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Abstract.—We explored the use of multidimensional scaling (MDS) of tree-to-tree pairwise distances to visualize the re-
lationships among sets of phylogenetic trees. We found the technique to be useful for exploring “tree islands” (sets of
topologically related trees among larger sets of near-optimal trees), for comparing sets of trees obtained from bootstrapping
and Bayesian sampling, for comparing trees obtained from the analysis of several different genes, and for comparing mul-
tiple Bayesian analyses. The technique was also useful as a teaching aid for illustrating the progress of a Bayesian analysis
and as an exploratory tool for examining large sets of phylogenetic trees. We also identified some limitations to the method,
including distortions of the multidimensional tree space into two dimensions through the MDS technique, and the defini-
tion of the MDS-defined space based on a limited sample of trees. Nonetheless, the technique is a useful approach for the
analysis of large sets of phylogenetic trees. [Bayesian analysis; multidimensional scaling; phylogenetic analysis; tree space;
visualization.]

Systematists are often faced with the need to analyze
a large collection of phylogenetic trees. These trees may
represent a collection of equally parsimonious solutions
to a phylogenetic problem, or a set of trees of similar
likelihood, or a sampled set of trees from a Markov
chain Monte Carlo (MCMC) Bayesian analysis. In any
of these cases, a common approach for expressing the
results is to make a consensus tree from the large col-
lection of potential solutions (see Swofford, 1991, for a
discussion of consensus methods). Consensus trees are
produced to distill a large amount of information into
a single summary tree, because it is often impractical
to examine or display all of the individual solutions. In
the case of MCMC Bayesian analysis, a consensus tree is
usually used to summarize information about the pos-
terior probabilities of the individual inferred branches.
Although these uses of consensus trees may be ap-
propriate for many purposes, a great deal of informa-
tion about the individual solutions is usually lost. It
is possible that two or more distinct but different bi-
ological explanations are represented among different
“islands” of solutions (e.g., see Maddison, 1991), but
that a consensus of these solutions produces little or no
resolution. Although many other solutions among the
universe of possible trees may be excluded by the avail-
able data, this information can be lost in a consensus
tree.

This article describes an alternative method of explor-
ing a set of phylogenetic trees. Geographical topology
is often used as an analogy to describe the solution
space of phylogenetic trees, and to describe or discuss
the behavior of various tree-search strategies (e.g., see
Swofford et al., 1996). However, systematists have not
usually moved beyond analogy to attempt to visual-
ize this solution space. Here we suggest one approach
to this problem and describe a program that allows
the rapid and efficient visualization of commonalities
and relationships among a large set of phylogenetic
trees.

MULTIDIMENSIONAL SCALING OF TREE SPACE

Biologists usually think of tree space in terms of
the topological distance among different trees, which
may be defined in terms of common measures such as
weighted or unweighted Robinson-Foulds (RF) distance
(Robinson and Foulds, 1979, 1981; see also Buneman,
1971). The unweighted RF distance merely sums the
number of internal edges (branches) that must be col-
lapsed or expanded to move from one tree topology
to another, without any effect on the measure from the
length of those edges. The weighted version of RF dis-
tance weights the edges by their length, so that two trees
are considered to move further apart in tree space as
the differences in their branch lengths increase. Thus,
weighted RF distances can be useful for distinguish-
ing among trees of identical topology, but with dif-
ferent branch lengths. Given a collection of trees, it is
straightforward to calculate pairwise RF-distance matri-
ces (weighted and unweighted) among all the pairs of
trees, and this can be done efficiently (linear time with
respect to number of taxa) using an algorithm devel-
oped by Day (1985). However, an exact representation
of the relationships among all possible trees typically
would require a large multidimensional space. A com-
mon method of visualizing and analyzing a large matrix
of distances among points is multidimensional scaling
(MDS; see Lingoes et al., 1979; Young and Hamer, 1987;
Borg and Groenen, 1997). In MDS, a new space of only
a few (typically two) dimensions is created in a manner
to minimize the distortions of the observed distance ma-
trix. An optimal solution to MDS involves minimizing a
stress function, such as the Kruskal-1 function (Borg and
Groenen, 1987), defined as

SD(x1, . . . , xn) =
(

n∑
i �= j=1

(Di j − |xi − xj |)2
)1/2

where Di j is the matrix of distances between trees,
(x1, . . . , xn) are the point locations in redefined space,
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and SD is the stress function. Thus, in an MDS repre-
sentation of trees, the distances between different solu-
tions approximate the observed distances between trees,
with some distortion (which is quantified by the stress
function).

