MOLECULAR APPROACHES IN NATURAL RESOURCE CONSERVATION
AND MANAGEMENT

Recent advances in molecular genetics and genomics have been embraced by many scientists in natural resource conservation. Today, several major conservation and management journals are using the “genetics” editors of this book to deal solely with the influx of manuscripts that employ molecular data. The editors have attempted to synthesize some of the major uses of molecular markers in natural resource management in a book targeted not only at scientists but also at individuals actively making conservation and management decisions. To that end, the text features contributors who are major figures in molecular ecology and evolution – many having published books of their own. The aim is to direct and distill the thoughts of these outstanding scientists by compiling compelling case histories in molecular ecology as they apply to natural resource management.

J. Andrew DeWoody is Professor of Genetics and University Faculty Scholar at Purdue University. He earned his MS in genetics at Texas A&M University and his PhD in zoology from Texas Tech University. His recent research in genetics, evolution, and ecology has been funded by organizations including the National Science Foundation, the U.S. Department of Agriculture (USDA) National Research Initiative, the Great Lakes Fishery Trust, and the National Geographic Society. His research is published in more than thirty-five journals, and he has served as Associate Editor for the North American Journal of Fisheries Management, the Journal of Wildlife Management, and Genetica.

John W. Bickham is Professor in the Department of Forestry and Natural Resources (FNR) and Director of the Center for the Environment at Purdue University. He received his MS in biology from the University of Dayton and his PhD in zoology from Texas Tech University. He was on the faculty of Texas A&M University’s Department of Wildlife and Fisheries Sciences for thirty years. He has published more than two hundred articles in scientific journals in evolutionary genetics, including comparative cytogenetics, molecular systematics, molecular ecology, and ecotoxicology.

Charles H. Michler is the Fred M. van Eck Director of the Hardwood Tree Improvement and Regeneration Center at Purdue University and Site Director of the National Science Foundation Industry & University Cooperative Research Program’s Center for Advanced Forest Systems. He earned his MS and PhD in horticulture, physiology, and biochemistry from The Ohio State University. He has published more than eighty-five scholarly works and has edited nine books and proceedings. He is Editor of Plant Breeding Reviews and Associate Editor of the Journal of Forest Research.

Krista M. Nichols is Assistant Professor, Departments of Biological Sciences and Forestry and Natural Resources at Purdue University. She received her MS in fisheries and wildlife from Michigan State University and her PhD in zoology from Washington State University. She was a National Research Council postdoctoral Fellow at the National Marine Fisheries Services, Northwest Fisheries Science Center. Dr. Nichols has published in the fields of ecotoxicology, genetics, and ecology.

Olin E. Rhodes, Jr., is Professor in the FNR and Director of the Interdisciplinary Center for Ecological Sustainability at Purdue University. He received his MS in wildlife biology from Clemson University and his PhD in wildlife ecology from Texas Tech University. He was named a Purdue University Faculty Scholar in 2006. He has published more than 135 scholarly works in ecology and genetics and has recently served as Associate Editor of the Journal of Wildlife Management.

Keith E. Woeste is a research molecular geneticist for the USDA Forest Service Northern Research Station Hardwood Tree Improvement and Regeneration Center and Adjunct Assistant Professor at Purdue University’s FNR. He received an MDiv in theology from the Jesuit School of Theology at Berkeley, an MS in horticulture from the University of California–Davis, and his PhD in genetics from the University of California–Davis.
Molecular Approaches in Natural Resource Conservation and Management

Edited by

J. Andrew DeWoody
Purdue University

John W. Bickham
Purdue University

Charles H. Michler
Purdue University

Krista M. Nichols
Purdue University

Olin E. Rhodes, Jr.
Purdue University

Keith E. Woeste
Purdue University
Contents

Contributors ix
Preface xv

1 Biodiversity discovery and its importance to conservation 1
Rodney L. Honeycutt, David M. Hillis, and John W. Bickham

Box 1: Genetic identification of cryptic species:
An example in Rhogeessa 22
Amy B. Baird

2 Gene flow, biodiversity, and genetically modified crops: Weedy rice in Thailand 35
Barbara Schaal, Wesley J. Leverich, Sansanee Jamjod, Chanya Maneechote, Anbreen Bashir, Amena Prommin, Adirek Punyalue, Athitya Suta, Theerasak Sintukhiew, Anupong Wongtamee, Tonapha Pusadee, Sunisa Nirunrayakul, and Benjavan Rerkasem

Box 2: Environmental risk assessment of genetically engineered salmon 37
Robert H. Devlin and Fredrik L. Sundström

3 A community and ecosystem genetics approach to conservation biology and management 50

Box 3: Landscape genetics of an American chestnut borer 63
Jeffrey D. Holland

4 Vertebrate sex-determining genes and their potential utility in conservation, with particular emphasis on fishes 74
J. Andrew DeWoody, Matthew C. Hale, and John C. Avise

Box 4: Sex identification and population size of grizzly bears by using noninvasive genetic sampling 76
Lisette Waits

5 Historical and contemporary dynamics of adaptive differentiation in European oaks 101
Antoine Kremer, Valérie Le Corre, Rémy J. Petit, and Alexis Ducousso
Box 5: Adaptive shifts in natural populations of high dispersing species
Stephen R. Palumbi

6 Association genetics, population genomics, and conservation: Revealing the genes underlying adaptation in natural populations of plants and animals
Krista M. Nichols and David B. Neale

Box 6: Unraveling counterintuitive evolutionary trends: Coat color in Soay sheep
Jake Gratten, Alastair J. Wilson, Allan F. McRae, Dario Beraldi, Peter M. Visscher, Josephine M. Pemberton, and Jon Slate

7 Hybridization in threatened and endangered animal taxa: Implications for conservation and management of biodiversity
Kelly R. Zamudio and Richard G. Harrison

Box 7: Mating opportunities in animal hybrid zones
Marjorie Matocq

8 Pollen and seed movement in disturbed tropical landscapes
J. L. Hamrick

Box 8–1: Effective population size
J. L. Hamrick

Box 8–2: Allelic recharge in populations recovering from bottleneck events
Joseph D. Busch, Jennifer McCreight, and Peter M. Waser

9 Implications of landscape alteration for the conservation of genetic diversity of endangered species
Paul L. Leberg, Giridhar N. R. Athrey, Kelly R. Barr, Denise L. Lindsay, and Richard F. Lance

Box 9: Dune restoration introduces genetically distinct American beachgrass, Ammophila breviligulata, into a threatened local population
Julie R. Etterson and Rebecca M. Holmstrom

10 Integrating evolutionary considerations into recovery planning for Pacific salmon
Robin S. Waples, Michelle M. McClure, Thomas C. Wainwright, Paul McElhany, and Peter W. Lawson

Box 10: The Kermode bear: A swirl of scientific, management, and ethical values in British Columbia
Kermit Ritland

11 Using molecular methods to improve the genetic management of captive breeding programs for threatened species
Jamie A. Ivy and Robert C. Lacy

Box 11: Pedigree reconstruction: An alternative to systematic breeding
Yousry A. El-Kassaby
Contents

12 Wildlife reintroductions: The conceptual development and application of theory 296
   Olin E. Rhodes, Jr., and Emily K. Latch

   Box 12: Genetic ramifications of restoration of blight-resistant American chestnut 307
   Lisa Worthen, Charles H. Michler, and Keith E. Woeste

13 Evolutionary toxicology 320
   Lee R. Shugart, Chris W. Theodorakis, and John W. Bickham

   Box 13: Microarrays and molecular phenotypes 335
   Stan D. Wullschleger and David J. Weston

Index 363

Color plates follow page 174.
Contributors

Gerard J. Allan
Department of Biological Sciences
Environmental Genetics and
Genomics Facility
Northern Arizona University
Flagstaff, AZ

Giridhar N. R. Athrey
Department of Biology
University of Louisiana
Lafayette, LA

John C. Avise
Ecology and Evolutionary Biology
School of Biological Sciences
University of California
Irvine, CA

Joseph K. Bailey
Department of Biological Sciences and
the Merriam-Powell Center for
Environmental Research
Northern Arizona University
Flagstaff, AZ

Amy B. Baird
National Museum of Natural History –
Naturalis
Leiden, The Netherlands

Randy K. Bangert
Biological Sciences
Idaho State University
Pocatello, ID

Robert C. Barbour
Cooperative Research Centre for
Sustainable Production Forestry
School of Plant Science
University of Tasmania
Australia

Kelly R. Barr
Department of Biology
University of Louisiana
Lafayette, LA

Anbreen Bashir
Department of Biology
St. Louis University
St. Louis, MO

Dario Beraldi
Wild Evolution Group
Institute of Evolutionary Biology
School of Biological Sciences
University of Edinburgh
Edinburgh, UK

John W. Bickham
Department of Forestry and Natural
Resources and Center for the
Environment
Purdue University
West Lafayette, IN
Contributors

Joseph D. Busch
Microbial Genetics and Genomics Center
Northern Arizona University
Flagstaff, AZ

Robert H. Devlin
Fisheries and Oceans Canada
West Vancouver, BC
Canada

J. Andrew DeWoody
Departments of Forestry and Natural Resources and Biological Sciences
Purdue University
West Lafayette, IN

Alexis Ducousso
UMR Biodiversité Gênes et Communautés
Institut National de la Recherche Agronomique
Cestas, France

Yousry A. El-Kassaby
Faculty of Forestry
University of British Columbia
Vancouver, BC
Canada

Julie R. Etterson
Department of Biology
University of Minnesota Duluth
Duluth, MN

Luke M. Evans
Department of Biological Sciences
Northern Arizona University
Flagstaff, AZ

Dylan G. Fischer
The Evergreen State College
Olympia, WA

Catherine A. Gehring
Department of Biological Sciences
Northern Arizona University
Flagstaff, AZ

Jake Gratten
Department of Animal and Plant Sciences
University of Sheffield
Sheffield, UK

Matthew C. Hale
Department of Biological Sciences
Purdue University
West Lafayette, IN

J. L. Hamrick
Department of Plant Biology
University of Georgia
Athens, GA

Richard G. Harrison
Department of Ecology and Evolutionary Biology
Cornell University
Ithaca, NY

David M. Hillis
Section of Integrative Biology
University of Texas
Austin, TX

Jeffrey D. Holland
Department of Entomology
Purdue University
West Lafayette, IN

Rebecca M. Holmstrom
Department of Biology
University of Minnesota Duluth
Duluth, MN

Rodney L. Honeycutt
Natural Science Division
Pepperdine University, Seaver College
Malibu, CA
Contributors

Jamie A. Ivy
Department of Collections
San Diego Zoo
San Diego, CA

Sansanee Jamjod
Faculty of Agriculture
Chiang Mai University
Chiang Mai, Thailand

Antoine Kremer
UMR Biodiversité Gênes et Communautés
Institut National de la Recherche Agronomique
Cestas, France

Robert C. Lacy
Department of Conservation Science
Chicago Zoological Society
Brookfield, IL

Richard F. Lance
Environmental Lab
U.S. Army Engineer Research and Development Center
Vicksburg, MS

Emily K. Latch
Department of Biological Sciences
University of Wisconsin–Milwaukee
Milwaukee, WI

Peter W. Lawson
Conservation Biology Division
NOAA Fisheries
Northwest Fisheries Science Center
Newport, OR

Valérie Le Corre
UMR Biologie et Gestion des Adventices
Institut National de la Recherche Agronomique
Dijon, France

Paul L. Leberg
Department of Biology
University of Louisiana
Lafayette, LA

Carri J. LeRoy
The Evergreen State College
Olympia, WA

Wesley J. Leverich
Department of Biology
St. Louis University
St. Louis, MO

Denise L. Lindsay
Environmental Lab
U.S. Army Engineer Research and Development Center
Vicksburg, MS

Chanya Maneechote
Faculty of Agriculture
Chiang Mai University
Chiang Mai, Thailand

Marjorie Matocq
Department of Natural Resources and Environmental Science
University of Nevada
Reno, NV

Michelle M. McClure
Conservation Biology Division
NOAA Fisheries
Northwest Fisheries Science Center
Seattle, WA

Jennifer McCreight
Department of Forestry and Natural Resources
Purdue University
West Lafayette, IN

Paul McElhany
Conservation Biology Division
NOAA Fisheries
Northwest Fisheries Science Center
Seattle, WA
Contributors

Allan F. McRae
Genetic Epidemiology Group
Queensland Institute of Medical Research
Herston, Australia

Charles H. Michler
Department of Forestry and Natural Resources and Hardwood Tree Improvement and Regeneration Center
Purdue University
West Lafayette, IN

David B. Neale
Department of Plant Sciences
University of California at Davis
Davis, CA

Krista M. Nichols
Departments of Forestry and Natural Resources and Biological Sciences
Purdue University
West Lafayette, IN

Sunisa Niruntrayakul
Faculty of Agriculture
Chiang Mai University
Chiang Mai, Thailand

Stephen R. Palumbi
Department of Biology
Hopkins Marine Station
Stanford University
Pacific Grove, CA

Josephine M. Pemberton
Wild Evolution Group
Institute of Evolutionary Biology
School of Biological Sciences
University of Edinburgh
Edinburgh, UK

Rémy J. Petit
UMR Biodiversité Gènes et Communautés
Institut National de la Recherche Agronomique
Cestas, France

Bradley M. Potts
Cooperative Research Centre for Sustainable Production Forestry
School of Plant Science
University of Tasmania
Australia

Amena Prommin
Faculty of Agriculture
Chiang Mai University
Chiang Mai, Thailand

Adirek Punyalue
Faculty of Agriculture
Chiang Mai University
Chiang Mai, Thailand

Tonapha Pusadee
Faculty of Agriculture
Chiang Mai University
Chiang Mai, Thailand

Benjavan Rerkasem
Faculty of Agriculture
Chiang Mai University
Chiang Mai, Thailand

Olin E. Rhodes, Jr.
Department of Forestry and Natural Resources
Purdue University
West Lafayette, IN

Kermit Ritland
Department of Forest Sciences
University of British Columbia
Vancouver, BC
Canada
Barbara Schaal  
Department of Biology  
Washington University  
St. Louis, MO

Jennifer A. Schweitzer  
Ecology and Evolutionary Biology  
University of Tennessee  
Knoxville, TN

Lee R. Shugart  
LR Shugart and Associates, Inc.  
Oak Ridge, TN

Theerasak Sintukhiew  
Faculty of Agriculture  
Chiang Mai University  
Chiang Mai, Thailand

Jon Slate  
Department of Animal and Plant Sciences  
University of Sheffield  
Sheffield, UK

Fredrik L. Sundström  
Fisheries and Oceans Canada  
West Vancouver, BC  
Canada

Athitya Suta  
Faculty of Agriculture  
Chiang Mai University  
Chiang Mai, Thailand

Chris W. Theodorakis  
Biology Department  
Southern Illinois University at Edwardsville  
Edwardsville, IL

Peter M. Visscher  
Queensland Institute of Medical Research  
Royal Brisbane Hospital  
Queensland, Australia

Thomas C. Wainwright  
Fish Ecology Division  
NOAA Fisheries  
Northwest Fisheries Science Center  
Newport, OR

Lisette Waits  
Fish and Wildlife Resources  
University of Idaho  
Moscow, ID

Robin S. Waples  
Conservation Biology Division  
NOAA Fisheries  
Northwest Fisheries Science Center  
Seattle, WA

Peter M. Waser  
Department of Biological Sciences  
Purdue University  
West Lafayette, IN

David J. Weston  
Environmental Sciences Division  
Oak Ridge National Laboratory  
Oak Ridge, TN

Thomas G. Whitham  
Department of Biological Sciences and  
Merriam-Powell Center for Environmental Research  
Northern Arizona University  
Flagstaff, AZ

Alastair J. Wilson  
Institute of Evolutionary Biology  
School of Biological Sciences  
University of Edinburgh  
Edinburgh, UK

Keith E. Woeste  
Department of Forestry and Natural Resources and Hardwood Tree Improvement and Regeneration Center  
Purdue University  
West Lafayette, IN
<table>
<thead>
<tr>
<th>Contributors</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anupong Wongtamee</td>
<td>Faculty of Agriculture</td>
</tr>
<tr>
<td></td>
<td>Chiang Mai University</td>
</tr>
<tr>
<td></td>
<td>Chiang Mai, Thailand</td>
</tr>
<tr>
<td>Lisa Worthen</td>
<td>Department of Forestry and Natural Resources</td>
</tr>
<tr>
<td></td>
<td>Purdue University</td>
</tr>
<tr>
<td></td>
<td>West Lafayette, IN</td>
</tr>
<tr>
<td>Stan D. Wullschleger</td>
<td>Environmental Sciences Division</td>
</tr>
<tr>
<td></td>
<td>Oak Ridge National Laboratory</td>
</tr>
<tr>
<td></td>
<td>Oak Ridge, TN</td>
</tr>
<tr>
<td>Kelly R. Zamudio</td>
<td>Department of Ecology and Evolutionary Biology</td>
</tr>
<tr>
<td></td>
<td>Cornell University</td>
</tr>
<tr>
<td></td>
<td>Ithaca, NY</td>
</tr>
</tbody>
</table>
Preface

The world would be a wonderful place if our natural resources (e.g., forests, fish, and wildlife) needed no management and conservation was not a concern. In a world with a global human population approaching 7 billion and where most developed nations overconsume these resources, however, conservation is a concern and management is necessary for sustainable use. Historically, natural resource management strategies were determined by the collection and interpretation of basic field data. Today, as challenges to the sustainability and conservation of our natural resources arise, managers often need data that cannot be acquired using conventional methods. For example, a natural resource manager might want to know the number of successful breeders in a population or if genetic variation was being depleted because of a management practice. Traditional field craft alone cannot directly address such questions, but the answers can be determined with some precision if the field work is coupled with modern molecular genetic techniques.

