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Signal, Noise, and Reliability in Molecular
Phylogenetic Analyses

D. M. Hillis and J. P. Huelsenbeck

DNA sequences and other molecular data compared among organisms may contain
phylogenetic signal, or they may be randomized with respect to phylogenetic history.
Some method is needed to distinguish phylogenetic signal from random noise to
avoid analysis of data that have been randomized with respect to the historical
relationships of the taxa being compared. We analyzed 8,000 random data matrices
consisting of 10-500 binary or four-state characters and 5-25 taxa to study several
options for detecting signal in systematic data bases. Analysis of random data often
yields a single most-parsimonious tree, especially if the number of characters ex-
amined is large and the number of taxa examined is smalt (both often true in motecular
studies). The most-parsimonious tree inferred from random data may also be con-
siderably shorter than the second-best alternative. The distribution of tree lengths
of all tree topologies (or a random sample thereof) provides a sensitive measure of
phylogenetic signal: data matrices with phylogenetic signal produce tree-length dis-
tributions that are strongly skewed to the left, whereas those composed of random
noise are closer to symmetrical. In simulations of phylogeny with varying rates of
mutation (up to levels that produce random variation among taxa), the skewness of
tree-length distributions is closely related to the success of parsimony in finding the
true phylogeny. Tables of critical values of a skewness test statistic, g,, are provided
for binary and four-state characters for 10-500 characters and 5-25 taxa. These
tables can be used in a rapid and efficient test for significant structure in data matrices

for phylogenetic analysis.

An advantage of molecular phylogenetic
studies is that comparable (orthologous)
genes can be examined across virtually all
living taxa to estimate evolutionary his-
tory. Unfortunately, the ease with which
such comparisons can be made some-
times leads to analysis of molecular data
sets that consist of little phylogenetic sig-
nal and considerable random noise (Fitch
1979, 1984; Hillis 1921). Random noise is
generated if rates of change between nodes
of a phylogenetic tree are high enough to
effectively randomize the character states
with respect to phylogenetic history (i.e.,
a probability of change of =75% between
nodes for DNA sequences). It is often tac-
itly assumed that if DNA or protein se-
quences can be aligned, then the sequenc-
es are appropriate for phylogenetic
analysis. However, some highly conserved
positions in a given sequence may be suf-
ficient to establish an unambiguous align-
ment, and yet the variable positions in the
same sequence may be saturated by
change. If all the variation among taxa is
essentially random with respect to phy-

logenetic history (because of rapid evo-
lution at the variable sites), then there is
no basis to expect the most-parsimonious
tree (or the best tree by any other opti-
mization criterion; see Swofford and Olsen
1990) to be a good estimate of phylogeny.
The question, then, is how can phyloge-
netic signal be distinguished from random
noise in molecular (or other) data sets?

There are two commonly used, but nev-
er precisely described or defended, meth-
ods to evaluate data quality in phyloge-
netic studies using parsimony. The first is
to evaluate the number of most-parsimo-
nious trees. For instance, finding a single
(or only a few) most-parsimonious tree(s)
out of a large universe of possible trees is
commonly taken to mean that the data
contain considerable discriminatory pow-
er. A second criterion is sometimes used
if a single most-parsimonious tree is found:
if the most-parsimonious tree is several
character-step changes away from the next
best solution(s), this is usually taken as
evidence of strong resolution.

In this article we show that even with
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random data (i.e., all noise and no signal),
one expects to pass these tests at rela-
tively high frequency if the number of taxa
is on the order common in most molecular
systematic studies. We also show that an
easily and rapidly calculated measure,
based on the shape of the distribution of
the lengths of all trees or a random sample
thereof, provides a powerful and effective
means of discriminating signal from noise
in systematic data sets. Moreover, simu-
lations of phylogeny demonstrate a close
relationship between this measure and the
effectiveness of parsimony to correctly es-
timate phylogeny.