In this article, we explore the use of multidimensional
scaling to compare and examine large sets of phyloge-
netic trees and present several example applications. We
also briefly describe software (distributed without cost
to the user) that can be used to visualize sets of phyloge-
netic trees in MDS space.

METHODS

Tree Set Visualization Module for Mesquite

To visualize and examine large sets of phylogenetic
trees, we used the Tree Set Visualization module for
Mesquite (http://comet.lehman.cuny.edu/treeviz/).
Maddison and Maddison (2004) developed the software
package Mesquite as a modular system for evolution-
ary analysis. This project complements and extends
their popular software tool, MacClade (Maddison and
Maddison, 1992), but has the extra flexibility to allow

FIGURE 1. Screen shot of output from the Tree Set Visualization module of Mesquite. Windows labeled “Selection 1” and “Selection 2” show
the strict consensus trees for the tree islands that have been selected in the main window.

new methods and visualization techniques to be easily
added to the underlyingphylogenetic tools. Thepackage
is written in Java, and, as such, runs under Macintosh,
Windows, and Unix operating systems. The Tree Set
Visualization module (Amenta and Klingner, 2002)
takes sets of phylogenetic trees and uses MDS to display
the trees as points in two-dimensional space, such that
the distortion between the true distance between pairs
of trees and the screen distance is minimized (based on
the stress function described above). Sets of trees can be
colored according to their score on an optimality crite-
rion (e.g., a parsimony or maximum likelihood score) or
color can represent subsets of trees (e.g., different colors
for trees from different Bayesian analyses). Points on the
screen can be selected to show the corresponding tree,
or consensus of a set of trees (see Fig. 1).

We used this software package to study several poten-
tial applications of the visualization of phylogenetic tree
space. These examples are meant to stimulate additional
workon thevisualizationof tree space, andarenotmeant
to be an exhaustive description of the potential uses of
the software.
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Bayesian Samples versus Bootstrap Samples
One of our analyses consisted of a comparison of a

sample of trees from a Bayesian MCMC analysis (Larget
andSimon, 1999)with a sampleof trees obtained through
nonparametric bootstrapping (Felsenstein, 1985). These
two sampling methods have been widely used to obtain
credible sets of trees and for estimating confidence lim-
its on phylogenies. Comparisons of these methods have
largely concentrated on comparing the posterior proba-
bilities for particular internal branches calculated from
the Bayesian analyses with the bootstrap proportions for
these samebranches (e.g.,Wilcoxet al., 2002; Suzuki et al.,
2002; Alfaro et al., 2003; Cummings et al., 2003; Erixon

FIGURE 2. Phylogram of mammals by Murphy et al. (2001). This tree was used in the simulations to obtain sets of trees from Bayesian and
bootstrap analyses for comparison to the true tree in tree-space. The details of the branch lengths for this tree are presented in Appendix 1.

et al., 2003). We explored an alternative approach that
involved the comparison of the sets of sampled trees to
the true (model) tree in tree-space.

The data used to generate the trees for compar-
ing the results of Bayesian and bootstrapping analy-
ses were obtained by simulating sequences of genes on
the topology and branch lengths of a 44-taxon mam-
malian tree (Murphy et al., 2000; Fig. 2). This tree
was the result of an analysis of 22 different genes and
was chosen as a model for our simulations because of
the large number of genes and the well-supported re-
sulting phylogenetic estimate (this tree has been dis-
cussed in several recent theoretical studies of phylogeny;
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FIGURE 3. Multidimensional scaling of the pairwise Euclidian dis-
tances between the model parameters for each gene in the Murphy
et al. (2001) data set. The five genes shown in boxes were selected to
represent the widest range of parameter conditions.

e.g., Suzuki et al., 2002; Alfaro et al., 2003; Douady
et al., 2003). For each gene, we conducted a likelihood-
ratio test to select an appropriate model of evolution
(Posada and Crandall, 2001) and used PAUP∗ 4.0b10
(Swofford, 2000) to estimate the optimal model parame-
ters. Then, we computed pairwise Euclidian distances
between each set of model parameters by taking the
square root of the sum of the squared deviations of each
parameter in the model. These distances were then an-
alyzed using multidimensional scaling (Fig. 3). From
this MDS analysis, we chose the model parameters of
the gene closest to the centroid (IRBP) as simulation
conditions for the single gene analysis (other genes
were selected for multigene analyses, as described be-
low). The preferred model for this gene was a general
time-reversible model with discrete gamma-distributed
rate heterogeneity and a proportion of invariant sites
(Appendix 2). Seq-Gen version 1.2.5 (Rambaut and
Grassly, 1997) was used to simulate 1000 nucleotides per
taxon under this model of evolution on the tree shown
in Figure 2.