Molecules can enlighten us about biological attributes that are virtually impossible to observe in the field (Avise 2004). Parentage analysis is one such arena in which genetic data can inform management practices (DeWoody 2005), but there are a host of others. For example, molecular data have revealed deep evolutionary splits in stocks at one time thought to be homogeneous. This finding has concomitant management implications (Hoffman et al. 2006). Similarly, molecules can enlighten us about biologies that are virtually impossible to observe in the field, such as pollen flow (Hamrick, this volume) or the physiology of migration (Nichols et al. 2008).

Recent advances in molecular genetics and genomics have been embraced by many scientists in natural resource conservation. Today, several major conservation and management journals (e.g., Journal of Wildlife Management, North American Journal of Fisheries Management, Plant Breeding Reviews) are now using “genetics” editors to deal solely with the influx of manuscripts that employ molecular data. We have attempted to synthesize some of the major uses of molecular markers in natural resource management in a book targeted not only at scientists but also at individuals actively making conservation and management decisions. To that end, we have identified contributors who are major figures in molecular ecology and evolution; many have published books of their own. Our aim has been to direct and distill the thoughts of these outstanding
Preface

scientists by compiling compelling case histories in molecular ecology as they apply to natural resource management.

Clearly, we hope this book will appeal to academics interested in conservation genetics, molecular ecology, and the quantitative genetics of wild organisms. We think this book could be used as an educational tool – as a text for graduate ecology/genetics courses but also, perhaps, in advanced undergraduate courses. Furthermore, we hope this book will be useful to audiences in natural resource management, education, and research by clarifying how genetic approaches can be used to answer resource-related questions.

ABOUT THE EDITORS

Our collective expertise spans from molecular population genetics in the wild to genomics and quantitative genetics of managed or cultured species. We all study the genetics of natural resources, however, and we find that similar issues arise in wildlife, forestry, and fisheries. For example, when the forest geneticists began asking how many sires contributed pollen to a nut-bearing hardwood tree, it turns out that fisheries geneticists had already studied this problem from the perspective of a male fish guarding a nest full of developing embryos, and they had created computer programs to estimate the number of parents contributing gametes to a nest (DeWoody et al. 2000). Another such intersection of research across disciplines lies in the study of genetic processes in small populations; the same conceptual and analytical approaches being used to elucidate the genetic consequences of wildlife reintroductions (Latch & Rhodes 2005) are employed to evaluate genetic diversity in hardwood tree species subjected to severe habitat fragmentation (Victory et al. 2006). Our desire to produce a book stems from our mutual interests in understanding how molecular genetics can be used to inform and improve natural resource management.

In addition to our research interests, we teach several courses that directly pertain to this book. These courses include Conservation Genetics (DeWoody), Molecular Ecology and Evolution (DeWoody), and Evolutionary Quantitative Genetics (Nichols). Furthermore, several of us (DeWoody, Michler, Rhodes) have served as “genetics” editors for conservation and management journals, including Journal of Wildlife Management, North American Journal of Fisheries Management, and Plant Breeding Reviews.

ACKNOWLEDGMENTS

In addition to the authors, most of whom also provided reviews on other chapters and/or boxes, we thank the following individuals for their invaluable feedback: Jean Beaulieu, Tasha Belfiore, John Burke, Dave Coltman, Tariq Ezaz, Ben Fitzpatrick, Anthony Fiumera, Mike Goodisman, Rick Howard, Irby Lovette, Bill Muir, Patty Parker, Devon Pearse, Joe Quattro, Kim Scribner, Ron Sederoff, and Rod Williams. All provided insightful comments that directly strengthened
individual chapters and boxes, and we trust that this book has been enhanced by their efforts.

This volume was largely possible because of the financial and logistical support of the Department of Forestry and Natural Resources at Purdue University. In particular, the department sponsored an October 2008 meeting at Purdue where many of the book contributors congregated for three days of scientific discourse and fellowship before finalizing their respective chapters or boxes.

Our own research programs have been supported by a variety of organizations, including the National Science Foundation (DeWoody, Bickham, Michler, Nichols), the U.S. Department of Agriculture (DeWoody, Michler, Nichols, Rhodes, Woeste), the State of Indiana (DeWoody, Michler, Rhodes), the National Oceanic and Atmospheric Administration (Bickham), the Great Lakes Fishery Trust (DeWoody, Nichols), and the U.S. Forest Service (Michler, Woeste). We thank them all for investing in science.

REFERENCES


1 Biodiversity discovery and its importance to conservation

Rodney L. Honeycutt, David M. Hillis, and John W. Bickham

During the eighteenth, nineteenth, and early twentieth centuries, scientific inventories of biodiversity flourished as naturalists participated in expeditions throughout different geographic regions of the world (Köhler et al. 2005). These expeditions and the various journals produced by many prominent naturalists provided materials for extensive scientific collections as well as accounts of the habits and habitats of both plant and animal species. Charles Darwin and Alfred Russel Wallace were part of this tradition, and both were students of biodiversity. They chronicled their adventures in South America, the Malay Archipelago, the Galapagos Islands, New Zealand, and Australia as they discovered new species, described geology, and encountered various cultures (Darwin 1845; Wallace 1869). These adventures honed their observational skills, and their experiences culminated in their parallel proposals of the theory of biological evolution by means of natural selection. The biodiversity and natural environments encountered by Darwin and Wallace have been altered, and both habitats and species described in their journals have and are being impacted at a drastic rate. The yellow-bridled finch (*Melanodera xanthogramma*), noted by Darwin as “common” in the Falkland Islands, is now gone, and, as predicted by Darwin, the Falkland Islands fox or warrah (*Dusicyon australis*) went extinct in 1876 (Armstrong 1994). The Borneo forest harbors fewer *Mias* or orangutans, and it is unlikely that one would be allowed to collect specimens like Wallace describes (Wallace 1869). Even “pristine” regions, such as those seen by Darwin in Patagonia and the southwest Atlantic coast of Argentina, are still poorly understood, yet they are threatened by numerous human activities (Bortolus & Schwindt 2007).

Owing primarily to the fact that the probability of massive species extinction is inevitable, interest in an all-species inventory and the derivation of a Tree of Life has increased over the last two decades. In 1992, the systematics community in the United States, through funding by the National Science Foundation, organized a meeting to set an agenda for the upcoming millennium. As a consequence, Systematics Agenda 2000 (1994) established three major goals: 1) to conduct a worldwide survey and inventory of all species and the taxonomic description of new species; 2) to derive a phylogeny or Tree of Life for all species that would serve as the basis for a classification as well as a framework for other researchers in the life sciences; and 3) to develop an information retrieval system for managing data on biodiversity.
Although our knowledge of biodiversity on planet Earth has increased as a consequence of the endeavors of early naturalists and these new initiatives, we are still far from a complete census of all species, and many will go extinct before their discovery. Such an inventory is essential because it provides a baseline for understanding the stability of ecosystems and the impact of anthropogenic processes that may eventually result in our own demise.

This chapter relates specifically to the inventory of biodiversity as an important step for its conservation. The first section provides a general overview of the importance of biodiversity to society, presents a survey of its global distribution, and identifies groups and geographic regions threatened by human activities. The second section reviews our current knowledge of worldwide biodiversity in terms of its discovery and description and identifies groups that are poorly known. The third section discusses the future of inventorying biodiversity and reviews how molecular approaches and phylogenetic methods provide means for accelerating the overall processes of species discovery and the construction of the Tree of Life. Finally, we emphasize the importance of an information retrieval system that makes data on biodiversity accessible to the entire scientific community.

BIODIVERSITY

Why is biodiversity important?

Biodiversity is defined as “the variability among living organisms from all sources including, inter alia, terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part; this includes diversity within species, between species and of ecosystems” (Glowka et al. 1994). The importance of biodiversity and the need for its conservation worldwide cannot be overemphasized. Not only are diverse forms of organisms responsible for sustaining human populations, they also serve important roles in the maintenance of ecosystems.

Advances in human medicine have benefited directly from biodiversity (Bernstein & Ludwig 2008; Harvey 2008). For instance, species of bacteria discovered over the last forty years have helped minimize transplant rejection, provided antibiotics and antifungal drugs that help combat infections from harmful pathogens, and revolutionized molecular biology by providing thermostable DNA polymerases used in polymerase chain reaction (PCR), a procedure employed broadly in medical diagnostics. Other plant and animal species provide drugs useful for treating cancer and serve as model organisms for studying molecular processes associated with disease and neurological disorders. Approximately 50% of the most broadly used drugs were derived from natural resources (Bernstein & Ludwig 2008), and biodiversity continues to serve as an important resource for the development of clinically important pharmaceuticals and other health-related products (Harvey 2008).

Aside from medicine, humans receive both direct and indirect benefits from biodiversity through the provision of food, fuel, clean water, and fertile soil.
Biodiversity discovery and its importance to conservation

that enhances agriculture. According to Wilson (1985), more than seven thousand species of plants have been used for food, and twenty species are essential as worldwide food sources. Related species to those currently used for food are genetic reservoirs containing genes that may serve as sources of resistance to pathogens and pests as well as to potential climatic changes. In fact, enhancing both genetic diversity and crop diversity to create more complex “agroecosystems” may provide a more natural means of not only increasing production but also reducing the need for excessive use of pesticides and other chemicals (Altieri 2004). Biodiversity also provides a host of benefits and services to ecosystems. Processes associated with the recycling of nutrients, carbon and nitrogen cycling, formation of soils, climate stabilization, plant pollination, and decomposition of pollutants are influenced by biodiversity, and many of these processes are important to worldwide economies (Pimentel et al. 1997).

How is biodiversity distributed?

Biodiversity is not randomly distributed worldwide. Comparisons across biogeographic regions reveal areas that differ significantly in terms of species diversity and levels of endemism (Gaston 2000). Two major patterns associated with differences in biodiversity are considered relevant to conservation issues. First, species richness varies over a latitudinal gradient, with more species occurring in the tropics than in more temperate regions (Gaston 1996). This general pattern appears to hold for many different taxa, such as plants, mammals, and birds, yet there are exceptions. Although amphibians are more diverse in the tropics, their general pattern of diversity is not completely correlated with latitude in that they do show local exceptions, such as their high diversity in the mountains of the eastern United States relative to other areas of North America and Europe (Buckley & Jetz 2007). This latitudinal gradient associated with species richness also appears to be asymmetrical, with the gradient stronger in the northern than in the southern hemisphere (Chown et al. 2004). As indicated by several authors (Gaston 2000; Hawkins 2001; Ricklefs 2004; Buckley & Jetz 2007; Dyer et al. 2007), the mechanisms responsible for the latitudinal gradient are widely debated but probably relate to several different factors including ecological (e.g., species interactions), environmental (e.g., habitat quality, energy, and degree of stability), and historical processes (e.g., degree of isolation, rates of extinction, migration, and speciation). Second, species richness increases with size of area, and, like latitudinal gradients, species-area curves are a pattern observed for plants, animals, and bacteria (Rosenzweig 1995; Horner-Devine et al. 2004). According to Rosenzweig (1992), latitudinal gradients and species-area curves occur at different temporal and spatial scales, with the latter occurring recently and at a more local or regional scale. In terms of predicting species diversity, this area effect probably relates to habitat heterogeneity (Rosenzweig 1992). For instance, Horner-Devine and colleagues (2004) observed an increase in bacterial species diversity with an increase in area that appeared related to an increase in overall habitat heterogeneity as the distance between sites in a salt marsh increased, and Bäldi (2008) found that arthropod diversity on several reserves varied in response to habitat heterogeneity rather than to area.
Regardless of the mechanisms for latitudinal gradients and species-area curves, both of these general observations have been used to establish priorities for maximizing the conservation of biodiversity through the identification of regions (termed “biodiversity hotspots”) that should receive high conservation priority (Myers 1988). Two criteria are commonly used to identify biodiversity hotspots. First, the number of endemic species (i.e., species that cannot be replaced if lost from a region) is considered a more important indicator than species richness, which is potentially biased toward broadly distributed species. Second, areas with high levels of endemism and under threat of habitat loss receive the highest conservation priority. The overall establishment of biodiversity hotspots is based on an extrapolation of better-known species, especially those that are indicators of habitats. As such, plant diversity is a common means of ranking hotspots. For instance, some of the first hotspots (e.g., ten sites in tropical rainforests) were recognized based on plant diversity (Myers 1988). Similarly, Mittermeier and colleagues (1998) identified twenty-four biodiversity hotspots on the basis of plant species endemism and the degree to which vegetation cover was being removed (some as high as 98%). These original twenty-four hotspots represented approximately 2% of land surface and approximately 46% of endemic plant species (Mittermeier et al. 1998). Currently, Myers and colleagues (2000) recognize twenty-five terrestrial hotspots, encompassing 1.4% of the world’s land area and representing a large percentage of plant and vertebrate species. As before, the primary indicator of these biodiversity hotspots is percentage of endemic plant species and secondarily the percentage of endemic species of mammals, birds, reptiles, and amphibians.