Methods

We produced random data matrices to
represent sequences of nucleotides (four
character states) as well as binary char-
acters. In both cases, each character state
had an equal probability of appearing in a
given cell of the character matrix. The di-
mensions of the character matrices gen-
erated in this study were varied for the
number of taxa, the number of characters,
and the number of possible character
states. For both binary data and nucleotide
sequences, we produced 100 data matrices
foreachof 5,6, 7, 8, 9, 10, 15, and 25 taxa
and 10, 50, 100, 250, and 500 characters.
We analyzed the 8,000 data matrices us-
ing PAUP (Phylogenetic Analysis Using
Parsimony, version 3.0q; Swofford 1990).
For data matrices of nine or fewer taxa, the

exhaustive-search option (which analyzes

all possible tree topologies) was used. For
10 or more taxa, the random-trees option
was used to draw 10,000 trees at random
(with replacement) from all possible tree
topologies. Approximately 2 x 10% trees
were examined among all the data sets.
Several statistics were gathered from each
analysis. For analyses in which an ex-
haustive search was performed, the num-
ber of most-parsimonious tree(s), the
number of steps to the next-most parsi-
monious tree, and the g, value for the tree-
length distribution were recorded. The
most-parsimonious tree(s) were those
tree(s) that minimized the number of
character transformations (all characters
were unordered). The number of charac-
ter steps to the next-most parsimonious
tree had a minimum value of 0 (i.e., if there
was more than one most-parsimonious
tree). The g, statistic is a measure of the
skewness of a distribution (Sckal and Rohlf
1981) and is defined as the third central
moment divided by the cube of the stan-
dard deviation:
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Figure 1. Estimation of skewness of tree-length dis-
tributions from random samples of trees. The g, sta-

tistic was calculated for 20 random samples for each .

category and compared to the true g, calculated from
the entire distribution. The horizontal line represents
the true g, as calculated from an exhaustive search of
all possible unrooted trees for 10 and 11 taxa. The thin
vertical line represents one standard deviation about
the mean, and the black vertical bex represents the
standard errer of the mean. The cross-bar indicates
the mean.
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where n is the number of trees of length
T and s is the standard deviation of tree
lengths. For a perfectly symmetrical tree-
length distribution g, = 0, whereas a left-
skewed distribution has a g, < 0 and a
right-skewed distribution has a g, > 0.
For character matrices of 10 or more
taxa, it was not practical to perform ex-
haustive enumerations of all possible trees
(e.g., for 10 taxa, there are more than 2 x
10% unrooted tree topologies, and for 25
taxa, more than 2 x 102 topologies). For
this reason, we gathered only the g, value
of the tree-length distribution, as estimat-
ed from a random subset consisting of
10,000 random trees out of the total num-
ber of possible trees. To test the validity
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Figure 2. Estimation of 95% confidence limits from
random data matrices. For each of three sets of 100
random data matrices (100 characters, and five, eight,
and 25 taxa, respectively), the actual lower 5% of the
distribution is shaded. The upper limit of this lower
5% of the distribution can be used as a critical value
in a test to determine if a given data matrix is more
structured than would be expected from random data.

of estimating the skewness of a large dis-
tribution from a subsample of 10,000 ran-
dom trees, we performed exhaustive
searches on two random data sets of 100
characters and 10 and 11 taxa, respective-
ly. Each distribution was then sampled 20
times using PAUP's random trees option
for 10, 102, 103, 10%, and 105 random trees.
Figure 1 shows the real g, of the distri-
bution and the average, standard devia-
tion, and standard error of the mean for
the random-sampling experiments. As
more trees are randomly sampled from the
tree-length distribution, the estimate of g,
improves. Furthermore, the number of taxa
in the matrix being sampled does not seem
to have a major effect on the accuracy of
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Figure 4. The cumulative probability of finding a second solution within a given number of steps from the (e.g., Hillis and Dixon 1989; Miyamoto and
most-parsimonious tree with 10-500 random binary characters and five-nine taxa. Boyle 1989). The probability of finding a
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given distance between the shortest and
second-shortest trees is shown in Figure
4 for five-nine taxa and 10-500 random
characters. With just 10 random charac-
ters, it is uncommon to find more than one
step between the two best solutions, but
with data sets more typical of molecular
studies, it is not. With 500 characters, one
could not reject the null hypothesis of ran-
dom data (at P < .05} even if the second-
best tree of nine taxa was six steps longer
than the most-parsimonious tree (Figure
4). For five taxa and 500 random charac-
ters, one expects to see a difference of at
least three steps between the best two so-
lutions over 25% of the time (Figure 4).
Thus, the number of steps between near-
optimal solutions does not provide a very
powerful test for discriminating between
signal and random noise.