To obtain the bootstrap sample, we analyzed a simu-
lateddata set for 1000nonparametricbootstrap replicates
in PAUP∗ 4.0b10 (Swofford, 2000)with nearest-neighbor-
interchange swapping on a stepwise-addition starting
tree. Prior to bootstrapping, optimal model parameters
were estimated and set for the bootstrapping analy-
sis. Additionally, we analyzed the same data set using
MrBayes 3.04b (Huelsenbeck and Ronquist, 2003). The
four Markov chains (see Geyer, 1991; Gilks and Roberts,
1996;Huelsenbeck et al., 2001)were run for 5milliongen-
erations under the simulation model (GTR+I+�), sam-
pling every 1000 generations. The 1000 trees from the
bootstrapping analysis were combined with the sample
of every 1000th tree from the last 1,000,000 generations
of the Bayesian analysis, together with the single true
(model) tree, into a single file for visualizationusingmul-
tidimensional scaling.

Gene Length and Concatenated Datasets

A second problem that we addressed concerned the
performance of phylogenetic inference as a function of
increasing sequence length and increasing numbers of
genes that evolve under different models of evolution.
For this analysis, we selected five genes from the MDS
analysis of genes from the Murphy et al. (2001) study
(Fig. 3). In this case, we included the gene closest to the
centroid (IRBP), as well as four genes that were the most
divergent from IRBP in the MDS analysis (Fig. 3). For
each gene, we simulated independent datasets from 200
to 1000 nucleotides long on the tree shown in Figure 2.

We analyzed each data set under its individual sim-
ulation model in MrBayes 3.04b (Huelsenbeck and
Ronquist, 2003) for one million generations. Addition-
ally, we concatenated and analyzed all of the genes in a
combined analysis. We conducted a hierarchical likeli-
hood ratio test to determine a suitable model of analy-
sis for each concatenated data set (Posada and Crandall,
2001); these tests on the concatenated data sets always
selected the GTR+I+� model. The multigene data sets
were then analyzed in MrBayes under a single model
(GTR+I+�) for one million generations. The concate-
nated data sets were analyzed in MrBayes under a
“composite model” consisting of the five models used
to simulate each gene (Nylander et al., 2004). The true
tree and one thousand trees from the analyses of each
single gene data set and the single model analysis of the
concatenateddata set, sampled every 100 generations for
the last 100,000 generations, were combined for the MDS
analysis.

Comparing Two Bayesian Analyses

A third problem that we considered was the use of
multidimensional scaling to compare the samples of
trees from multiple independent Bayesian analyses, as
a means of determining the degree of convergence in the
analyses. For this example, we used the same data set
described above (for comparing Bayesian and bootstrap
samples) to compare the trees generated by twoBayesian
analyses. Two runs were conducted using MrBayes; each
run consisted of four Markov chains run for 10 million
generations sampled every 1000 generations. The model
used for analysis was GTR+I+� (the simulation model).

Three thousand trees from the last 3 million gener-
ations from each analysis were combined into a single
file for visualization using MDS. These trees were plot-
ted using both weighted and unweighted RF distances
(Robinson and Foulds, 1979, 1981).

RESULTS AND DISCUSSION

Comparison of Bayesian and Bootstrap Samples
of Phylogenetic Trees

Interpretationof the results ofbootstrap resampling re-
sults fromphylogenetic studies has been the focusof con-
siderable discussion. Felsenstein (1985) suggested that
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FIGURE 4.

FIGURE 5. Visualization (using MDS) of the tree space occupied by six sets of trees sampled in Bayesian analyses of five different data sets,
plus the concatenated data set (dark blue). Each of the five genes was simulated on the same tree under different model parameters (see text
and Appendices 1–3). The true tree is indicated by the pink “X.” All trees were compared using Robinson-Foulds distances. (a) Results from
a simulation of 200 bp for each gene; none of the individual data sets found the correct tree, but the trees from the concatenated are centered
around the true tree. (b) Results from a simulation of 1000 bp for each gene; many of the trees from the concatenated analysis were identical to
the true tree in this example.