There is an inherent assumption that uniqueness of (primarily) plants and (secondarily) vertebrates, as indicators of hotspots, can be extrapolated to lesser-known taxa such as invertebrates. The establishment of global priorities of conservation based on this assumption is somewhat problematic. For instance, Grenyer and colleagues (2006) examined the distribution of three vertebrate groups (birds, mammals, and amphibians) and found similar species richness among regions, yet little congruence in terms of the identification of hotspots based on the distribution of rare and vulnerable species associated with each group. This finding suggests that setting global priorities on the basis of surrogate taxa may be inappropriate, especially when identifying smaller, regional areas for conservation activities (Reid 1998). The finding also implies that broader taxonomic coverage is required for the identification of hotspots that encompass the majority of rare and endemic species.

Is the extinction of biodiversity a problem?

Those living today will either win the race against extinction or lose it, the latter for all time. They will earn either everlasting honor or everlasting contempt.

(E. O. Wilson 2006, p. 99)

Extant species represent approximately 1–2% of the Earth’s historical biodiversity (May et al. 1995). Therefore, extinction, the loss of a lineage with no replacement, is a natural process that appears nonrandom, relative to the species
that go extinct, and “episodic” in the fossil record (Raup 1986, 1994). This pattern of extinction implies that the average life span for most species is short, between one and ten million years (May et al. 1995). Theoretically, the Tree of Life can withstand random and “vigorous pruning” and recover from major extinction events (Nee & May 1997). Therefore, if extinction is a natural process and the Tree of Life is capable of responding to large extinction events, why is extinction a major concern of persons and groups interested in the conservation of biodiversity? The answers are twofold. The first is from a selfish point of view: The composition of communities that will appear subsequent to such pruning is likely to be different. The loss of important ecosystem services necessary for human survival implies that Homo sapiens might be a casualty of rapid and random extinction processes. Even if biodiversity loss does not cause extinction of our species, it is sure to have profound negative impacts on our society. The second answer, of more immediate importance, is the estimated rate at which biodiversity is currently going extinct. Based on the fossil record, Earth has experienced five mass extinctions, each resulting in a net loss of 75–95% of species (Raup 1994). Although difficult to quantify, most evidence suggests that current rates of extinction may be approaching those experienced during mass extinctions. On the basis of annual loss from deforestation and International Union for Conservation of Nature (IUCN) listings, May and colleagues (1995) calculated a range of 200–500 years for the current life span of a species. In a separate study, the current rate of extinction was estimated to be 100–1,000 times faster than the rate estimated prior to humans (Pimm et al. 1995).

According to IUCN’s Red List assessment (Baillie et al. 2004), the rate of extinction for birds, amphibians, and mammals over the last century is 50–500 times higher than background extinction. Since the 1500s, 884 extinctions (784 total extinctions and 60 extinctions in the wild) of all species assessed by IUCN have been verified (Baillie et al. 2004). The rate of extinction for amphibians, reptiles, and mammals has increased since the beginning of the twentieth century, whereas extinction of birds started increasing in the eighteenth century, especially on Oceanic islands (Nilsson 2005; Fig. 1–1).

Extinction is an ongoing process, and although many currently recognized species are not extinct, a large number are increasing in vulnerability to extinction. For instance, of the 44,838 species assessed by IUCN (2008), 38% are threatened with extinction, and, except for birds and mammals, the other vertebrate groups show an increased rate of addition to the threatened list between the years 1996 and 2008, owing primarily to an increase in the number of species assessed for these groups (Fig. 1–2). Nearly complete assessments of mammals, birds, and amphibians were performed, and a summary of results is shown in Table 1–1.

Most species of birds, mammals, and amphibians have been evaluated by IUCN, and, among these three groups of vertebrates, amphibians worldwide show the highest risk of extinction. As of January 2010, 6,603 living species have been described (AmphibiaWeb 2010). Table 1–1 shows the number of species considered by IUCN in 2008; approximately 32% are threatened with extinction (Wake & Vredenburg 2008), which represents a potential rate of extinction that may approach 45,000 times the background rate. In comparison to birds and
mammals, twice as many species of amphibians are listed as critically endangered, and nearly one-third of the extinctions of amphibians have occurred in the last thirty years (Stuart et al. 2004). The current rate of amphibian decline has been referred to as “enigmatic” (Stuart et al. 2004) in that the processes responsible are complex, being caused by a host of potential culprits including fungal pathogens, loss of habitat, and changes in climate. The declines are not random. Amphibian communities in the neotropics, especially those in streams, are highly threatened (Dudgeon et al. 2006). In addition, of the 220 species of amphibians in Madagascar, 55 are threatened (Andreone et al. 2005).

A quarter of mammalian species (both marine and terrestrial forms) are vulnerable to extinction, and a high percentage of species show evidence of ongoing

Figure 1–1: Extinction of vertebrate species between 1500 and 2000 (modified from Nilsson 2005).

Figure 1–2: Changes in numbers of species of vertebrates in the threatened categories (critical, endangered, vulnerable) from 1996 through 2008 (derived from IUCN’s Red List of Threatened Species™ 2008).
Biodiversity discovery and its importance to conservation

Table 1–1. Statistics on threatened species compiled from Table 1 of IUCN’s Red List of Threatened Species™ (2008)

<table>
<thead>
<tr>
<th></th>
<th>Described species</th>
<th>Evaluated by IUCN 2008</th>
<th>Threatened</th>
<th>% Threatened based on number evaluated</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Vertebrates</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mammals</td>
<td>5,488</td>
<td>5,488</td>
<td>1,141</td>
<td>21</td>
</tr>
<tr>
<td>Birds</td>
<td>9,990</td>
<td>9,990</td>
<td>1,222</td>
<td>12</td>
</tr>
<tr>
<td>Reptiles</td>
<td>8,734</td>
<td>1,385</td>
<td>423</td>
<td>31</td>
</tr>
<tr>
<td>Amphibians</td>
<td>6,341</td>
<td>6,260</td>
<td>1,905</td>
<td>30</td>
</tr>
<tr>
<td>Fish</td>
<td>30,700</td>
<td>3,481</td>
<td>1,275</td>
<td>37</td>
</tr>
<tr>
<td><strong>Invertebrates</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insects</td>
<td>950,000</td>
<td>1,259</td>
<td>626</td>
<td>50</td>
</tr>
<tr>
<td>Molluscs</td>
<td>81,000</td>
<td>2,212</td>
<td>978</td>
<td>44</td>
</tr>
<tr>
<td>Crustaceans</td>
<td>40,000</td>
<td>1,735</td>
<td>1,735</td>
<td>35</td>
</tr>
<tr>
<td>Corals</td>
<td>2,175</td>
<td>856</td>
<td>235</td>
<td>27</td>
</tr>
<tr>
<td>Arachnids</td>
<td>98,000</td>
<td>32</td>
<td>18</td>
<td>56</td>
</tr>
<tr>
<td>Others</td>
<td>61,209</td>
<td>67</td>
<td>33</td>
<td>49</td>
</tr>
<tr>
<td>Plants</td>
<td>298,506</td>
<td>12,055</td>
<td>8,457</td>
<td>70</td>
</tr>
<tr>
<td>Lichens, Mushrooms, Brown Algae</td>
<td>50,040</td>
<td>18</td>
<td>9</td>
<td>50</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>1,642,189</td>
<td>44,838</td>
<td>16,929</td>
<td>38</td>
</tr>
</tbody>
</table>

population decline (Schipper et al. 2008). The trend in mammalian declines is not random in that some regions and groups of species are at greater risk. For instance, nearly 80% of all species of primates from Southeast Asia are threatened (Schipper et al. 2008), and larger mammals in general are more at risk, especially those that have been or are being overexploited by humans, such as the African elephant and many carnivores. Populations of many species of great whales were reduced to near extinction by commercial whaling. Some species have recovered to some degree, but others, including the Atlantic right whale, the Spitsbergen and Okhotsk Sea stocks of bowhead whales, and the western Pacific population of gray whales, are critically endangered and have not recovered despite the cessation of commercial whaling (IWC 2007). There are multiple causes for the demise of mammalian diversity including loss of habitat such as tropical deforestation, overharvesting and bycatch, pollution, and climate change. The Yangtze River dolphin or baiji (*Lipotes vexillifer*) has been declared as extinct, and its extinction represents the first mega-vertebrate extinction in fifty years and the first human-caused extinction of a cetacean. Moreover, it is the fourth mammalian family to become extinct in 500 years (Turvey et al. 2007).

Relative to the total number of species, birds (at 14%) are the least threatened. Extinctions are better documented for birds than probably any other group, however, and the patterns and processes of avian extinctions merit discussion. Some of the more vulnerable regions for birds are islands where, historically, most avian extinctions have occurred. Today, nearly 40% of avian species listed as threatened occur on islands (Johnson & Stattersfield 2008) and have an extremely high probability of extinction relative to mainland species (Trevino et al. 2007). The causes of both extinction and increased vulnerability of island birds include loss of habitat, overexploitation by humans, and the introduction of invasive species.
On some islands, bird diversity has been severely depleted as a result of one or more of these causes. For instance, on Guam, ten of the thirteen species of forest birds are now extinct as a result of the brown tree snake, a species accidentally introduced after World War II (Fritts & Rodda 1998). A large percentage of threatened birds, however, occur in forested mainland habitats, many of which are subject to deforestation and fragmentation (Brooks et al. 1999) that together are accelerating the probability of avian extinctions. One particular region that has experienced considerable loss of habitat is the Atlantic Forest of Brazil and Argentina. According to Ribon and colleagues (2003), approximately 60% of the bird species in this region are either extinct or vulnerable to extinction.

Thorough assessments of both reptiles and fishes are lacking, but both are threatened as a result of overharvesting and loss of habitat. For reptiles, the percentages of threatened chelonians (turtles and tortoises) and crocodilians are 42% and 43%, respectively (Baillie et al. 2004). Although fish diversity is poorly known relative to that of other groups of vertebrates, freshwater ecosystems in general are extremely threatened, and, according to Lundberg and colleagues (2000), approximately 40% (10,000) of all described species of fish occupy freshwater, which makes up 0.01% of the world’s water. As indicated by Dudgeon and coworkers (2006), freshwater systems represent the “ultimate conservation challenge” as a result of increased use of this resource worldwide. This increased use threatens not only fish but also other vertebrates, invertebrates, and microbes that rely on freshwater habitats, and extinction rates may be five times higher than predicted for terrestrial ecosystems, reaching nearly 50% in North America (Ricciardi & Rasmussen 1999).

ENUMERATION OF BIODIVERSITY

We need an expedition to planet Earth, where probably fewer than 10 percent of the life forms are known to science, and fewer than 1 percent of those have been studied beyond a simple anatomical description and a few notes on natural history.

(Wilson 2006, p. 116)

Status of species discovery and description

Species represent the basic units by which biodiversity is measured, and, as such, the first goal of Systematics Agenda 2000 is critical. Accuracy in the estimation of extinction rates, the establishment of conservation priorities based on biodiversity hotspots, and the designation of lineages that are essential for ecosystem function and the long-term survival of biodiversity require knowledge of the approximate number of species currently inhabiting the Earth.

How far have we progressed in our discovery and description of species since Linnaeus? According to Mayr (1969), Linnaeus’s *Systema Naturae* lists 4,162 species, and since Linnaeus’s time, the enumeration of total species has shown progress, with the current number of discovered species being between 1.5 million
Biodiversity discovery and its importance to conservation

and 1.9 million (May 1988, 1990, 1992). Species discovery for birds (Mayr 1946; Monroe and Sibley 1990; Peterson 1998; MacKinnon 2000), mammals (May 1988; Wilson & Reeder 1993, 2005; Patterson 2001; IUCN Red List of Threatened Species 2008), amphibians (Glaw & Kohler 1998; Kohler et al. 2005; Frost 2006; AmphibiaWeb 2010), and turtles (Bickham et al. 2007) is reasonably well documented, and all these groups show an increase in species discovery since Linnaeus, with most species of birds described early in the last century (Fig. 1–3).

The overall rate of species discovery is clearly increasing. For instance, in 2006 (State of Observed Species 2008), 16,969 new species of plants and animals were discovered, with the majority represented by vascular plants and invertebrates (Fig. 1–4). The rate of discovery of amphibian species increased by approximately 26% between 1992 and 2003, and in some geographic regions (e.g., Madagascar) the increase was 42% (Kohler et al. 2005). Mammalian species continue to be discovered. According to Patterson (2000), the rate of discovery of mammalian species in the neotropics is ten times that seen for birds. This rate of discovery is especially high for smaller mammals, such as rodents and bats (Patterson 2001), and in some cases species were rediscovered from existing collections and more recent genetic studies (Patterson 2000).

Although microbial diversity is essential to ecosystem function (Woese 1994), only approximately 5,000 species have been described (Pace 1997). In the past, this lack of species discovery was hindered by the fact that approximately 99% of microbes cannot be cultured (Amann et al. 1995). Most knowledge of bacterial species diversity comes from nucleotide sequences of ribosomal ribonucleic acid (rRNA) (Pace et al. 1986), and molecular markers are now being used to survey microbial diversity in a variety of habitats including soil (Schloss & Handelsman 2006), air (Brodie et al. 2007), marine communities (Sogin et al. 2006; Frias-Lopez et al. 2008), and extreme environments (Huber et al. 2007).

Despite the overall increase in the rate of species discovery, the tally of all species is incomplete and varies greatly across groups. Previous estimates of the potential number of species range between 5 million and 50 million, and the most current estimates are between 15.6 million and 19 million species (Erwin 1982; May 1988, 1992, 1998; Hammond 1992; Stork 1993; Ødegaard 2000; Novotny et al. 2007). Therefore, based on these numbers, our knowledge is limited to about 10% of the Earth’s biodiversity (Fig. 1–5). Even for some groups of vertebrates, an all-species inventory is far from complete. For instance, with the exception of turtles, which are reasonably well known and assessed (Bailie et al. 2004; Bickham et al. 2007), the conservation status of many species of reptiles and fishes is less well known, partially as a consequence of the lack of an all-species inventory for these two groups (Table 1–1).

The most species-rich groups of organisms are even less well known than reptiles and fishes (Fig. 1–5 and Table 1–1). Approximately 59% of all described species are insects and 75% of all described species are invertebrates, yet the conservation status for most of these species has not been evaluated (IUCN 2008; Table 1–1). Even more disturbing is the fact that 80–95% of insect species have not been discovered (Stork 2007), and the number of arthropod species may range between five million and thirty million (Erwin 1982; Ødegaard 2000). On the basis of molecular markers, we are far from determining the number of microbial
Figure 1–3: Species of vertebrates discovered since Linnaeus.
species, which may be 100 times higher than the number estimated using conventional techniques (Sogin et al. 2006).

Factors limiting the rate of species discovery

Assuming that fifteen million species are undiscovered, the rate of discovery required to establish a complete inventory by the end of the century is approximately 150,000 per year, a rate more than 22 times higher than the average of the previous 250 years (approximately 6,800 species per year since the time of Linnaeus). The rate of species discovery in recent years has been higher than the 250-year average; as shown in Fig. 1–4, the current rate is approximately 17,000 species per year. Thus, the current rate of species discovery and description would need to increase approximately ninefold to reach fifteen million described species by 2100.
At this point, we have mostly described the easiest cases (large species in accessible places that can be distinguished morphologically), and much of the undiscovered biodiversity represents new challenges for systematists. Currently, several factors limit the feasibility of an all-species inventory. First, the discovery and description of new species, especially those in more diverse groups, require taxonomic expertise, and the number of experts varies greatly across groups. The slow pace of species descriptions is exacerbated by the loss of taxonomists familiar with some of the more diverse groups of taxa. This decline in the number of experts is unfortunate because studies of biodiversity rely on the accuracy of taxonomic descriptions and the establishment of a formal classification, both of which serve a “utilitarian” role for the identification and enumeration of species (Mayr 1969; Dubois 2003). As indicated by Wheeler (2004), the “infrastructure of taxonomy” needs to be reestablished through the funding and training of taxonomists.