Skewness of Tree-Length Distributions

Several authors have suggested that the
shape of a tree-length distribution pro-
vides a good indication of the presence of
phylogenetic signal in a data set (Fitch
1984; Hillis 1985, 1991; Hillis and Dixon
1989; Huelsenbeck 1991; Le Quesne 1989).
Distributions of tree lengths with a strong
left skew, like that shown in Figure 5a, in-
dicate that relatively few solutions exist
near the optimal solution compared to
elsewhere in the distribution, This, in turn,
is an indication of correlation among char-
acters beyond that expected at random.
Characters may be correlated for reasons

other than a common history; for instance,

the assumption that the characters are in-
dependent may have been violated. None-
theless, if the data do not show structure
above that expected at random (e.g., the
distribution shown in Figure 5b), there is
little reason to expect that phylogenetic
analysis will reveal information about his-
torical relationships.

Hillis {(1991) calculated critical values of
g, for tree-length distributions of six, sev-
en, and eight taxa represented by 100-bp
random DNA sequences. He showed that
small amounts of phylogenetic signal
(=10%) were usually sufficient to skew
distributions based on otherwise random
data beyond the 95% confidence limits of
the random distributions. Huelsenbeck
(1991) simulated 300 eight-taxon phylog-
enies with varying rates of mutation, from
0.1% to 75% change between nodes, to test
the relationship between skewness of the
tree-length distribution and the perior-
mance of parsimony in finding the true
phylogeny (Figure 6). For DNA sequences,
a 75% mutation rate between nodes of a
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Flgure 5. Examples of tree-length distributions: (a) Tree-length distribution from a significantly structured data
set (from a laboratory-produced phylogeny of T7 bacteriophage, shown in inset; data from Hillis et al., 1992);
(b) Tree-length distribution from a data set that is no more structured than random data (data from Fitch 1984).

Table 1. Critical values of g, for binary character data; data sets that produce g, values less than those
shown (i.e., more negative) are significantly more structured than are the random data

No. of taxa
No. of 5 6 7 8
charac- .
ters P= 05 P=01 P=05 P=.01 P=.05 P=01 P=.05 P=.01
10 -1.12 -1.30 -0.75 —-1.02 —0.63 -0.84 -0.37 —0.67
50 —0.88 -1.08 —0.67 —-0.88 -0.39 —0.63 —(.37 -{.49
100 -0.77 -1.08 —0.59 —-0.68 —0.37 —0.46 -0.37 -0.43
250 -0.94 —1.20 -0.74 —-1.12 —0.37 -0.49 —-0.33 —0.44
500 —0.60 —-{.84 —0.53 —0.63 —-0.35 —0.46 —0.31 —-0.47

Table 2. Critical values of g, for four-state character data; data sels that produce g, values less than
those shown (l.e., more negative) are significantly more structured than are the random data