bootstrapping could be used to assess confidence in
particular branches of a phylogenetic tree. Felsenstein’s
method relies on using the proportion of the bootstrap
pseudosamples that support each branch in the tree (the
bootstrap proportions). However, several authors have
noted that these proportions present a highly biased (and
usually conservative) estimates of phylogenetic accuracy
(e.g., Zharkikh and Li, 1992a, 1992b, 1995; Hillis and Bull,
1993; Rodrigo, 1993; Li and Zharkikh, 1994; Efron et al.,
1996). More recently, Bayesian posterior probabilities
(derived from a sample of trees drawn from an MCMC
search of tree space after the search has reached equi-
librium) have also been used to assess the support

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
FIGURE 4. Visualization of 1000 trees from a bootstrapping analysis

of 1000 replicates and1000 trees fromaBayesianMCMCanalysis (every
1000th tree from generation 4 million to generation 5 million). The
true tree is indicated in yellow and by the yellow arrow. The trees are
compared using Robinson-Foulds distances. Note the smaller region
encompassed by the Bayesian sample.
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or confidence of individual branches in a phylogenetic
tree. Many authors have suggested that these Bayesian
posterior probabilities are more reasonable estimates of
phylogenetic accuracy compared to bootstrap propor-
tions (given the assumptions of the models used in the
estimation procedure), although other authors disagree
(e.g., see Wilcox et al., 2002; Suzuki et al., 2002; Alfaro
et al., 2003; Cummings et al., 2003; and Huelsenbeck
and Rannala, 2004, for a diversity of opinions). How-
ever, both of these methods (nonparametric bootstrap-
ping and Bayesian MCMC analysis) can be used in a
different manner to assess phylogenetic results; namely,
they can be used to produce a “credible set” of trees
that are considered consistent with the observed data.
Bootstrap proportions and Bayesian posterior probabil-
ities are both summary statistics that are extracted from
these respective credible sets of trees, and both statis-
tics result in potential loss of information. An alternative
approach might be to visualize the tree space that is de-
fined by these credible sets and then use these credible
sets to envision actual “confidence limits” in this space
around the best estimate. The space within these confi-
dence limits could be used to test a particular hypothesis
that might depend upon many different branches in a
phylogenetic tree, rather than on the support of a single
branch.

An example of this approach is illustrated in Figure 4.
In this figure, the true (model) tree is represented by
the yellow dot, the trees that are estimated from boot-
strap pseudosamples are shown in red, and the trees
that are sampled from the MCMC analysis are shown
in blue. One might be tempted to draw confidence el-
lipses around these samples to include 95% of the re-
sults, which could indicate the “confidence limits” of
the result in tree space. However, there are problems
with this approach. First, MDS space is defined by a
limited sample of trees (rather than the universe of pos-
sible trees). So the “confidence limits” would be depen-
dent on the sample used to define the space. Second,
there is distortion of multidimensional space in two di-
mensions (see section on potential limitations, below).
Therefore, we do not think that this approach to defin-
ing confidence limits of trees is likely to be practical.
Nonetheless, we see the visualization shown in Figure 4
as a useful way to illustrate the relative distributions of
trees drawn from bootstrap resampling to trees sampled
from a MCMC Bayesian analysis. The tighter clustering
of the Bayesian sample compared to the bootstrap pseu-
dosample corresponds to the broader confidence limits
typically obtained from nonparametric bootstrap analy-
ses (e.g., Wilcox et al., 2002; Huelsenbeck and Rannala,
2004).

Comparing Results from Multiple Genes and Concatenated
Data Sets

Another potential application for the visualization of
tree space is in studies of multiple data sets and the com-
binationofdata sets.TheMDSanalysisof the results from

our simulation of five of the genes studied by Murphy
et al. (2001), as well as the analysis of the concatenation
of those five genes, is shown in Figure 5. When we com-
pared the RF distances of the trees in Figure 5a to the true
tree by computing the distance matrix in PAUP∗ 4.0b10
(Swofford, 2000), we found that the true tree was an RF
distance of 18 to 60 from the estimated trees for the sepa-
rate genes, although the single model analysis of the con-
catenated dataset provided much closer estimates of the
true tree (RF = {4, 6, 8, . . . , 22}). With longer sequences
(1000 nucleotides for each gene), three of the single gene
analyses included the true tree, whereas the space de-
fined by trees from the other two genes did not include
the true tree (Fig. 6). However, both the single model
and composite model analyses of the concatenated data
set produced similar results and found the true tree or
trees that were only a few rearrangements from the true
tree (maximum RF = 6; Fig. 6). In this example, all of
the genes were simulated on the same tree, and the sim-
ulations differed only in the underlying model of evo-
lution of the gene. The analysis suggests that a com-
bined approach to data analysis was highly successful in
this case, using either a homogeneous or heterogeneous
model for analysis. We do not wish to generalize this
result to suggest that all genes should be combined in
a joint analysis, as we suspect that the specific results
are likely to differ depending on the degrees of (and
reasons for) differences among the genes (or other data
partitions). Rather, we use this example to show how
the visualization approach might be used to investigate
the utility of combined versus separate analysis of
datasets.