Second, detailed surveys and inventories of geographic regions harboring large numbers of species are lacking. Decline of species diversity in these regions is increasing as a result of the alteration of natural habitats (Gibbons et al. 2000; Dudgeon et al. 2006). The process of discovery requires detailed assessments of geographic regions, some parts of which (e.g., North America, Europe, Japan, and Australia) are better known than others. Even though 32% of the described species of reptiles occur in the neotropics, less is known about the basic biology of many species (Urbina-Cardona 2008). Advances are being made to determine the status and distribution of reptiles worldwide (Cox et al. 2006), and a Global Biodiversity Assessment was started by IUCN in 2004. Regions of the world with high diversity of fishes are also poorly known, with the distribution of most species not well defined and diversity poorly surveyed (Lundberg et al. 2000; Dudgeon et al. 2006; Abell et al. 2008). As noted by Dudgeon and colleagues (2006), new species were being discovered at an average of several hundred per year between 1976 and 1994. Recently, existing information for more than 13,400 freshwater fish species was used to assign species to ecoregions characterized by level of endemism and diversity (Abell et al. 2008). More than half of these species are endemic to a specific ecoregion. Some of the highest species richness is observed in regions of Africa, the Amazonian Basin in South America, and parts of Asia. As indicated by these authors, some designated regions are “data poor.” Nevertheless, this global assessment is a first step toward establishing conservation priorities for freshwater fish species.

Finally, the rate at which detailed species inventories are conducted needs to be increased, and technological advances in molecular genetics, especially those related to nucleotide sequencing, offer the best opportunity for accelerating the rate at which new taxa are discovered and placed within a phylogenetic context. The discovery of microbial species and their relationships has definitely benefited from the application of molecular techniques. For instance, phylogenies derived from rRNA sequences are the bases for a classification scheme that recognizes three major domains of life (Bacteria, Archaea, and Eukarya) as well as thirty or more major clades (Woese 1987; Pace 1997). In addition, the rate of discovery of new microbial species remains high, with considerable differences in species richness in different types of habitats (Schloss & Handelsman 2004). For
instance, in thirty grams of soil from forest habitat at least 500,000 species were found (Dykhuizen 1998), and in a relatively well-known habitat like the Sargasso Sea, 148 new species or phylotypes were discovered, suggesting that the actual diversity may be as high as 47,000 species (Venter et al. 2004). Recent surveys of deep sea vents also revealed 2,700 phylotypes of Archaea and 37,000 Bacteria (Huber et al. 2007), and in a recent study of the microbial ecology of human skin, 15 undescribed species were discovered (Gao et al. 2007).

Is it possible to accomplish this goal of a relatively complete assessment of the Earth’s biodiversity in the twenty-first century by following traditional approaches employed by systematics? We argue that new technology and approaches, changes in taxonomic practice and culture, and a sustained increase in funding and training are needed to reach this goal. In the following section, we will discuss some of these issues as they relate to a total biodiversity inventory.

FUTURE INVENTORY OF BIODIVERSITY

As indicated by Mayr (1969, p. 9), “The ultimate task of the systematist is not only to describe diversity of the living world but also to contribute to its understanding.” The discipline of systematic biology is dedicated to the study of organic diversity, and the overall processes responsible for that diversity. The two major subdisciplines of systematics are phylogenetics and taxonomy. Taxonomy is required for the discovery, description, and identification of species, and the disciplines of taxonomy and phylogenetics merge in the creation of a classification scheme that reflects phylogenetic relationships. Formal names and recognized categories provide a mechanism for information retrieval that allows for the cataloguing and identification of worldwide biodiversity. Procedures used in classical taxonomy provide universal access to and communication about this information, and, as such, systematics in general should play a central role in the discovery and conservation of biodiversity. In fact, historical records derived from floras and faunas of various regions of the world and museum records provide the baseline for current information used to designate biodiversity hotspots and to assess the number of species threatened with extinction.

Although we feel that traditional systematics is essential to any enterprise designed to both discover and name all species on Earth, there are tools available for enhancing the efficiency and accuracy of species inventories. “DNA-based technology,” improved phylogenetic methods, and databases that are Web-based and open access provide the necessary infrastructure for a concerted effort to survey and inventory all existing life forms on this planet. In the following sections, we will address some of these new technologies, including their appropriate contribution to the overall goal of the conservation of biodiversity and the completion of an all-species inventory.

Importance of phylogenetics to the delimitation and conservation of species

As buds give rise by growth to fresh buds, and these, if vigorous, branch out and overtop on all a feeblener branch, so by generation I believe it has been with the
Tree of Life, which fills with its dead and broken branches the crust of the earth, and covers the surface with its ever branching and beautiful ramifications.

(Charles Darwin, 1859, Chapter 4)

Phylogenetics is sometimes poorly appreciated by many persons interested in the conservation of biodiversity and the inventorying of species. Nevertheless, Darwin’s concept of descent with modification is graphically represented by a phylogeny that displays ancestor–descendent relationships and retains information about the overall pattern of biological diversification and extinction through time. As such, a phylogeny is an interpretive framework that serves several roles in conservation biology, including: 1) the delimitation of species based on the application of the phylogenetic species concept (PSC); 2) the identification of units of conservation, sometimes below the level of species; 3) the establishment of conservation priorities based on the diversity, age, and distribution of lineages; 4) the estimation of rates of speciation and extinction; and 5) the investigation of processes (e.g., climate, geology) that have influenced the historical and recent distribution and diversification of organisms.

The most obvious focal point in biodiversity science is the species because it is perceived as a real entity among biologists and is broadly appreciated by conservation biologists and the lay public. Species are also focal points for legal protection at the state, national, and international levels. Despite the significance of species in biodiversity conservation, the criteria used to delimit species are varied and sometimes contradictory, resulting in a diversity of species concepts (Mayden 1997). Studies of worldwide biodiversity require a method for delimiting species that is operational across a broad array of taxa, both sexually and asexually reproducing. According to Sites and Marshall (2003), many of the methods used in conservation biology can be subdivided into either non–tree-based or tree-based approaches. Barcoding, for instance, is a non–tree-based method that relies on magnitude of divergence as the major criterion for recognizing a species. Other non–tree-based methods emphasize either a lack of gene flow between populations or the grouping of individuals based on a set of distinguishing characteristics. In contrast, PSC criteria for tree-based methods emphasize monophyly as diagnosed on a phylogeny by shared-derived characters. This latter criterion is being broadly applied in conservation biology (Baker et al. 1995; Cracraft et al. 1998; Cracraft 2002; Wilting et al. 2007).

Application of the PSC as the major criterion for delimiting species does have consequences. In many cases, adherence to the PSC may result in higher numbers of species delimited (Agapow et al. 2004). This result is in part a consequence of recognizing subunits in a polytypic species that encompass several subspecies. Although the PSC is highly operational for delimiting species, it is stringent in its emphasis on monophyly. Part of the species problem is a consequence of the speciation process, which is a continuum with the level of divergence between lineages related to time since divergence (de Queiroz 2005). Because it is a continuum, lineages can be on different evolutionary trajectories without being monophyletic or reproductively isolated, and strict application of the PSC may result in a failure to identify unique yet recently diversifying lineages (Hey 2001). Despite this concern, however, the PSC provides a level of functionality that is useful for the discovery and delimitation of species, especially when one
of the major goals of biodiversity research is to determine the number of species inhabiting our planet. Additionally, many cases of species based on phylogenetic criteria are congruent with other criteria used to designate species, and phylogenetic discontinuities provide a meaningful way to reflect units of conservation (Avise & Walker 1999).

Ryder’s (1986) idea of an “evolutionary significant unit (ESU)” represents an attempt to more objectively identify units of conservation that do not rely solely on traditional taxonomic designations, especially recognized subspecies. He emphasized agreement among multiple sources of data including distribution, ecology, morphology, and genetics (see also Chapter 10 by Waples and colleagues). In contrast, Moritz (1994) emphasized the need for a more “operational” definition of ESU based on the genetic and phylogenetic distinction of particular groups. His two specific criteria for ESUs included the diagnosis of “reciprocally monophyletic” groups identified from mitochondrial gene trees and evidence for “significant divergence of allele frequencies at nuclear loci.” According to Moritz (1994), this definition captures evolutionarily distinct groups that result from historical processes. A second category introduced by Moritz (1994) was the management unit (MU), which is defined as a group that fails to show reciprocal monophyly but does reveal genetic divergence at either the mitochondrial locus or nuclear loci. Presumably, reduced gene flow identified for MUs reflects more recent events. Operationally, the criteria for ESUs are similar to the PSC and would essentially have the same consequence in terms of designating units of conservation. One interesting point raised by Moritz (1994) is the use of phylogeographic concordance among several species as a means of identifying regions that should receive high conservation priorities. In effect, this approach is similar to that of the hotspot, except that it focuses on areas related to patterns of geographic variation within species.

Moritz’s criteria for recognizing both ESUs and MUs have been criticized for several reasons. First, some species will not show reciprocal monophyly yet still have populations that are demographically subdivided. This situation is especially problematic for recently separated species or ESUs that have not undergone lineage sorting (Avise 2000). The paraphyletic association between brown bears and polar bears, two groups that are morphologically and ecologically considerably different, provides an example of how the concept of reciprocal monophyly depicted in a mitochondrial gene tree may result in an incorrect decision about the designation of an ESU (Paetkau 1999). Second, some species may show high levels of geographic subdivision, thus resulting in the recognition of high numbers of ESUs distinguished by reciprocal monophyly. Third, if the concept of an ESU is analogous to that of a phylogenetic species, then formal taxonomic recognition may be preferred (Cracraft et al. 1998).

DeSalle and Amato (2004) subdivide genetic methods for the recognition of ESUs into two categories, a tree-based method and a “diagnostic character-based” method. The tree-based approach is best represented by the methodology introduced by Moritz (1994), which suggests that reciprocal monophyly defined by mitochondrial DNA (mtDNA) data and evidence of restricted nuclear gene flow are objective criteria for recognizing ESUs. The approach based on diagnostic characters does not require a gene tree but rather a collective set of substitutions that are diagnostic for a particular population (e.g., a suite of nucleotide substitutions
unique to a population or lineage). As indicated by DeSalle and Amato (2004), such an approach alleviates problems of gene trees failing to diagnose species trees.

Rather than setting conservation priorities based on endemism, vulnerability alone, or value based on esthetic, economic, or ecologic criteria, phylogenetic information provides a potential means of establishing priorities. A phylogeny not only depicts relationships among species but also provides estimates of amounts of divergence along lineages. In this light, branch lengths and branching patterns in a phylogeny provide a measure of the amount of evolution or genetic divergence that has occurred between species over time. Nearly all approaches designed to use phylogenies for setting conservation priorities establish criteria for ranking particular lineages. Such approaches have the potential of maximizing clade diversity and spread among clades throughout the phylogeny (Linder 1995). Vane-Wright and colleagues (1991) proposed an index that measures taxonomic distinctiveness. This particular approach combines information on both phylogeny and geographic distribution for the ranking of areas of biodiversity. In their approach, terminal taxa of a group receive less weight than more basal lineages that have little species diversity but display more evolutionary history as seen by their placement in a phylogeny. For instance, phylogenetic analyses of the freshwater fish fauna in Madagascar (a major biodiversity hotspot) reveal a large number of “basal taxa” that appear to be geographically localized and vulnerable to extinction. Therefore, the high level of endemism and large amount of evolutionary history make Madagascar a “reservoir of phylogenetic history” for freshwater fishes (Benstead et al. 2003).

Isaac and colleagues (2007) introduced the evolutionarily distinct and globally endangered (EDGE) score to identify species that should receive top conservation priority. In this approach, a species-level phylogeny is used as the interpretive framework for quantifying the overall score of a species. First, evolutionary distinctiveness (ED) is determined by calculating a value for each branch (length divided by number of species delimited by the branch) followed by the summation of all values from the base of the phylogeny to the terminal taxon of interest. Second, risk of extinction (GE) of a particular taxon is quantified based on the IUCN Red List category weight, and this value is combined with ED to provide an overall EDGE score. This particular method of setting conservation priorities was tested for a species-level phylogeny of mammals, and the results indicated that nearly half of the mammalian species with high EDGE scores did not coincide with current conservation priorities. This finding implies that if these taxa do not receive higher priority, the class Mammalia will lose a large portion of its phylogenetic diversity as estimated by EDGE scores.

Faith (1992) proposed a measure termed phylogenetic diversity (PD), which represents the summation of all branch lengths associated with a particular set of taxa in a phylogeny. Rather than focusing on species, this approach emphasizes the maximization of phylogenetic variance, as revealed by increasing levels of PD, and priorities of overall geographic regions or localities can be established based on the overall level of phylogenetic diversity associated with regions rather than estimates of either species richness or endemism.

Do the twenty-five currently recognized biodiversity hotspots capture a large majority of PD? Phylogenies for both primates and carnivores were used to
estimate the amount of evolutionary history or PD represented by the currently
designated hotspots (Sechrest et al. 2002). The measure of both “clade evolutionary
history” (sum of branch lengths of groups of species occurring in a particular
area) and “species evolutionary history” (branch length associated with a species
back to its most recent bifurcation) is in millions of years, as estimated using a
molecular clock and branch lengths derived from a species-level phylogeny. The
results of this approach indicated that hotspots exclusively contain one-third of
the evolutionary history of these two groups. Therefore, although the establish-
ment of conservation priorities based on habitat and level of endemism has been
criticized, estimates of PD based on phylogenies of primates and mammalian car-
nivores indicate that these designated hotspots capture a considerable amount of
PD and evolutionary history for these two groups.

Although a phylogenetic approach for delimiting species and the establishment
of a natural classification are well justified in research related to biodiversity, the
establishment of conservation priorities based on phylogenies is more tenuous.
One must assume that not all species can be saved from extinction, and it is
likely that many will go extinct before being discovered. It is also true, how-
ever, that the ability to pick lineages with an evolutionary future is impossible.
For instance, the removal of one lineage during the history of the mammalian
radiations could have resulted in the elimination of our species. Who would
have predicted that this lone lineage would be so successful at exploiting our
planet?

**Molecular taxonomy and phylogenetics of prokaryotes**

In terms of species identification and discovery, microbes provide an excellent
example of how molecular techniques can enhance the study of species diversity
in a group that presents special difficulty with respect to culturing individual taxa.
New molecular approaches have greatly expanded our knowledge of worldwide
microbial diversity and have helped establish criteria for the recognition of species
of bacteria (Ward 2002).

A distance-based approach represents one of the more traditional means of rec-
ognizing species of bacteria. For whole-genome comparisons, based on DNA/DNA
reassociation, lineages that have 70% or greater similarity are considered strains
within a species, whereas lineages less than 70% similar are considered differ-
ent species (Embley & Stackebrandt 1997; Goodfellow et al. 1997; Cohan 2002;
Gevers et al. 2005). Likewise, estimates of genetic divergence based on 16S rRNA
sequences also consider different lineages as species if they are 3% or more
divergent. Some studies have even used levels of divergence (3% to differenti-
ate species, 5% genera, etc.) to diagnose categories in bacterial taxonomy (Wayne
et al. 1987; Embley & Stackebrandt 1997; Schloss & Handelsman 2004). Although
this approach has proven useful for assessing bacterial diversity, some consider
such a phenetic or distance-based approach to be arbitrary. For instance, diver-
gence based on small fragments of the 16S rRNA gene results in unstable esti-
mates of relationships among species, and hypervariable regions in this gene
show varying degrees of divergence across groups (Embley & Stackebrandt 1997;
Goodfellow et al. 1997).
In contrast to a distance-based method, a phylogenetic approach relies on sequencing (often the 16S rRNA gene) followed by the identification and placement of phylotypes in a phylogeny produced with the use of existing sequences (many from species that can be cultured and characterized) as well as new unknown sequences (Curtis & Sloan 2004). This approach provides a means of assigning species to functional groups, thus allowing for an evaluation of bacterial communities from different habitats and geographic locations (Whitaker et al. 2003; Venter et al. 2004).