No. of taxa
No. of 5 6 7 8
charac-
ters P=05 P=.0 P=105 P=.01 P= 05 P=01 P=.03 =0
10 —0.95 —-1.28 —.70 —0.79 —0.59 -0.73 —.51 —{.64
50 —0.78 —0.88 —0.58 —0.70 -0.45 -0.64 —0.37 —0.42
100 —0.66 —0.93 —0.56 —(.69 —.40 -048 —0.31 —0.42
250 -0.81 —0.97 -0.43 —-(.59 —0.39 —0.45 —0.26 —-0.37
500 -0.73 —0.95 -0.43 —0.54 —0.27 —0.49 —0.29 -0.33




tree randomizes sequences with respect
to history, because each nucleotide has an
equal probability of occurring at a given
position in the data matrix. As can be seen
from Figure 6, the true phylogeny is likely
to be represented by the most-parsimo-
nious tree {or a nearly most-parsimonious
tree} if the tree-length distribution is sig-

nificantly more skewed than expected from
random data. However, if the tree-length
distribution is not significantly skewed
{because the characters are nearly ran-
domized with respect to history), there is
little basis for expecting the most-parsi-
monious tree to represent the true phy-
logeny. In fact, under these conditions, the
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Figure 6. The relationship between g, and the performance of parsimony in finding the true phylogeny, based
on 300 simulations of the two phylogenies figured, with rates of change between nodes of 0.1%-75% (see
Huelsenbeck 1991), When distributions are significantly more skewed than expected from random data (i.e.,
scores to the left of the 95% or 99% confidence limits for random matrices), the periormance of parsimony in
finding the true phylogeny is excellent. When tree-length distributions are no more skewed than those obtained
from random data (to the right of the confidence limits}, the true phylogeny is often nowhere near the most-

parsimonious solution.

Table 1. Extended

No. of taxa

9 10 15 25

P=.103 P=.01 P=.05 P=.01 P=.05 P=01 P=05 P=.01
—0.48 -0.56 —0.44 —0.59 —0.28 —0.37 -0.18 —0.24
-0.31 —0.44 ~0.35 —-0.39 —{.16 —0.20 —0.10 -0.11
-0.33 ~(.43 —0.26 —-0.31 -0.15 -0.19 —0.09 —0.10
—0.2% —0.44 —0.22 -0.35 -0.15 —0.20 —0.08 —0.09
—0.29 —0.47 -0.20 —-0.27 -0.10 —0.15 —0.08 —0.08
Table 2. Extended

No. of taxa

9 10 15 25

P=05 P=1 FP= .05 P=0 P= 03 P= 01 FP=.05 P=.01
—0.44 —0.51 —.34 -0.42 —0.23 —0.25 —0.16 —0.18
—0.25 ~0.30 —0.28 -0.36 ~0.16 -0.19 -0.12 —0.13
-0.25 —-0.33 -0.30 -.33 -0.15 -0.20 -0.10 —0.12
—0.22 —0.30 —0.20 —0.27 —0.14 -0.16 -0.08 —0.09
—0.23 —-0.30 -0.16 —0.27 —0.12 —@.15 —0.07 —-0.05

true phylogeny can even be very close to
the least-parsimonicus tree (Figure 6). Of
course, one usually does not know the
true phylogeny a priori, but g, can be cal-
culated with ease (it is now calculated au-
tomatically for the exhaustive search and
random-trees options in PAUP) and is rou-
tinely obtained in the course of phyloge-
netic analysis, so no additional analyses
(beyond those usually conducted) are
necessary to test for the presence of struc-
tured data.

Critical Values of g,
In order to test data sets for nonrandom
structure, one must take into account the
number of taxa and the number of char-
acters in the data matrix. We also explored
the effects of number of states of the char-
acters, from binary to four-state charac-
ters. This range encompasses that typical
for most molecular studies. For DNA se-
quences, the four-state characters repre-
sent sequences with all four bases at equal
frequencies, whereas the binary data rep-
resent the extremes of base-compositional
or transition/transversion biases. Figure 7
shows that the number of character states
(within the range examined) has little ef-
fect on the critical values of g,, so it rarely
is necessary to take base composition or
transition/transversion bias into account
when testing for structured data.