Comparing Results from Multiple Bayesian Analyses

In conducting a Bayesian phylogenetic analysis, it is
important to assess whether or not a sample from a
Markov chain has converged on the joint posterior dis-
tribution of the various parameters (Huelsenbeck and
Ronquist, 2003). However, the techniques for assessing
convergence havenot beenwell developed, andmost ap-
proaches do not examine convergence on the joint poste-
rior distribution of the parameters, but instead examine
convergence on the posterior distributions of individual
parameters (the marginal posterior distributions). For in-
stance, a common approach is to examine the marginal
posterior probabilities of individual bipartitions of the
tree across several Bayesian MCMC runs, and then to
assume that the samples from the Markov chains have
converged if these posterior probabilities are consistent.
Many phylogenetic hypotheses, however, do not de-
pend on particular bipartitions in the tree, but rather
on larger features of tree topology or combinations of
branch lengths, and convergence on marginal posterior
distributions does not guarantee convergence on the
joint posterior distribution. Here we suggest a method
for detecting non-convergence in Bayesian analyses on
the joint posterior distribution of topologies and branch
lengths.
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FIGURE 6. Histogram of the distance (in RF distance) from the true tree for trees sampled from a Bayesian analysis of five genes, each 1000
nucleotides in length, as well as the homogeneous model analysis and the heterogeneous model analysis of the concatenated sequences.

Figure 7a shows the visualization of tree space sam-
pled from two different Bayesian analyses of the same
data set, with the trees compared using unweighted
Robinson-Foulds distance. In this case, the sampled
space is nearly indistinguishable in the two separate
runs (even though the same trees are rarely sampled in
the two analyses), indicating that the sampled space of
tree topologies (without consideration of branch lengths)
was very similar in the two replicates. Figure 7b shows
the results of a similar analysis, but using weighted
Robinson-Foulds distances to compare the trees, and in
this case the sampled space of the two runs is clearly
distinguishable. We interpret this result to mean that
there is a greater degree of branch-length similarity
within independent runs than between runs, suggest-
ing that the chains have either not reached stationar-
ity with respect to branch lengths, or more likely they
have not been sampled for a long enough time (after
stationarity was reached) to ensure convergence to the
joint posterior distribution. In contrast, Figure 7a sug-
gests that the space of tree topologies (independent of
branch lengths) has been consistently sampled in the
two analyses, although one would probably want to ex-
amine additional runs to ensure this result. Thus, this
approach to visualizing the results of Bayesian analy-

ses may prove to be a fruitful heuristic for assessing
appropriate chain lengths and sampling strategies in
MCMC Bayesian analyses of phylogeny. We have also
used this approach with several empirical data sets (re-
sults not shown) and have found it to be a useful ap-
proach for assessing convergence among independent
analyses.

Some Other Potential Uses of MDS for Visualizing
Tree-Space

Another potential use of multidimensional scaling as
a means of visualizing tree-space is for examining the
progress of a Bayesian MCMC analysis. This visualiza-
tion may be useful mostly as a tool for describing the
method (as in a class or workshop on phylogenetic meth-
ods). As an example, we selected a sample of every 10th
tree from the first 100,000 generations of an analysis of
frog phylogeny (Hillis and Wilcox, 2005), and analyzed
the trees under MDS (Fig. 8). These trees represent the
early samples from the Markov chain, as the chain be-
gins to sample trees across tree-space, moving to regions
of progressively higher optimality scores. This progress
can be animated using the Tree Set Visualization module.
We have found this example of tree-set visualization to
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FIGURE 7. Comparison of trees generated from two different
Bayesian MCMC analyses of the same data set. Both Bayesian anal-
yses were conducted under the same conditions (see text). Each color
represents the trees from a different analysis. (a) Analysis based on un-
weighted Robinson-Foulds distances; (b) analysis based on weighted
Robinson-Foulds distances.

be a useful means for describing the Bayesian MCMC
approach in classes and workshops on phylogenetics
(see http://lewis.eeb.uconn.edu/lewishome/software.
html for another useful MCMC instruction tool).