Does the 16S rRNA gene provide enough information about the recognition of bacterial species and the derivation of a molecular phylogeny? As indicated by both Cohan (2002) and Gevers and colleagues (2005), the recognition of species based on sequences from the 16S rRNA gene alone is problematic in that some ecologically divergent lineages may have similar 16S rRNA sequences. Therefore, these authors suggest the recognition of species based on criteria that include both “genetic cohesion” and “ecological distinction.” The former criterion suggests that lineages of bacteria tend to form phylogenetic clusters that can be characterized both phenotypically and ecologically. Determination of ecological distinction requires the use of multiple loci, termed the “multilocus sequence analysis” (MLSA) by Gevers and colleagues (2005). Phylogenetically distinct clusters, defined by either unique combinations of genes or patterns of gene expression (characteristics that suggest functional differences or ecological distinction), are considered different species. Such an approach is straightforward for strains that can be cultured and characterized in terms of their genome organization and ecological uniqueness. In contrast, species that cannot be cultured are difficult to characterize. In such cases, decisions as to whether an unknown sequence represents a new species or strain depend on its placement relative to well-characterized forms. Alternatively, shotgun sequencing and genome assembly, such as that performed by Venter and colleagues (2004), may provide a means of discovering new species of bacteria based on the criteria of genetic cohesion and ecological distinction.

**Molecular taxonomy and phylogenetics of eukaryotes**

As with microbes, molecular markers are widely used to discover species and to diagnose phylogenetic relationships in eukaryotes. “The Barcode of Life” is a relatively recent idea that is based on the use of short sequences (650 bp) of a mitochondrial gene (cytochrome oxidase I or cox1) as a taxonomic character for the identification and potential discovery of species across broad taxonomic categories (Hebert et al. 2003a,b; Hajibabaei et al. 2007). The basic procedure is as follows: 1) The cox1 fragment is PCR amplified and sequenced from DNA obtained from an unknown specimen. 2) The sequence is then compared against a database containing sequences from previously identified taxa. 3) Criteria are established for either the identification of a particular unknown species relative to an existing species or the discovery of a new species.

Like the more traditional approach used for microbes, DNA barcoding is a distance-based approach that assigns specific cutoffs for species-level differences. The approach appears most effective at species identification, and, as such, it
provides valuable information for the identification of cryptic species and censuses designed to monitor invasive species. For instance, Hebert and colleagues (2004) used barcoding to distinguish among ten cryptic species of sympatric skipper butterflies, and the species identification was later confirmed with data from host plants, ecology, and color differences among caterpillars. Many invasive species gain entry as either larvae or forms at earlier stages of development, so identification can be difficult. Barcoding serves as an excellent means of identifying problematic invasive species (Savolainen et al. 2005).

Although extremely useful, the application of DNA barcoding does have some significant limitations, especially with respect to the general application for identification and discovery of species. First, *cox1* is less appropriate as a marker for amphibian species in that intraspecific divergence can be high (7–14%) and can overlap with estimates of interspecific differences, and the primers suggested for amplification of the *cox1* gene are not universal for amphibians (Vences et al. 2005). The latter problem, however, appears to be solved by modifying existing primers (Smith et al. 2008). For amphibians, a more effective molecular marker is the mitochondrial large subunit rRNA gene, which reveals less overlap between interspecific and intraspecific levels of divergence and is useful for diagnosing phylogenetic relationships among species (Vences et al. 2005). Likewise, different molecular markers appear more effective for not only species identification but also for the discovery of new species in plants. The database for *rbcL* gene sequences for plants is large, and this gene in combination with other loci (nuclear internal transcribed spacer [ITS] region and other chloroplast genes) provides an effective means of establishing phylogenetic relationships among taxa (Chase et al. 2005).

Second, the success of accurately identifying an existing species or discovering an undescribed species depends on the extensiveness of the existing database (Ekrem et al. 2007). Such databases are being assembled at GenBank and at the European Molecular Biology Laboratory (EMBL), and both organizations have established identifiers for searches of the barcode database. Nevertheless, these databases are limited by the existing numbers of species entries. Therefore, one problem with current searches of existing databases for the identification of either known or new species is that perfect matches may not occur (this is more likely when the databases are incomplete). There needs to be a concerted effort to increase sequence databases, especially for genes that are already being used for a broad number of species. For instance, the mitochondrial cytochrome *b* gene has been extensively examined for mammals (Bradley & Baker 2001). Therefore, mammalogists should make a concerted effort to enhance this database.

Third, barcoding currently lacks the ability to accurately place unknown specimens in a phylogenetic context. The derivation of an accurate phylogeny and the placement of unknown species in that phylogeny require the diagnosis of relationships among species and higher categories using an approach that emphasizes multiple genes and their products (DeSalle et al. 2005). The distance-based, single-gene approach used by barcoding can result in mistakes in the assignment of unknown specimens to particular groups (e.g., species complexes or genera) and can fail to identify the proper phylogenetic placement. This latter point is extremely problematic when one relies on data from a single mitochondrial gene rather than on independent data sources and overall congruence, especially
if the goal is to both discover new species and to accurately determine phylogenetic relationships among lineages. As more effective and accurate phylogenetic approaches and increased databases containing multiple gene sequences for species are developed, the overall accuracy of phylogenetic placement should be improved (Munch et al. 2008).

Finally, because mtDNA can be transferred between species through introgressive hybridization, the sole reliance on a mitochondrial marker may make it difficult to differentiate some taxa. MtDNA tracks maternal lineages, which in such cases do not reflect species lineages. One example is the North American deer of the genus *Odocoileus*, in which historical hybridization between mule deer (*O. hemionus*) and white-tailed deer (*O. virginianus*) has resulted in the establishment of a white-tailed deer mtDNA lineage within the mule deer. Nuclear markers, including Y-chromosomal sequences and allozymes, show a sister relationship between mule deer and black-tailed deer (both are *O. hemionus*), whereas mtDNA shows a sister relationship between mule deer and white-tailed deer (Carr et al. 1986; Cathey et al. 1998). In cases such as the North American deer complex, multiple genetic markers are required to resolve phylogenetic reticulations, and the use of genetic markers that track the four genetic transmission systems of mammals is an effective way to solve such evolutionary complexities (Lim et al. 2008; Trujillo et al. 2009).

Molecular approaches to the discovery of cryptic species

Similar to some species of bacteria, the phenotypic characteristics of which are unknown as a result of their inability to be cultured, many groups of eukaryotes have species complexes that contain a number of cryptic species that are indistinguishable (or difficult to distinguish) at the phenotypic level. Like research on microbes, the advent of PCR and nucleotide sequencing has enhanced the ability to identify cryptic species, many of which are physiologically, behaviorally, or otherwise distinct, despite their morphological similarity. According to two recent surveys, articles dealing with the discovery of cryptic species based on molecular data are increasing exponentially, with between 2,235 and 3,500 articles reporting cryptic species published over the last two to three decades (Bickford et al. 2006; Pfenninger & Schwenk 2007). For the most part, if one corrects for differences in species richness, the discovery of cryptic species appears to be evenly distributed in terms of taxonomic groups and geographic distribution, with examples being found in a diversity of metazoan phyla (Fig. 1–6).

In many cases, broadly distributed species that are morphologically homogeneous throughout their range actually consist of several cryptic species. For example, bonefishes of the genus *Albula* have a pantropical distribution and traditionally have been considered a single species, *Albula vulpes*. Based on a detailed phylogenetic study of bonefishes throughout most of their range, as many as eight divergent lineages can be identified with the use of mitochondrial sequences. Many of these divergent lineages occur in areas of sympatry yet demonstrate no morphological distinction (Colborn et al. 2001) (see Box 1). The cosmopolitan species of moss *Grimmia laevigata* is morphologically similar throughout its broad distribution yet, based on amplified fragment length polymorphism (AFLP) data,
the species in California consists of two cryptic species (Fernandez et al. 2006). Similarly, the sea star, *Parvulastra exigua*, a species broadly distributed in the southern hemisphere, consists of several cryptic species as defined on the basis of mtDNA divergence (Hart et al. 2006).

Amphibian diversity has been severely underestimated, partially due to the lack of morphological distinction among some forms and partially because so many species are narrowly endemic to small geographical areas. In Southeast Asia, the two broadly distributed species of frogs (*Odorrana livida* and *Rana chlorconota*) actually represent as many as fourteen cryptic species, many of which are sympatric (Stuart et al. 2006). Given the rate at which habitat is being destroyed in this region of the world, such information is necessary for the proper identification of regions of endemism and the establishment of conservation priorities. Underestimates of amphibian biodiversity are not limited to Southeast Asia. Fouquet and colleagues (2007) used data from the mitochondrial 16S rRNA gene to examine frog diversity in the neotropics. On the basis of these molecular data, they identified twice as many candidate species (129) as the number of named species examined. Likewise, the frog *Eleutherodactylus ockendeni* in Ecuador probably represents at least three genetically distinct species (Elmer et al. 2007).

The problem of morphologically cryptic species has hindered research on some model organisms. For many decades, a single species of leopard frog, *Rana pipiens*, was thought to be distributed from Canada to Panama, throughout North and Middle America (Moore 1944). For much of the twentieth century, *Rana pipiens* was used extensively in research, especially in studies of physiology and endocrinology (Hillis 1988). As source populations for experimental animals changed, however, laboratory biologists who found different populations showed markedly different physiological responses. Studies of behavior (e.g., Littlejohn and Oldham 1968; Mecham 1971), reproductive timing (e.g., Hillis 1981; Frost & Platz 1983), and genetic compatibility (e.g., Moore 1975; Frost & Bagnara 1977) all indicated the existence of many species of biologically distinct, mostly cryptic species of leopard frogs throughout North and Middle America. Sorting out the cryptic species required extensive and careful analyses of behavioral, morphological, and genetic data, although the various species eventually proved readily distinguishable using analyses of proteins (Hillis et al. 1983) or DNA sequences (Hillis & Wilcox 2005). Although molecular studies of the phylogeny of the *Rana*
BOX 1: GENETIC IDENTIFICATION OF CRYPTIC SPECIES: AN EXAMPLE IN RHOGEESSA

Amy B. Baird

Problem
Understanding and describing the diversity of life on Earth is a daunting task. This problem is made especially difficult when species cannot be distinguished from one another based on traditional means. Cryptic species occur that are morphologically indistinguishable yet are genetically, behaviorally, or otherwise quite divergent. Biologists must take these differences into account when determining taxonomic status, as well as when planning conservation and management issues for the species of interest.

Case Study
Cryptic species among mammals are relatively rare in some groups yet common in others (Baker & Bradley 2007). An example of a group of mammals that illustrates this is the bat genus Rhogeessa. Within the *R. tumida* complex, there are multiple species that are morphologically indistinguishable but were elevated to species status based on genetic differences (Box Fig. 1–1, a).

Historically, *Rhogeessa tumida* has been found from northern Mexico to northern South America. Chromosome banding studies performed within the last 30 years, however, have shown a high degree of karyotypic variation throughout this range (Bickham & Baker 1977). Allozyme analyses have confirmed that these various chromosome races were, in fact, genetically distinct groups (Baker et al. 1985), and they were later described as unique species based on these differences. Those species found to be karyotypically distinct were *R. aeneus*, *R. genowaysi*, and *R. io*.

Recent advances in DNA sequencing technology have allowed researchers to more accurately test the hypotheses of taxonomic status and degree of gene flow between members of the *R. tumida* species complex. By sequencing markers from mtDNA, Y-chromosomal DNA, and nuclear autosomal loci, researchers were able to confirm the taxonomic status of previously described members of the *R. tumida* complex (Baird et al. 2008, 2009). They showed that these species are genetically well differentiated and the molecular phylogenies are consistent with them being unique species (i.e., they are well-supported monophyletic groups; Box Fig. 1–1, b). These data also showed that with one possible exception (an ancient hybridization event between *R. tumida* and *R. aeneus*), the species in the *R. tumida* complex have been genetically isolated for a long period of time.

DNA data can often detect more subtle differences among populations than can karyotypic analyses. One surprising result of the molecular studies of the *R. tumida* complex was the finding of additional variation that did not correspond with karyotypic changes. These genetically distinct populations represent an additional two new species of *Rhogeessa* that are karyotypically identical to *R. tumida* (Baird et al. 2009). They also showed that a population of *Rhogeessa* in
Box Figure 1–1: (a) Image of one of the putative new species of *Rhogeessa*. (b) Phylogenetic relationships of members of the *R. tumida* species complex based on mtDNA sequences, modified from Baird and colleagues (2008). Note that branch lengths are not drawn to scale.

Ecuador, although karyotypically identical to *R. genowaysi*, was phylogenetically distinct based on mtDNA sequences and should be considered a separate species (named *R. velilla*). These results are significant because they were not predicted based on karyotypic or morphological analyses.

The case study of *Rhogeessa* highlights several important lessons for biodiversity studies. First, to understand the diversity of life on Earth, it is necessary to collect large amounts of DNA sequence data and analyze them in both phylogeographic and phylogenetic contexts. Second, efforts to conserve biodiversity should include an understanding of genetic variation so as to account for unknown cryptic species that might occur. This lesson is well illustrated by *Rhogeessa* because one of the cryptic species, *R. genowaysi*, is listed on the 2008 IUCN Red List as an endangered species due to habitat fragmentation and decline. This species is known only from a highly restricted range along the Pacific coast of Chiapas, Mexico, where the forests have been largely cleared for agriculture. Without genetic analyses, this species would never have been recognized; sadly, it might already be extinct.

REFERENCES


Rodney L. Honeycutt, David M. Hillis, and John W. Bickham

*Rana pipiens* complex provide a rich context for comparative studies of the evolution of physiological and behavioral traits, the initial taxonomic complexity of this group forced many researchers to seek out and develop alternative model systems. In addition, much of the existing extensive literature on *Rana pipiens* is difficult to interpret because this name was used for so many decades to refer to many biologically distinct species. An earlier understanding of the species and relationships among the species in the *Rana pipiens* complex would have greatly facilitated the use of leopard frogs as experimental model organisms.

Molecular data are being used to discover new cryptic species of mammals and to modify the existing taxonomy of some well-known forms (Box 1). For instance, Brown and colleagues (2007) used genetic data to examine variation in the African giraffe, and found at least seven monophyletic lineages that probably represent distinct species. Recently, two species of African elephant (*Loxodonta africana* and *Loxodonta cyclotis*) have been recognized based on their genetic distinction at several nuclear gene loci (Roca et al. 2001). In the case of the elephants, the two species are not cryptic in that they do show some morphological differences. In other cases, molecular phylogenies derived primarily from mitochondrial sequences have been used to modify the existing taxonomy of mammals, either by relegating subspecies to specific-level status or rearranging existing subspecies boundaries. One case involves the Sumatran tiger (*Panthera tigris sumatrae*), which was designated as a species on the basis of its unique phylogenetic position relative to mainland forms (Cracraft et al. 1998). In this case, the authors used a PSC to justify this taxonomic change. Modification of subspecies boundaries of the common chimpanzee, *Pan troglodytes*, was recommended based on mitochondrial data that subdivided the three recognized subspecies into two monophyletic groups (Gonder et al. 2006).