Table 1 (binary characters) and Table
2 (four-state characters) present the 95%
and 99% critical values of g, for 5-25 taxa
and 10-500 characters, each based on 100
replicates of random data. The critical val-
ues change very little beyond 15 taxa (Fig-
ure 8), so the values for 25 taxa can be
uséd in a slightly conservative test for
greater numbers of taxa with very little
loss of power to discern structure. Note
that the number of characters in the test
is the number of variable positions (i.e.,
excluding invariant sites), rather than the
total length of the sequence examined.

Tests with Real Sequences

Hillis (1991} examined several real data
sets based on molecular sequences and
noted that all of them, except one that con-
sisted of a-hemoglobin sequences of mam-
mals, showed more structure than ex-
pected at random. However, he also noted
that the structure is not necessarily dis-
tributed throughout the branches of the
estimated tree; a particular data set may
contain historical information about one
clade and none on another. To demon-
strate this effect, consider a data set of
mitochondrial cytochrome b sequences
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from 10 species of vertebrates (Figure 9).
The tree-length distribution for all 10 spe-
cies is significantly skewed (g, = —0.374,
number of variable positions = 126, P <
.01; Figure 9a). The best-resolved internal
branch of the most-parsimonious tree from
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this data set (by number of supporting
characters or bootstrapping) is the one
that unites the two rodents and the cow
together. One can now ask what the tree-
length distribution looks like if these spe-
cies are held together as a clade (Figure
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Figure 9. An example of testing a set of sequences
for significant structure: (a) The tree-length distribu-
tion estimated from 100,000 random trees of all the
taxa suggests signal is present (P < .01; number of
variable positions = 126); (b) The most strongly sup-
ported branch unites rat, mouse, and cow. If the dis-
tribution of all the remaining trees is examined, it is
no lenger different from a distribution based on ran-
dom data (in fact, it is slightly skewed to the right);
(¢) If the most-parsimonious trees are found for the
sequences in spite of the apparent lack of signai, the
resulting tree makes little sense compared to current
ideas of vertebrate phylogeny (the consensus of the
three most parsimonious trees is shown; the ray-finned
fish was used as the outgroup). Cytochrome bsequenc-
es in this example are from GenBank and Meyer and
Wilson {1990).

9b); in other words, if we accept this
grouping, is there still significant structure
in the data set? The tree-length distribu-
tion of the constrained analysis is no lon-
ger skewed to the left (g, = 0.118). There-
fore, virtually all the signal in this set of
DNA sequences appears to be accounted
for by this one clade, and there is little
justification for resolving the tree any fur-



ther. If we do so anyway (Figure 9¢), none
of the remaining branches is strongly sup-
ported, and the consensus of the three
mosi-parsimonious trees bears little re-
semblance to traditional ideas about ver-
tebrate phylogeny. However, the tree-
length distribution indicates there is little
basis for expecting any reasonable reso-
lution at this point because the data ap-
pear to be no more structured than ran-
dom sequences with respect to the
remaining branches. This analysis indi-
cates that cytochrome b genes are evolv-
ing much too rapidly to provide informa-
tion about phylogeny this far back into
time, in contrast to the conclusions reached
by Meyer and Wilson (1990).

Conclusions

An often unstated assumption in phylo-
genetic analyses is that the characters be-
ing analyzed are evolving at a rate that is
appropriate to accurately estimate phy-
logeny. However, this assumption is often
not tested. DNA sequences, in particular,
can be aligned with ease among distantly
related organisms if some sites are in-
variant, even if the variable positions are
randomized with respect to history (as in

the cytochrome & example above). Phy-
logenetic analysis of such sequences is un-
likely to reveal correct information about
evolutionary history; instead, such anal-
yses contribute to the inaccurate percep-
tion of considerable conflict between mo-
lecular and morphological studies (Hillis
1987). Tests are needed to distinguish se-
quences (or regions of sequences) thatare
significantly more structured than ran-
dom, to avoid the problem of “reading be-
yond the signal” in phylogenetic analyses.
Examining skewness of tree-length distri-
butions is one approach to this problem
that appears to be both fast and effective.
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