FIGURE 8. Progress in a Bayesian MCMC analysis. The progress in
the search can be visualized in the Tree Set Visualization program, as a
demonstration of how an MCMC analysis functions. In the visualiza-
tion, theprogress of the chain through tree-spacemoves fromregions of
low optimality scores (blue) to regions of high optimality scores (red).

Another common problem in phylogenetics is the dis-
covery of several distinct “tree islands” of equally opti-
mal or near-optimal phylogenetic solutions for a given
dataset (Maddison, 1991). In analyzing a particular data
set, one might discover that there are a large number of
solutions that fit the data equally well. A consensus of
these trees may show little or no resolution. However,
an unresolved consensus tree does not necessarily indi-
cate that all potential solutions fit the data equally well.
Separate summaries of each of the tree islands is likely to
show a much higher degree of resolution, and the sepa-
rate tree islands may represent alternative phylogenetic
solutions for the data set. Tree Set Visualization can be
used to identify and analyze these tree islands, as shown
in Figure 9.

Potential Limitations of MDS for Visualizing Tree-Space

Multidimensional scaling based on RF distances is
clearly not the only way (and is not necessarily even
the best way) to visualize and represent tree-space. We
have found this approach to the problem to be useful for
exploring large sets of phylogenetic trees, but we also
recognize that the approach has some limitations. For in-
stance, any reductionof high-dimensional space into two
dimensionsnecessarilywill result in somedistortions.As
an example of distortion, consider the MDS visualization
of trees shown in Figure 10. In this case, a reference tree
is shown in blue, and a series of trees that differ from
the reference tree by one bipartition each (RF = 2) are
shown in red. All of the trees are equally distant from the
reference tree in tree-space, and in multiple dimensions
would form a “multidimensional sphere” around the
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FIGURE 9. The use of multidimensional scaling to visualize “tree islands” of trees with high optimality scores. The three discrete clusters of
dots (shown in green, blue, and red) represent three tree islands. The Tree Set Visualization software can be used to find and examine separate
consensus trees for each tree island (all of which are much more highly resolved than is the consensus tree of all the trees combined). Each strict
consensus tree is colored corresponding to the cluster of trees it represents. The black tree is a strict consensus of all the trees in the three separate
tree islands.

FIGURE 10. Distortion of tree space in two dimensions. In this example, all of the trees indicated by red dots differ from the reference tree
(shown in blue) by exactly one bipartition (RF = 2). In multidimensional space, they form a sphere around the reference tree. In two dimensions,
this sphere is collapsed into a circle, and some of the trees appear to be closer to the reference tree than others, despite the fact that they are all
equally distant from the reference tree. Pairs of trees in close proximity to each other also differ from each other by RF = 2, and all other trees
represented by red dots are RF= 4 from one another.
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reference tree. In addition, pairs of trees in close prox-
imity in Figure 10 differ from each other by one bi-
partition, and all other trees represented by red dots
differ from one another by two bipartitions (RF = 4).
The stress function in the MDS analysis is minimized
in two dimensions with the representation shown in
Figure 10. It would be easy to misinterpret this dia-
gram, and one might think that the trees closer to the
center of the figure were closer in RF distance to the
reference tree than those that are represented on the out-
side of the circle. Therefore, it is important to under-
stand the potential for such distortions, and to check the
primary distance matrix before interpreting too much
about the spatial relationships of trees shown in the MDS
analyses.

A second caveat that must be considered is that the
tree space in these examples is entirely dependent on
the sample of trees examined. In other words, the space
is redefined and redistorted with the addition of any
new tree, and the space visualized does not exist in the
absence of the sample at hand. Therefore, care should be
taken to avoid over-interpretation of results. Ideally, one
might want to define the tree space by considering all
possible solutions, and then plot the results of a partic-
ular analysis within the universe of possible solutions.
This may be possible for smaller data sets, although the
large number of possible tree topologies for even a mod-
est number of taxa presents a serious challenge to this
approach.

A third limitation concerns the use of RF distances
to define the tree-space. This is appropriate when the
related trees are connected to one another by nearest-
neighbor interchanges (Penny and Hendy, 1985). How-
ever, two trees may differ only in the placement of a
single taxon, and yet exhibit the maximum possible RF
distance from one another. It would be useful to explore
other methods for defining the pairwise distances be-
tween trees and using these distances to define and ana-
lyze tree space.