The discovery of cryptic species is important to biodiversity research as well as to other areas of science. Identification of morphologically similar, yet genetically distinct, species is important to conservation efforts, especially if the establishment of conservation priorities is based on the uniqueness of particular lineages. Distinguishing cryptic species may result in partitioning patterns of endemism into finer spatial scales that are more conducive to conservation efforts, such as seen in Australian freshwater systems (Cook et al. 2008). Cryptic species also have implications for evolutionary biology in terms of understanding morphological stasis, speciation, ecological overlap, species recognition, host/race speciation, and many other topics. Finally, the recognition of cryptic species has applications in both medicine and agriculture, especially as it relates to the identification of human pathogens and plant pests and pathogens. Therefore, any detailed assessment of worldwide biodiversity will benefit from the use of genetic markers for identification and discovery of species. Without such an approach, our overall species count might be a severe underestimate.

**ENHANCING RATE OF SPECIES DISCOVERY**

Taxonomic practice reveals that not all taxonomic characters are equally useful. Some are powerful indicators of relationship, others are not. The usefulness of a
character depends on its information content, that is, on its correlation with the natural groupings of taxa produced by evolution.

(Mayr 1969, p. 123)

Analyzing molecular characters in a phylogenetic framework offers a means of accelerating the rate of species discovery and identification, especially in groups containing either cryptic species or large numbers of species. Although molecular-based approaches are important for studying biodiversity, the application of traditional taxonomy is essential if our information databases are to be biologically sound and meaningful (Wheeler 2004).

Taxonomic databases derived from molecular markers exist for microbes, and newly developed molecular approaches have greatly increased the rate of species discovery and identification of microbial diversity. Application of these methods, combined with genomics, methods of sequence assembly, robotics, and the use of informational databases, has greatly increased overall estimates of microbial diversity worldwide. All of these approaches emphasize the acceleration of species identification and discovery with the use of high-throughput methods.

Some of these high-throughput methods used for studies of microbes have greatly accelerated the identification of microbial species, thus allowing for detailed studies of microbial diversity in different regions as well as the assessment of changes in diversity in response to environmental perturbations. For instance, microbial communities respond quickly to changes in the environment, yet assessing community response is hindered by the quantification of microbial diversity in both terrestrial and aquatic ecosystems. In marine ecosystems, the more traditional means of quantifying phytoplankton diversity, especially in terms of identifying species and genera, require microscopy. As indicated by Ellison and Burton (2005), identification via microscopy is more qualitative than quantitative, and even flow cytometric quantification is limited in the number of taxa that can be identified by photopigmentation. These authors have developed a method that uses DNA hybridization and bead-array technology for both the identification and quantification of species. This particular approach bypasses PCR amplification and instead assesses species diversity directly from whole DNA isolated from water samples. Taxon-specific probes containing different fluorescent tags attached to beads are hybridized to specific components of the total DNA. Flow cytometric techniques are then used for species identification and quantification, and the procedure accommodates screening on ninety-six well plates. Therefore, the method allows for rapid assessment of species diversity in different marine environments.

High-throughput methods are available for rapid assessment of bacterial diversity. Many of these methods are PCR-based and rely on assays of variation in the rRNA genes. Terminal restriction fragment length polymorphism (T-RFLP) is used to produce species-specific DNA fingerprints that can be analyzed on an automated sequencer (Schütte et al. 2008). The method uses total DNA extracted from a substrate (e.g., soil, water), fluorescently labeled primers, PCR amplification of the 16S rRNA gene, and digestion of the PCR product with specific restriction endonucleases. Existing databases of fingerprint profiles for particular species can be used to select restriction endonucleases and to identify species
by comparison to known taxa in the database (Marsh et al. 2000). Serial analysis of ribosomal sequence tags (SARST) and parallel pyrosequencing provide another high-throughput method for the rapid identification of species (Neufeld et al. 2004; Ashby et al. 2007; Huse et al. 2008). These methods amplify small hypervariable regions (17–55 base pairs) of the 16S rRNA gene from total DNA, and clones as many as twenty sequence tags in a single plasmid. Microarrays are used to sequence multiple plasmids, and particular sequence tags are used to identify taxa of microbes. This technique is cost effective and allows for high-throughput and rapid identification of components of a bacterial community. Although the size of sequenced fragments is limited, making them less reliable in a detailed phylogenetic study, these markers do allow for an assessment of bacterial communities as well as the discovery of rare components of the community.

A phylogenetic approach for species discovery of microbes relies on sequencing cloned amplicons (PCR amplification products) from 16S rRNA fragments amplified from total DNA extractions (Cottrell et al. 2005; Green & Keller 2006). This tree-based approach has been the “gold standard” for studying microbial biodiversity, and new high-throughput methods of DNA isolation, PCR amplification, cloning, and sequencing allow for hundreds of samples to be processed in a short period of time. This particular approach is essential because most species of microbes are known only from nucleotide sequences (Amann et al. 1995). Another more recent approach involves shotgun sequencing of sheared DNA cloned into specific vectors (Castiglioni et al. 2004; Venter et al. 2004; Schloss & Handelsman 2005; Tringe et al. 2005). Randomly obtained sequences are assembled into contigs and scaffolds. This “metagenomic approach” provides an effective means of species discovery in a large number of habitats.

In addition to the high-throughput methods for discovering microbial diversity, new technological advancements are making it possible to accelerate the discovery of eukaryotic species by several orders of magnitude. These molecular-based methods offer the ability to produce data in a format for rapid species identification and phylogenetic placement of unknown taxa. Most of these new devices use nanotechnology that provides platforms for rapid PCR amplification and sequencing. For instance, Blazej and colleagues (2008) describe a nanoliter-scale bioprocessor capable of all the steps necessary for sequencing including PCR, purification of PCR products, and capillary electrophoresis. This “lab-on-a-chip” device uses low amounts of DNA template and provides a means of sequencing more than 550 bp at high accuracy and low cost. Another instrument based on chip technology provides a means of PCR amplification and capillary analysis (Govind et al. 2003). Drmanac and colleagues (1998) also present a high-throughput technique, termed sequencing by hybridization (SBH), that uses labeled oligonucleotide probes (of known sequence) in replicate arrays that are hybridized to template DNA. As a result of ongoing technological advancements, it is not far-fetched to imagine a relatively inexpensive, handheld device that can isolate DNA, PCR amplify specific DNA fragments, rapidly sequence PCR products, and organize sequence data for immediate phylogenetic analysis and the screening of existing databases. Such a device could be carried into the field by biologists or other interested individuals and used to quickly identify
unknown species and to discover species that have never been previously identified by biologists. Such technology is needed if we have any hope of achieving a reasonably complete understanding of the biodiversity of the Earth in this century.

**PHYLOGENETIC DATABASES**

Imagine an electronic page for each species of organism on Earth, available everywhere by single access on command.

(Edward O. Wilson, 2003, p. 77)

Identifying the name of an organism is of little utility by itself. The value in identifying an organism is that the name ties the organism to the scientific literature and other information about that species. Thus, the final and perhaps most important link between systematics and conservation is the establishment of effective, useful, and comprehensive databases on the diversity of life. Given that biological taxonomy is based on phylogenetic relationships, such databases need to be organized and searchable using phylogenetic information. In other words, when a biologist identifies an unknown as linked to a particular part of the Tree of Life (using, e.g., the methods described in the previous sections), he or she needs to be able to connect that organism with all the information on that species. If the unknown is a new species that has never before been studied, then the best information available will be the information on phylogenetically related species. This comparative framework is essential to the use and understanding of biodiversity resources.

There have been many recent efforts to develop effective systematic databases. Many of these are quite limited and amount to little more than lists of names, perhaps linked to bibliographic information on the original description. A more effective approach is to link all of the world’s species with all of the information on those species. This is the idea behind the Encyclopedia of Life project (Wilson 2003; see http://www.eol.org). After the database is created, a biologist will be able to identify an unknown organism by placing it within the Tree of Life; this placement would automatically identify the species within the framework of biological taxonomy and immediately link the organism to the information on that (and related) species. Imagine the many and varied uses of such information, from human health applications to conservation biology, to bioprospecting for new useful compounds, to basic biological research. Suddenly, systematic biology would be a critical and necessary component of almost every interaction between people and the living world.

How will automated identification and phylogenetic databases make a difference to conservation biology? Our current ability to protect and understand biodiversity on Earth is severely hampered by our ignorance of what we are trying to preserve and study. If we only know about a small fraction of life on Earth, how can we possibly understand the function of ecosystems? At present, conservation biologists are like car mechanics, who are working to keep a car running, but who only have fragmentary knowledge about the function of 10% of the engine...
parts. The other 90% of the parts are falling off the engine faster than they can be discovered, and it is unclear how much longer the car will keep running. In the case of the living world, systematics will help us identify and understand the various components of biodiversity, but only if biologists are willing to adopt new technologies and strategies to tackle the enormous undertaking that lies before us.

REFERENCES


Biodiversity discovery and its importance to conservation


Biodiversity discovery and its importance to conservation


Biodiversity discovery and its importance to conservation


Rosenzweig ML (1992) Species diversity gradients: we know more and less than we thought. *Journal of Mammalogy*, 73, 715–730.


acorn barnacle, active differentiation for, 117–119
gene-frequency shifts for, 117–119
*Acropora*, hybridization among, 182–183
adaptation, genetic. See genetic adaptation
adaptive differentiation
in European white oaks, 101–120
ancient examples of, 102–105, 107
Bulmer effect in, 112–115
components of, 110–111
contemporary dynamics of, 109–116
dynamics of, 112–115
ereasure of, migration as influence on, 105–107
gene flow and, 115–116
historical dynamics of, 102–109
LDD in, 105, 107
LND in, 107
minimal genetic markers for, 104–105
pollen flow as influence on, 105–107
provenance tests for, 102
recent examples of, 107–109
for refugial populations, 103–104
as transient, during colonization, 105
among high-dispersing species, 117–119
for acorn barnacle, 117–119
*AFLP*. See amplified fragment length polymorphism
agriculture
biodiversity and, 35–47
development of, 35–36
allelic recharge, among mammals, 194–196
among banner-tailed kangaroo rats, 194–196
in bottleneck events, 194–195
emigration rates as influence on, 195
allozymes, 330
American chestnut trees, 63–64
mortality factors for, 63
reintroduction efforts for, 63, 307–309
disease resistance and, 308–309
molecular scatology for, 63–64
*Ammophila breviligulata*, dune restoration and, 213–215
molecular and phenotypic data for, 215
AMOVA analysis, for evolutionary toxicology, 352
amphibians. See also spadefoot toads, hybridization among
cryptic species of, phylogenetics for, 21
extinction rates for, 5–6
sex-determining genes in, 78–79
evolution from TSD, 80
evolutionary plasticity of, 80
GSD and, 80
species discovery rates for, 9
amplified fragment length polymorphism (AFLP), 20
evolutionary toxicology and, in detection methods, 331–332
in fishes, for sex-determining genes, 88
for heritable phenotypes, 56
anthropogenic hybridization, 174–177
arthropods, heritable phenotypes for, 54–55
association genetics, 132–148
in animals, 132–141
body-color polymorphism and, 138
candidate gene approach to, 135, 138
gene-wide, 132–138
natural selection signature tests in, 141
neutrality tests for, 136
QTL studies for, 132–138
methodology for, 125
natural selection in
in animals, 141
in candidate genes, 136
in plants, 146–148
in plants, 141–151
candidate gene approach to, 145–146
in Douglas-firs, 148–151
genoem wide, 141–145
natural selection signature tests in,
146–148
neutrality tests for, 147
QTL studies in, 141–145
association mapping, 126
for Douglas-firs, 149–151
Azerbaijan, evolutionary toxicology in, 347–350
bacteria, species discovery rates for, 9
banner-tailed kangaroo rats, allelic recharge among, 194–196
bar coding, 18–20
for DNA, 18–19
mitochondrial markers in, 20
phylogenetic derivation from, 19–20
species identification from, 19
bears. See grizzly bears, sex identification and population sampling for; Kermode bears, conservation strategies for
biodiversity, 2–24
advances in medicine as result of, 2
for PCR, 2
agriculture and, 35–47
allelic recharge and, 194–196
cryptic species and, 24
definition of, 2
discovery of, 1–28
distribution of, 3–4
patterns of, 3
enumeration of, 8–13
status of species discovery and description, 8–11
extinction of species and, 4–8
increased rates of, 5
IUCN listings for, 5–6
mass, 5
patterns of, 4–5
risks of, 5–6
future inventory of, 13–24
phylogenetics in, 13
taxonomy in, 13
gene flow and, 35–47
in plants, 36
for GM crops, 35–47
environmental hazards as result of, 36
gene flow in, 36–41
non-GM crops v., 35
production methods for, 35
“hot spots,” 4
hybridization and, 169–170
importance of, 2–3
indirect benefits of, 2–3
after landscape fragmentation
for endangered species, 212–234
immediate consequences on, 190–191
“living dead” species and, 208
long-term effects of, 192–193
polymorphism and, 190–191
predictions for, 193, 208
short-term effects of, 191–192
spatial genetic structure and, 191
from weedy rice, 45
from gene flow, 47
Biological Dynamics of Forest Fragments Project, 202
biomarkers, evolutionary toxicology and, 322
birds. See also black-capped vireo, landscape fragmentation and; golden-cheeked warbler, landscape fragmentation and; extinction rates for, 7–8
heritable phenotypes for, 55
landscape fragmentation as influence on, 217–226
for black-capped vireo, 222–226
for golden-cheeked warbler, 218–222
sex-determining genes in, 77–79
molecular assays for, 79
black-capped vireo, landscape fragmentation and, 222–226
bottleneck events and, 223
case study assessment for, 226
conservation management factors for, 225
gene flow and, 225
genetic variations among, 222–224
Mantel tests for, 224–225
golden-cheeked warbler and, biogenetic comparison with, 219
habitat requirements for, 222, 225–226
body-color polymorphism, 138
among Kermode bears, 260
among Soay sheep, 139–141
bottleneck events, 194–195
black-capped vireo and, 223
wildlife reintroduction during, 312–313
Bulmer effect, 112–115
California tiger salamanders, hybridization of, 180–181
captive breeding programs, for conservation of species, 267–291
coefficient of relatedness for, 270
founding populations in, 273
gene diversity, 270–271
goals of, 267, 272–273
inbreeding coefficient in, 269–270
incomplete pedigrees in, application of concepts to, 271–272
kinship in, 269
mean, 269
molecular methods for, 267–268, 276–291
for allele identification, 288–289
with animal models, 291
for estimating relatedness, 279–284
for gene diversity, 287–288
for genetic management, 289–290
inbreeding and, 287
markers in, 283–284
for organisms living in groups, 284–288
pedigree issues and, resolution of, 276–279
for quantitative genetic analysis, 290–291
for relationship categories identification, 282–284
studies on, 268
for unresolved needs, 289–291
for variation in selection, 290
population growth in, 273–274
population maintenance in, 274–275
successes as result of, 267
terms for, 269–272
chromosomes, sex-determining genes and, 77
in fishes, 85, 86
in reptiles, 79
climate change
community genetics and, 66–68
in deserts, 66
in mountain forests, 66
prediction models for, 67–68
conservation and, 66
hybridization of species as result of, 180
Pacific salmon recovery planning and, 262
community genetics, 50
case studies for, 51
climate change and, 66–68
in deserts, 66
in mountain forests, 66
prediction models for, 67–68
conservation and management in, 52–53
population analysis for, 52–53
three-way interactions in, 52
for foundation species, 50
as community drivers, 50
definition of, 55–56
dependent communities influenced by, 51–52
heritable phenotypes in, 56–57
for GEOs, 61–66
ecological consequences of, 62, 65–66
ecosystem phenotypes in, 62
fitness of, 62
as foundation species, 61–62
native species hybridization by, 62
nontarget phenotypes in, 62
heritable phenotypes, 53–59
AFLP molecular markers for, 56
for arthropods, 54–55
for birds, 55
conservation consequences for, 56–59
in foundation species, 56–57
for insects, 55
Mantel tests for, 56
for microbes, 55
with species-area relationships, 58–59
species differentiation from, 57–58
support for similar genotypes, 56
management applications for, 68–69
donor tagging as part of, 69
for MVIPs, 60–61
for MVPs, 59–61
for generalist species, 60
population size as factor in, 60
transfer experiments for, 60
terms for, 51
variation in, 50
conservation, of species
for black-capped vireo, management factors for, 225
with captive breeding programs, 267–291
coefficient of relatedness in, 270
founding populations in, 273
gene diversity, 270–271
goals of, 267, 272–273
inbreeding coefficient in, 269–270
incomplete pedigrees in, application of concepts to, 271–272
kinship in, 269
molecular methods for, 267–268, 276–291
population growth in, 273–274
population maintenance in, 274–275
successes as result of, 267
terms for, 269–272
climate change and, 66
community genetics and, 52–53
population analysis for, 52–53
three-way interactions in, 52
in dune restoration, 214–215
for Ammophila breviligulata, 214–215
EDGE scores for, 15
genetic adaptation for, 123–153
association genetics and, 132–148
detection methods for, 125–132
natural populations in, 125
population genetics and, 123–124, 129–132
genetic markers in, 74–77
DNA fingerprinting, 74, 75
individual identification in, 74
sexing assays, with DNA, 74–77
for golden-cheeked warbler, landscape fragmentation and, 220
hybridization and, 169–185
among Acropora, 182–183
anthropogenic, 174–177
with applied studies, 184–185
biodiversity and, 169–170
case studies for, 173–174, 175
categorization of, 170
correlates for, 176
disease resilience as result of, 183
ecological correlates of, 177
extinction and, 169
habitat specialization as correlate for, 180–181
mating issues, for original species, 171–172
natural, 174–177
predictors of, 178–181
selective removal of nonendangered species and, 179
among spadefoot toads, 183
species fitness as result of, 169
zone dynamics for, 177, 181–182
hybridization and applied studies for, 184–185
for Kermode bear, 259–261
landscape fragmentation as influence on, literature survey of, 229–230
for Pacific salmon, 244–262
abundance and productivity assessments in, 248–250
climate change as influence on, 262
conservation, of species (cont.)
ESU viability and, 240, 254–257, 258
future applications of, 257–262
integration strategies for, 241
methodologies for, 247–248
molecular approaches to, 262
population identification in, 246–248
population viability and, 248–254
Recovery Domains in, 244–245
risk factor integration in, 252–254
spatial structure and diversity assessments in, 251–252
terms for, 240
TRTs in, 244
VSP and, 246, 254, 257, 258
with pedigree reconstruction, 285–286
with phylogenetics and, 13–17
delimiting species and, 14–15
PSC and, 14
crystallography and, with landscape fragmentation, 206–207
management strategies for, 207
promotion of, from hybridization, 182–184
with wildlife reintroduction, 296–314
development of, 296
founding event phase of, 303–305
gene flow consequences of, 299–303
population establishment phase of, 305–310
population growth phase of, 310–313
population theory and, 297–298, 299
variation predictions for, 298
conspecific sperm precedence (CSP), 181–182
crustaceans. See rusty crayfish, hybridization
among, zone dynamics as factor in
CSP. See conspecific sperm precedence

