped it would be. (Swofford,
1991:326)

Congruence studies seek out common
phylogenetic patterns in multiple, indepen-
dent data sets. If multiple trees inferred
from independent data sets all show the
same pattern of relationships, this is usually
taken as strong evidence for the veracity of
the shared components and the accuracy of
the phylogenetic method or methods (Mick-
evich and Johnson, 1976; Prager and Wilson,
1976, Mickevich, 1978; McKitrick, 1985;
Hillis, 1987; Miyamoto and Cracraft, 1991).
Even if the trees are not identical, if their
similarities are greater than is expected
from chance alone, the level of congruence
may be taken as a measure of phylogenetic

accuracy (Mickevich and Farris, 1981;
Penny et al., 1982, 1991; Penny and Hendy,
1985b, 1986; Guyer and Slowinski, 1991;
Page, 1991; Swofford, 1991; Miyamoto et al.,
1994). Although other sources of spurious
congruence have been explored (e.g., long
branches; Allard and Miyamoto, 1992), phy-
logeny is the only obvious explanation in
the vast majority of cases.

Quantitative congruence studies are a
type of meta-analysis, a term coined to de-
scribe “the statistical analysis of a large col-
lection of analysis results from individual
studies for the purpose of integrating the
findings” (Glass, 1976). Although the basic
concept of meta-analysis dates back to the
early part of this century (Pearson, 1904; see
Olkin, 1990), meta-analyses have become in-
creasingly commonplace during the past
decade (Hedges and Olkin, 1985; Dickersin
and Berlin, 1992). Many meta-analyses have
two basic parts: an analysis of the combined
data from across studies (e.g., a mean esti-
mate of some parameter) and a comparison
of the combined findings with those of the
individual studies (e.g., does the mean esti-
mate fall within the confidence limits of the
individual estimates?). It is not unusual to
find that a grand mean from many indepen-
dent studies intersects the confidence limits
of the results for each of the individual in-
vestigations, lending support to the com-
bined result as a general explanation (for ex-
amples, see Mann, 1990; Dickersin and
Berlin, 1992).

Recent discussions of combined versus
separate analyses of multiple, independent
phylogenetic data sets have covered much
of the same ground that has centered
around the debate over meta-analysis in
general (Hillis, 1987; Kluge, 1989; Swofford,
1991; Bull et al., 1993b; de Queiroz, 1993;
Chippindale and Wiens, 1994; Huelsenbeck
et al., 1994). The combination of multiple
data sets into a single analysis carries with it
assumptions that the same underlying tree
is being reconstructed in each of the studies
and that the methods of analysis are appro-
priate for each data set. Significant differ-
ences in the results are an indication that
one or both of these assumptions have been
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violated for at least one of the data sets (Bull
et al., 1993b; de Queiroz, 1993). The current
problem is to determine whether two phylo-
genetic data sets are significantly heteroge-
neous or if the differences can be attributed
to stochastic variation; several tests are
under development (see Swofford, 1991;
Rodrigo et al., 1993).

Consensus techniques (Adams, 1972; Nel-
son, 1979; Hillis, 1987; Bremer, 1990; Swof-
ford, 1991) are sometimes viewed as meth-
ods for combining data from separate
analyses to generate a mean phylogenetic
estimate (Kluge, 1989). However, combina-
tion of phylogenetic results across studies
through the use of consensus techniques
tends to discard information about the
strength of individual results, resulting in
the loss of information on one hand and
overemphasis of weakly supported results
on the other (Miyamoto, 1985; Barrett et al.,
1991). Thus, it is important not to interpret
consensus trees as estimates of phylogenies
but rather simply as statements about areas
of agreement among trees (Swofford, 1991).

The biggest obstacle to the successful im-
plementation of something that resembles a
meta-analysis in phylogenetics is develop-
ment of reasonable methods for generating
confidence sets of phylogenetic trees (see
Sanderson, 1989). Although a combined
analysis of several data sets (assuming that
they are appropriate for combining) may
give the single best estimate of phylogeny
(Hillis, 1987; Kluge, 1989), the conclusion
would be greatly strengthened if it were
compatible with that of each of the individ-
ual data sets as well (even if it were not
equivalent to the best point estimate from
each analysis; Swofford, 1991). If some of
the individual studies are incompatible,
then alternative explanations (e.g., different
gene trees, inappropriate methods of analy-
sis) can be sought (see Bull et al., 1993b; de
Queiroz, 1993). To implement this approach,
a systematist would not just present a single
tree from an analysis but instead would give
the optimal estimate as well as describe a set
of trees considered to be consistent with the
data at a given level of confidence (i.e., a
confidence set of trees). In comparing multi-

ple data sets, an investigator synthesizing
the results could look for the common inter-
section of the independent studies (e.g.,
Lanyon, 1993; Miyamoto et al., 1994) or ask
if the result from the combined data sets is
within the confidence sets of the individual
studies.

To date, most congruence studies of phy-
logenetic analyses have been much less for-
giving of the individual investigations than
in the approach suggested above. Such
studies have instead looked for exact match-
es in the phylogenetic results across studies.
Nonetheless, the fact that congruence stud-
ies typically have found a high degree of
correspondence among independent phylo-
genetic estimates is strong evidence that the
individual studies are doing a remarkably
good job of recovering the underlying his-
torical information. The other possibility is
that the separate studies are in agreement
because of some common, spurious, non-
phylogenetic signal, but to date no one has
offered a convincing general alternative to

phylogeny.

WHAT ARE THE PROSPECTS FOR AN ACCURATE
TREE OF LIFE?

On that happy day when molecular systematists
achieve the goal of adequate sampling in terms of
both taxa and sequence length ..., and when the
computer and the program capable of analysing the
alignment of life exist, there are two possible ex-
tremes: “one tree,” or “10°° equally parsimonious
trees.” (Patterson et al., 1993:180)

“I ¢hecked it quite thoroughly,” said the computer,
“and that quite definitely is the answer. I think the
problem, to be quite honest with you, is that you've
never actually known what the question is.”
(Adams, 1979:181)

Most studies of phylogenetic accuracy in-
dicate that existing methods should be high-
ly successful for many classes of phyloge-
netic problems, given data sets within the
range that reasonably can be expected to be
obtained. However, these studies also indi-
cate that certain classes of phylogenetic
problems may simply be too difficult to ex-
pect a well-supported resolution, given the
limits on organismal genome sizes (and
hence the number of independent charac-
ters) (Hillis et al., 1994b). Assuming there
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are about 30 million living species on Earth,
then there are approximately 1030000000 pog-
sible bifurcating trees that could depict the
relationships among these species, give or
take a few million orders of magnitude
(Hillis et al., 1994a). Therefore, even the
worse of the two “extremes” suggested by
Patterson et al. (quoted above) would repre-
sent outstanding resolution. Simulations,
known phylogenies, statistical analyses,
and congruence studies all indicate that
methods of phylogenetic analysis can be
(and often are) highly accurate for problems
as diverse as life itself, given sufficient sam-
pling, sufficient attention to rigorous analy-
sis, and sufficient computational power.
Just don’t expect the final answer anytime
soon.
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