A fourth limitation involves the use of multidimen-
sional scaling. In some cases, it is possible for the
MDS analysis to become trapped in local optima. This
can be avoided, however, by altering the initial states,
conducting multiple restarts, and changing the step
size used by the MDS algorithm (Borg and Groenen,
1997). It is also important to consider that visual-
ization by multidimensional scaling relies on human
pattern recognition skills to identify clusters of trees.
Stockhamet al. (2002) have developed amore formal and
quantifiable method for clustering sets of phylogenetic
trees.

CONCLUSIONS

Our intent in this article was to present an approach
formultidimensional scaling of tree-space and to suggest
some of its potential applications. We acknowledge that
we have not thoroughly developed any of the suggested
possibleusesof this approach in this article.However,we

hope that this article will stimulate additional research
on the applications that we have suggested, and that the
availability of a program for conducting these analyses
will aid in these investigations. At the minimum, it ap-
pears that the approach presents a useful means for vi-
sualizing the results of large sets of phylogenetic trees.
We expect that it will lead to new ways of thinking about
samplesof trees, beyond theusual consensus summaries.
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APPENDIX 1
TREE DESCRIPTION OF THE TREE FROM MURPHY ET AL.

(2000)
((Opossum: 0.072454, Diprotodontian: 0.061694):0, ((((Sloth:

0.056950, Anteater: 0.061637):0.009169, Armadillo: 0.056660):0.032179,
((((Hedgehog: 0.137379, Shrew: 0.124147):0.011789, Mole: 0.086828):
0.011954, (((Phyllostomid: 0.093178, Free tailed bat: 0.046665):0.011564,
(False vampire bat: 0.062583, (Flying Fox: 0.018553, Rousette Fruitbat:
0.018931):0.036729):0.004788):0.016400, ((((((Whale: 0.013788, Dolphin:
0.021978):0.019568, Hippo: 0.039894):0.004885, Ruminant: 0.073210):
0.008450, Pig: 0.067448):0.005893, Llama: 0.061851):0.027757, ((Horse:
0.043682, (Rhino: 0.028867, Tapir: 0.028638):0.005116):0.020583, ((Cat:
0.046372, Caniform: 0.055840):0.023068, Pangolin: 0.075956):0.003871):
0.001685):0.001155):0.002432):0.011058, (((Sciurid: 0.083962, ((Mouse:
0.042059, Rat: 0.045451):0.122018, (Hystricid: 0.074622, Caviomorph:
0.086677):0.062121):0.005432):0.011864, (Rabbit: 0.057873, Pika:
0.108683):0.043771):0.005743, ((Flying Lemur: 0.061380, Tree Shrew:
0.101818):0.003958, (Strepsirrhine: 0.076186, Human: 0.065099):
0.009553):0.001707):0.007711):0.009175):0.005977, ((((Tenrecid: 0.142758,
Golden Mole: 0.067180):0.009411, (Short Eared Elephant Shrew:
0.039055, Long Eared Elephant Shrew: 0.036033):0.088816):
0.002240, Aardvark: 0.068518):0.003248, ((Sirenian: 0.038154, Hyrax:
0.089482):0.002916, Elephant: 0.050883):0.014801):0.025967):0.284326)
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APPENDIX 2. Preferred model and estimated parameters for the genes studied by Murphy et al. (2001):

Base frequencies

Gene Preferred model A C G T

ADORA3 K2P 0.25 0.25 0.25 0.25
ADRB2 HKY+I+G 0.2 0.33 0.25 0.22
APP GTR+I+G 0.25 0.24 0.18 0.33
ATP7A GTR+I+G 0.33 0.21 0.19 0.19
BDNF HKY+I+G 0.21 0.33 0.28 0.17
BMI1 GTR+I+G 0.29 0.15 0.16 0.4
CNR1 GTR+I+G 0.18 0.32 0.25 0.24
CREM GTR+I+G 0.21 0.24 0.28 0.27
EDG1 HKY+I+G 0.17 0.36 0.27 0.2
PLCB4 GTR+I+G 0.3 0.27 0.19 0.24
PNOC GTR+I+G 0.23 0.33 0.31 0.12
RAG1 GTR+I+G 0.21 0.3 0.29 0.19
RAG2 HKY+I+G 0.28 0.24 0.22 0.27
TYR GTR+I+G 0.24 0.26 0.25 0.25
ZFX HKY+I+G 0.35 0.23 0.18 0.23
VWF HKY+I+G 0.2 0.34 0.28 0.18
BRCA1 GTR+I+G 0.33 0.22 0.23 0.22
IRBP GTR+I+G 0.21 0.3 0.3 0.18
A2AB GTR+I+G 0.17 0.34 0.3 0.18
mtRNA GTR+I+G 0.34 0.2 0.21 0.25

APPENDIX 3. Pairwise Euclidian distances between the models of sequence evolution for each gene studied by Murphy et al. (2001).