Darwin, Charles, 1
dearthly study by, 1
dichlorodiphenyltrichloroethane (DDT), 327
Dinizia excelsa, pollen movement for, 202–203
discovery of species. See species discovery, rates of
disease resistance
in American chestnut trees, 308–309
in GM crops, 36
“distinct population segments” (DPS), 243–244
DNA. See deoxyribonucleic acid
DNA adduct studies, 324–325
measurement methods in, 325
phases of, 324–325
Douglas-firs, association genetics in, 148–151
mapping studies for, 149–151
population genomics in, 149
QTL mapping for, 149
DPS. See “distinct population segments”
dune restoration, 214–215
Ammophila breviligulata and, 214–215
molecular and phenotypic data for, 215

E. cyclocarpum, pollen movement for, 204–206
mean parameters for, 205
study sites for, 204–205
ecosystem genetics, 50
case studies for, 51
climate change and, 66–68
in deserts, 66
in mountain forests, 66
prediction models for, 67–68
conservation and management in, 52–53
population analysis for, 52–53
three-way interactions in, 52
for foundation species, 50
as community drivers, 50
definition of, 55–56
dependent communities influenced by, 51–52
heritable phenotypes in, 56–57
for GEOs, 61–62, 66
ecosystem consequences of, 62, 65–66
ecosystem phenotypes in, 62
fitness of, 62
as foundation species, 61–62
native species hybridization by, 62
nontarget phenotypes in, 62
heritable phenotypes, 53–59
AFLP molecular markers for, 56
for arthropods, 54–55
for birds, 55
conservation consequences for, 56–59
in foundation species, 56–57
for insects, 55
Mantel tests for, 56
for microbes, 55
with species-area relationships, 58–59
species differentiation from, 57–58
support for similar genotypes, 56
management applications for, 68–69
donor tagging as part of, 69
for MVIPs, 60–61
for MVPs, 59–61
for generalist species, 60
population size as factor in, 60
transfer experiments for, 60
variation in, 50
ED. See evolutionary distinctiveness
EDGE score. See evolutionary distinct and
globally endangered score
EE. See environmental effects (EE), on
sex-determining genes in fishes
EMBL. See European Molecular Biology
Laboratory
emigration rates, allelic recharge among
mammals and, 195
Endangered Species Act (ESA)
Pacific salmon under, 239, 244–246
delisting of, 255
population identification for,
246–248
Recovery Domains in, 244–245
strategy mandates for, 245–246
protection criteria for, 243–244
DPS in, 243–244
endangered species, landscape
fragmentation as influence on,
212–234. See also black-capped vireo,
landscape fragmentation and;
golden-cheeked warbler, landscape
fragmentation and; Pacific salmon
among birds, 217–226
for black-capped vireo, 222–226
for golden-cheeked warbler, 218–222
genetic consequences of, 212–213
literature survey of, 226–233
for conservation status, 229–230
for genetic responses to fragmentation,
228–229
for habitat structure, 232–233
for species vagility, 230–232
population fragmentation among,
213–216
in structurally complex habitats, 217
vagility of, 217
environmental effects (EE), on
sex-determining genes in fishes, 81
environmental sex determination (ESD),
79–80
behavior as influence on, in fishes, 81–82
social structure as factor in, 82
in fishes, 81–83
behavior as influence on, 81–82
in protogynous species, 82
temperature as influence on, 82–83
TSD and, 83
ESA. See Endangered Species Act
ESD. See environmental sex determination
ESU. See evolutionarily significant unit
eukaryotes, phylogenetics of, 18–20
with bar coding, 18–20
with mitochondrial markers, 20
species identification from, 19
European Molecular Biology Laboratory
(EMBL), 19
European white oaks
adaptive differentiation in, 101–120
ancient examples of, 102–105, 107
Bulmer effect in, 112–115
components of, 110–111
contemporary dynamics of, 109–116
dynamics of, 112–115
erasure of, migration as influence on,
105–107
genec flow and, 115–116
historical dynamics of, 102–109
LDD in, 105, 107
LND in, 107
minimal genetic markers for, 104–105
pollen flow as influence on, 105–107
provenance tests for, 102
recent examples of, 107–109
for refugial populations, 103–104
as transient, during colonization, 105
genetic differentiation among, 106, 109
evolutionarily significant unit (ESU), 15
categorization of, 15–16
criteria for, 15
NOAA guidelines for, 244
Pacific salmon as, in recovery planning,
240, 254–257, 258
risk integration for, 256–257
phylogeographic concordance for, 15
evolutionary distinct and globally
endangered (EDGE) score, 16
for conservation of species, 15
ED criteria for, 16
evolutionary distinctiveness (ED), 16
evolutionary toxicology, 320–355
case studies for, 347–352
in Azerbaijan, 347–350
in Pigeon River region, 351–352
causality assessment for, 337–347
by biological gradient, 344
by consistency of association,
337–347
by specificity of association, 340–342
by strength of association, 338–339
by time order, 342–344
from DDT, 327
definition of, 320
with microsatellites, 330–331
detection methods, 329–347
with AFLP, 331–332
with allozymes, 330
through DNA, 331–337
for genotoxicants, 329–330
genetic ecotoxicology, 322–325
DNA adduct studies in, 324–325
future applications for, 325
historical background of, 322–324
evolutionary toxicology (cont.)
genetic systems influenced by, 321–329
allele frequency in, 328–329
AMOVA analysis for, 352
assignment tests for, 354
Bayesian analysis for, 353–354
in biomarkers, 322
coalescent-based analysis for, 352–353
within DNA, 321
history of, 321–322
MLE analysis for, 353
multivariate analysis for, 352
population-level consequences in, 325–329
reproduction effects, 321
response categories for, 327–328
statistical assessment methods for, 352–354
transgenerational inheritance in, 327
mutations from, 320–321, 329
within DNA, 321
history of, 321–322
MLE analysis for, 353
multivariate analysis for, 352
population-level consequences in, 325–329
reproduction effects, 321
response categories for, 327–328
statistical assessment methods for, 352–354
transgenerational inheritance in, 327
mutations from, 320–321, 329
toxicogenomics, 335–336
workshops and symposia for, 323
Ewens-Watterson neutrality test, 130
extinction, of species, 1
biodiversity and, 4–8
hybridization and, 169
increased rates of, 5
for amphibians, 5–6
for birds, 7–8
for fishes, 8
for mammals, 6–7
for reptiles, 8
IUCN listings for, 5–6
patterns of, 4–5
Rhogesia tumida, 22–23
risks of, 5–6
Tree of Life and, 1
female-heterogametic systems, in fishes, 81
fishes. See also lake sturgeon, sex-determining genes in; Pacific salmon
ESD in, 81–83
behavior as influence on, 81–82
in protogynous species, 82
temperature as influence on, 82–83
TSD and, 83
extinction rates for, 8
genetically engineered, 38, 47
as community drivers, 50
definition of, 55–56
dependent communities influenced by, 51–52
heritable phenotypes in, 56–57
GEOs as, 61–62
heritable phenotypes in, 56–57
gene(s), sex-determining, in vertebrates, 74
genetic markers, in conservation, 74–77
gene flow
adaptive differentiation and, 115–116
biodiversity and, 35–47
in plants, 36
among black-capped vireo, 225
definition of, 36
in GM crops, 36–41
aggressive weed formation from, 41
community-wide changes from, 40–41
plant fitness as factor for, 40
population genetics as factor for, 39–40
selective advantages from, 40
studies on, 39
from pollen and seed movement, with landscape fragmentation, 203
for weedy rice, 43, 46
genetic evidence of, 44
genetic adaptation, 123–153. See also association genetics
association genetics, 132–148
in animals, 132–141
methodology for, 125
in plants, 141–151
detection methods for, 125–132
association mapping, 126
candidate gene approaches in, 126–127
gene network analysis approaches in, 127–129
with LD, 126, 127–128
population genetic approaches in, 129–132
quantitative approaches in, 126
natural populations in, 125
definitions of, 125
QTL methodologies for, 125, 128–129
population genetics and, 123–124, 129–132
hitchhiking mapping in, 129–131
LD in, 124, 126
neutrality tests for, 131–132
in nonmodel organisms, 130–131
outlier analysis in, 129–131
for species conservation and management, 151–153
genetic ecoxicology, 322–325
DNA adduct studies in, 324–325
future applications for, 325
historical background of, 322–324
genetic sex determination (GSD)
in amphibians, 80
evolution from TSD, 80
in fishes, 83–86
chromosomal influence on, 85
in lake sturgeon, 89
genetically engineered organisms (GEOs),
community genetics for, 61–66
ecological consequences of, 62, 65–66
ecosystem phenotypes in, 62
fitness of, 62
as foundation species, 61–62
native species hybridization by, 62
nontarget phenotypes in, 62
genetically modified (GM) crops, 35–36
biodiversity and, 35–36
environmental hazards as result of, 36
disease resistance as, 36
to nontarget organisms, 36
transgene movements as, 36
gene flow in, 36–41
aggressive weed formation from, 41
community-wide changes from, 40–41
plant fitness as factor for, 40
population genetics as factor for, 39–40
selective advantages from, 40
studies on, 39
non-GM crops v., 35
production methods for, 35
genetics. See also association genetics;
community genetics; ecosystem
genetics; genetic adaptation; genetic
sex determination; population
_genetics
association, 132–148
in animals, 132–141
methodology for, 125
in plants, 141–151
community and ecosystem, 50
case studies for, 51
climate change and, 66–68
conservation and management in, 52–53
for foundation species, 50
for GEOs, 61–66
heritable phenotypes, 53–59
management applications for, 68–69
for MVIPs, 60–61
for MVPs, 59–61
terms for, 51
variation in, 50
phylogenetics
bar coding and, 19–20
biodiversity and, 13
conservation of species and, 13–17
for cryptic species, 20–24
databases for, 27–28
ESU and, 15
of eukaryotes, 18–20
lineage divergence and, 16
MU and, 15
PD and, 16–17
of prokaryotes, 17–18
species discovery rates with, 26
population, 123–124, 129–132
hitchhiking mapping in, 129–131
LD in, 124, 126
neutrality tests for, 131–132
in nonmodel organisms, 130–131
outlier analysis in, 129–131
quantitative, 123
GEOs. See genetically engineered organisms
GM crops. See genetically modified crops
golden-cheeked warbler, landscape
fragmentation and, 218–222
black-capped vireo and, biogenetic
comparison with, 219
case study assessment for, 226
conservation and recovery efforts for, 220
generic variation among, 220–222
Mantel tests for, 221–222
habitat specificity for, 219–220
vagility of, 232
Gorman, George, 299
grizzly bears, sex identification and
population sampling for, 76–77
GSD. See genetic sex determination
_Guaiacum sanctum_, pollen movement for, 206
habit restoration. See dune restoration
Hacienda Solimar, pollen movement in, 204–205
heritable phenotypes
AFLP molecular markers for, 56
for arthropods, 54–55
for birds, 55
community genetics and, 53–59
conservation consequences for, 56–59
in foundation species, 56–57
Mantel tests for, 56
with species-area relationships, 58–59
species differentiation from, 57–58
support for similar genotypes, 56
for insects, 55
for microbes, 55
hermaphroditism, in fishes, 81
high-yielding varieties (HYVs), of weedy rice, 41–42
first observation of, 42
hitchhiking mapping, 129–131
“hot spots,” of biodiversity, 4
establishment of, 4
PD and, 16–17
plant diversity and, 4
Index