ADORA3 ADRB2 APP ATP7A BDNF BMI1 CNR1 CREM EDG1 PLCB4 PNOC RAG1 RAG2 TYR ZFX VWF BRCA1 IRBP A2AB mtRNA

ADORA3 0
ADRB2 1.07 0
APP 1.29 0.61 0
ATP7A 0.69 0.45 0.7 0
BDNF 1.69 0.69 0.6 1.03 0
BMI1 1.24 0.51 0.21 0.62 0.61 0
CNR1 1.54 0.5 0.6 0.89 0.26 0.54 0
CREM 0.66 0.46 0.69 0.21 1.05 0.63 0.9 0
EDG1 1.47 0.44 0.52 0.82 0.25 0.5 0.14 0.83 0
PLCB4 0.36 0.75 0.94 0.36 1.35 0.9 1.21 0.35 1.13 0
PNOC 0.95 0.36 0.51 0.38 0.78 0.51 0.68 0.38 0.58 0.63 0
RAG1 1.08 0.16 0.67 0.49 0.72 0.58 0.52 0.49 0.48 0.78 0.36 0
RAG2 0.72 0.38 0.77 0.2 1.03 0.66 0.85 0.24 0.8 0.43 0.43 0.4 0
TYR 0.86 0.24 0.62 0.25 0.86 0.52 0.69 0.26 0.63 0.54 0.29 0.26 0.19 0
ZFX 0.97 0.25 0.72 0.35 0.86 0.59 0.67 0.44 0.64 0.67 0.46 0.28 0.26 0.23 0
VWF 1.1 0.34 0.35 0.49 0.61 0.37 0.53 0.49 0.42 0.76 0.21 0.4 0.54 0.37 0.5 0
BRCA1 0.32 0.8 1.01 0.4 1.4 0.95 1.26 0.4 1.19 0.13 0.67 0.81 0.46 0.58 0.7 0.82 0
IRBP 0.99 0.3 0.44 0.39 0.71 0.42 0.6 0.38 0.51 0.66 0.11 0.33 0.42 0.25 0.42 0.14 0.7 0
A2AB 0.85 0.25 0.64 0.3 0.87 0.59 0.71 0.26 0.63 0.54 0.25 0.29 0.27 0.16 0.34 0.34 0.59 0.24 0
mtRNA 1.97 1 0.82 1.31 0.41 0.81 0.56 1.34 0.62 1.63 1.06 0.99 1.31 1.14 1.12 0.92 1.67 1.01 1.18 0

.

Relative substitution rates

AC AG AT CG CT GT

Proportion
invariant

sites Alpha

1 3 1 1 3 1 0
1 5.75 1 1 5.75 1 0.46 1.05
1.6 3.66 0.47 0.72 2.65 1 0 0.78
1.11 5.33 0.68 0.92 4.43 1 0.2 1.56
1 4.73 1 1 4.73 1 0.42 0.61
2.35 7.08 0.64 1.77 5.71 1 0.14 0.82
3.43 14 1.3 2.13 14.6 1 0.53 0.7
1.68 3.44 0.55 0.8 2.97 1 0.18 1.6
1 4.93 1 1 4.93 1 0.44 0.72
0.94 2.77 0.59 0.56 2.33 1 0.04 2.88
0.9 2.73 0.86 0.38 4.14 1 0.15 1.09
2.04 5.59 1.01 0.67 9.09 1 0.49 1.07
1 6 1 1 6 1 0.35 1.63
2.18 7.86 1.3 0.93 8.76 1 0.32 1.27
1 7.94 1 1 7.94 1 0.49 1.24
1 4.41 1 1 4.41 1 0.15 0.92
1.15 4.38 0.75 1.17 4.75 1 0.04 3.4
1.5 4.91 1.34 0.83 5.8 1 0.18 1.04
1.02 3.59 0.93 0.62 3.71 1 0.3 1.29
5.86 14 3.85 0.58 29.3 1 0.41 0.53