Hudson-Kreitman-Aguade test, 131
hybridization, in endangered taxa, 169–185
  among Acropora, 182–183
anthropogenic, 174–177
applied studies for, 184–185
biodiversity and, 169–170
case studies for, 173–174, 175
  missing data for, 178
categorization of, 170
correlates for, 176
  habitat specialization as, 180–181
disease resilience as result of, 183
ecological correlates of, 177
extinction and, 169
habitat specialization as correlate for, 180–181
  for California tiger salamanders, 180–181
climate change as influence on, 180
mating issues
  for original species, 171–172
  for rusty crayfish, 171–172
natural, 174–177
predictors of, 178–181
demography as, 178–179
habitat modification as, 178
population size as, 179
promotion of conservation as result of, 182–184
  with applied studies, 184–185
selective removal of nonendangered species and, 179
among spadefoot toads, 183
species fitness as result of, 169
zone dynamics for, 177, 181–182
CSP and, 181–182
  for rusty crayfish, 171–172
HYVs. See high-yielding varieties
insects
  heritable phenotypes for, 55
  species evaluation of, shortcomings for, 9
International Union for Conservation of Nature (IUCN)
species life span listings, 5–6
threatened species compilation, 7
IUCN. See International Union for Conservation of Nature
Kermode bears, conservation strategies for, 259–261
color polymorphism among, 260
logging as factor in, 260–261
genetic consequences from, 261
lake sturgeon, sex-determining genes in, 88–94
candidates genes, 89
GSD and, 89
random markers in, 90
  alternatives to, 90
  with RAPD, 90
RDA for, 90
sexual maturity for, 89
subtractive hybridization for, 90
transcriptome pyrosequencing for, 90–93
landscape fragmentation
  allelic recharge and, among mammals, 194–196
  for banner-tailed kangaroo rats, 194–196
  in bottleneck events, 194–195
  emigration rates as influence on, 195
biodiversity and
  for endangered species, 212–234
  immediate consequences on, 190–191
  long-term effects of, 192–193
  polymorphism and, 190–191
  predictions for, 193
  short-term effects of, 191–192
  spatial genetic structure and, 191
endangered species and, 212–234
  among birds, 217–226
  genetic consequences of, 212–213
  literature survey of, 226–233
  population fragmentation among, 213–216
  in structurally complex habitats, 217
  vagility of, 217
pollen and seed movement and, 190–208
biodiversity after, 190–191
case studies for, 201–206
conservation and, 206–207
estimates of, 193–200
gene flow with, 203
  genetic relatedness and, 201
  seed dispersal, 200–201
  among tropical plant species, 197
LD. See linkage disequilibrium
LDD. See long-distance dispersal
linkage disequilibrium (LD)
in genetic adaptation, 124, 126, 127–128
QTL mapping v., 127–128
“living dead” species, 208
LND. See Local Neighborhood Diffusion
  Local Neighborhood Diffusion (LND), 107
  long-distance dispersal (LDD), 105, 107
major histocompatibility complex (MHC), 333
male-heterogametic systems, in fishes, 81
mammals. See also banner-tailed kangaroo rats, allelic recharge among; grizzly bears, sex identification and population sampling for; Kermode bears, conservation strategies for; Soay sheep, body-color polymorphism among
allelic recharge among, 194–196
  among banner-tailed kangaroo rats, 194–196
  in bottleneck events, 194–195
  emigration rates as influence on, 195
association genetics in, 132–141
body-color polymorphism and, 138
candidate gene approach to, 135, 138
genome-wide, 132–138
natural selection signature tests in, 141
neutrality tests for, 136
QTL studies for, 132–138
cryptic species of, phylogenetics for, 24
extinction rates for, 6–7
*Rhogeessa tumida*, 22–23
sex-determining genes in, 77–79
exceptions for, 77–78
molecular assays for, 78
primary products in, 78
sex identification and population sampling for, 76–77
among grizzly bears, 76–77
species discovery rates for, 9
management unit (MU), 15
Mantel tests, 56
for black-capped vireo, for genetic variation, 224–225
for golden-cheeked warbler, for genetic variation, 221–222
McDonald-Kreitman test, 131
MHC. See major histocompatibility complex
microbes
heritable phenotypes for, 55
species discovery rates for, 9, 25
microsatellites, 330–331
minimum viable interacting populations (MVIPs), community genetics for, 60–61
minimum viable populations (MVPs), community genetics for, 59–61
for generalist species, 60
population size as factor in, 60
transfer experiments for, 60
mitochondrial markers, 20
MLSA. See multilocus sequence analysis
molecular taxonomy, 17–18
of eukaryotes, 18–20
with bar coding, 18–20
with mitochondrial markers, 20
species identification from, 19
of prokaryotes, 17–18
distance-based approaches to, 17
MLSA for, 18
sequencing for, 18
species recognition in, 18
mountain forests, climate change in, community genetics and, 66
MU. See management unit
multilocus sequence analysis (MLSA), 18
mutations, from evolutionary toxicology, 320–321, 329
MVIPs. See minimum viable interacting populations
MVPs. See minimum viable populations
National Science Foundation, 1
natural hybridization, 174–177
natural selection, in association genetics in animals, 141
among candidate genes, 145–146
in plants, 146–148
naturalists. See Darwin, Charles; Wallace, Alfred Russel
neutrality tests, for population genetics, 131–132
in animals, 136
Ewens-Watterson test, 130
Hudson-Kreitman-Aguade test, 131
limitations of, 131
McDonald-Kreitman test, 131
in plants, 147
NOAA. See National Oceanic and Atmospheric Administration
outlier analysis, in population genetics, 129–131
Ewens-Watterson neutrality test and, 130
testing parameters in, 130
Pacific salmon, 239–262
ecological role of, 239
under ESA, 239, 244–246
delisting of, 255
Recovery Domains in, 244–245
strategy mandates for, 245–246
evolution history as factor in, 241–243
diversity patterns in, 242
dynamic adaptations in, 243
replaceable populations within, 243
transplant limitations in, 242–243
federal protection for, 243–244
under ESA, 244–246
recovery planning for, 244–262
abundance and productivity assessments in, 248–250
climate change as influence on, 262
ESU viability and, 240, 254–257, 258
future applications of, 257–262
integration strategies for, 241
methodologies for, 247–248
molecular approaches to, 262
population identification in, 246–248
population viability and, 248–254
Recovery Domains in, 244–245
risk factor integration in, 252–254
spatial structure and diversity assessments in, 251–252
terms for, 240
TRTs in, 244
VSP and, 246, 254, 257, 258
Palo Verde National Park, pollen movement in, 204–205
PCR. See polymerase chain reaction
PD. See phylogenetic diversity
pedigree reconstruction, 285–286
for western larch, 285–286
Index

phylogenetic diversity (PD), 16–17
biodiversity “hot spots” and, 16–17
phylogenetic species concept (PSC), 14
delimiting species and, 14–15
phylogenetics
bar coding and, 19–20
biodiversity and, 13
conservation of species and, 13–17
delimiting species and, 14–15
EDGE scores for, 16
PSC, 14
for cryptic species, 20–24
from AFLP, 20
amphibians, 21
mammals, 24
sorting of, 21–24
databases for, 27–28
systematic development of, 27
ESU and, 15
categorization of, 15–16
criteria for, 15
phylogeographic concordance for, 15
of eukaryotes, 18–20
with bar coding, 18–20
with mitochondrial markers, 20
species identification from, 19
lineage divergence and, 16
MU and, 15
PD and, 16–17
of prokaryotes, 17–18
distance-based approaches to, 17
MLSA for, 18
sequencing for, 18
species recognition for, 18
species discovery rates with, 26
phylogeographic concordance, 15
Pigeon River region, evolutionary toxicology
in, 351–352
plants, biodiversity of. See also American chestnut trees; Douglas-firs, association genetics in; European white oaks; pollen and seed movement, with landscape fragmentation; weedy rice
association genetics and, 141–151
candidate gene approach to, 145–146
in Douglas-firs, 148–151
genome wide, 141–145
natural selection signature tests in, 146–148
neutrality tests for, 147
QTL studies in, 141–145
gene flow and, 36
in GM crops, 36–41
for weedy rice, 43, 46
in GM crops, 35–41
environmental hazards as result of, 36
gene flow in, 36–41
non-GM crops v., 35
production methods for, 35
as “hot spots,” 4
pedigree reconstruction for, 285–286
for western larch, 285–286
weeds, 41
for weedy rice, 41–45
biodiversity effects of, 45
first observations of, 42
fitness of, 43–44, 45–46
gene flow for, 43, 46
HYVs for, 41–42
molecular markers for, 47
morphology of, 42
origin of, 41
population spread of, 44–45
wild, 42
wildlife reintroduction of, 307–309
for American chestnut tree, 307–309
pollen and seed movement, with landscape fragmentation, 190–208
biodiversity after
immediate consequences on, 190–191
“living dead” species and, 208
long-term effects of, 192–193
polymorphism and, 190–191
predictions for, 193, 208
short-term effects of, 191–192
spatial genetic structure and, 191
case studies for, 201–206
_Dinizia excelsa_, 202–203
_E. cyclocarpum_, 204–206
_flow rates in, 198
_Guaiacum sanctum_, 206
_S. globulifera_, 203–204
_S. humilis_, 202
conservation and, 206–207
management strategies for, 207
estimates of, 193–200
factors as influence on, 193–196
for mean/maximum distances, 201
studies for, 197–200
gene flow with, 203
genetic relatedness and, 201
seed dispersal, 200–201
new populations as result of, 200–201
among tropical plant species, 197
pollen flow, 105–107
pollutants. See evolutionary toxicology
polymerase chain reaction (PCR), 2
polymorphism. See also body-color polymorphism
landscape fragmentation and, as influence on, 190–191
population genetics, 123–124, 129–132
hitchhiking mapping in, 129–131
LD in, 124, 126
neutrality tests for, 131–132, 136
Ewens-Watterson test, 130
Hudson-Kreitman-Aguade test, 131
limitations of, 131
McDonald-Kreitman test, 131
McDonald-Kreitman test, 131
in nonmodel organisms, 130–131
outlier analysis in, 129–131
testing parameters in, 130
population theory, wildlife reintroduction and, 297–298
prokaryotes, phylogenetics of, 17–18
distance-based approaches to, 17
MLSA for, 18
sequencing for, 18
species recognition in, 18
provenance tests, 102
PSC. See phylogenetic species concept
QTLs. See quantitative trait locis
quantitative genetics, 123
quantitative trait locis (QTLs)
in association genetics
in animals, 132–138
for Douglas-firs, 149
in plants, 141–145
for genetic adaptations, 125, 128–129
for genetically engineered salmon, 37–38
LD mapping v., 127–128
randomly applied polymorphic DNA (RAPD), in lake sturgeon, 90
alternatives to, 90
RAPD. See randomly applied polymorphic DNA
RDA. See representational difference analysis
Recovery Domains, 244–245
representational difference analysis (RDA), 90
reptiles. See also California tiger salamanders,
hybridization of extinction rates for, 8
sex-determining genes in, 79–80
chromosomal influence on, 79
ESD and, 79–80
TSD and, 80
resistance to disease. See disease resistance
restriction fragment length polymorphisms (RFLP), 331–332
RFLP. See restriction fragment length polymorphisms
Rhogeessa tumida, 22–23
DNA sequencing for, 22
genetic variation within, 22–23
rice. See weedy rice
rusty crayfish, hybridization among, zone dynamics as factor in, 171–172
S. globulifera, pollen movement for, 203–204
S. humilis, pollen movement for, 202
flow rates, 198
SARST. See serial analysis of ribosomal sequence tags
SBH. See sequencing by hybridization
seed movement. See pollen and seed movement, with landscape fragmentation
sequencing by hybridization (SBH), serial analysis of ribosomal sequence tags (SARST), 26
sex-determining genes, 77–94
in amphibians, 79–80
evolution from TSD, 80
evolutionary plasticity of, 80
GSD and, 80
in birds, 77–79
molecular assays for, 79
chromosomes and, 77
in fishes, 81–94
with AFLPs, 88
as autosomal, 86
chromosomal influences on, 85, 86
EE as influence on, 81
ESD and, 81–83
female-heterogametic systems and, 81
hermaphroditism and, 81
isolation of markers for, 86–88
in lake sturgeon, 88–94
loci for, 84
male-heterogametic systems and, 81
in monosex cultures, 86–87
for population structure studies, 87
transcriptome analysis for, 88
TSD and, 83
unisexuality and, 81
 genetic markers in assays as, with DNA, 74–77
DNA fingerprinting, 74
individual identification in, 74
in mammals, 77–79
exceptions for, 77–78
molecular assays for, 78
primary products in, 78
in reptiles, 79–80
ESD and, 79–80
TSD and, 80
in vertebrates, 74
in amphibians, 79–80
in birds, 77–79
diversity of, 78
in fishes, 81–94
in mammals, 77–79
in reptiles, 79–80
single nucleotide polymorphisms (SNPs), 333–334
SNPs. See single nucleotide polymorphisms
Soay sheep, body-color polymorphism among, 139–141
with animal model approach, 140
genotypic fitness and, 140
spadefoot toads, hybridization among, 183
species discovery, rates of, 8–11
for amphibians, 9
for bacteria and microbes, 9, 25
for cryptic species, 20–24
from AFLP, 20
amphibians, 21
mammals, 24
sorting of, 21–24
species discovery, rates of (cont.)
  enhancement of, 24–27
  for microbes, 25
  with phylogenetics, 26
  with SARST, 26
  with SBH, 26
  from T-RFLP, 25
  from taxonomic databases, 25
  limitation factors for, 11–13
  inventory assessment, rates of, 12–13
  regional inventories, lack of, 12
  taxonomic experts, shortage of, 12
  for mammals, 9

T-RFLP. See terminal restriction fragment
length polymorphism
taxonomy
  biodiversity and, 13
  molecular, 17–18
  of eukaryotes, 18–20
  of prokaryotes, 17–18
Technical Recovery Teams (TRTs), 244
temperature-dependent sex determination
  (TSD), 80
  in fishes, 83
terminal restriction fragment length
  polymorphism (T-RFLP), 25
  toxicogenomics, 335–336
transgenerational inheritance, 327
Tree of Life, 1
tropical landscapes. See also pollen and seed
  movement, with landscape
  fragmentation
  pollen and seed movement in, 197
TRTs. See Technical Recovery Teams
TSD. See temperature-dependent sex
determination
unisexuality, in fishes, 81
vertebrates. See also amphibians; birds;
  fishes; mammals; reptiles
  sex-determining genes in, 74
  in amphipans, 79–80
  in birds, 77–79
  diversity of, 78
  in fishes, 81–94
  in mammals, 77–79
  in reptiles, 79–80
viable salmonid population (VSP), 246, 254,
  257, 258
VSP. See viable salmonid population

Wallace, Alfred Russel, 1
  geological study by, 1

weeds
  from GM crops, aggressive formation of,
  41
  rice as, 41–45
  weedy rice, 41–45
  biodiversity effects of, 45
    from gene flow, 47
    cross-fertilization of, 43
    first observations of, 42
    fitness of, 43–44, 45–46
    gene flow for, 43, 46
    biodiversity influenced by, 47
    genetic evidence of, 44
  HYVs for, 41–42
  molecular markers for, 47
  morphology of, 42
  origin of, 41
  population spread of, 44–45
  wild, 42
wildlife reintroduction, 296–314
  development of, 296
    early limitations in, 297
  for forest species, 307–309
    American chestnut tree, 63, 307–309
    disease resistance and, 308–309
  founding event phase of, 303–305
    age structures in, 305
    capture techniques during, 303–304
    population size in, 304
    sex composition during, 304–305
  genetic consequences of, 299–303
    to gene flow, 301
    genetic drift as, 299
    from interdependent sampling events, 301–302
    lack of genetic diversity as, 299–301
    from sampling period, 303–313
  population establishment phase of, 305–310
    environmental factors in, 306–309
    mating tactic as factor during, 309–310
    social structure as factor during, 310
  population growth phase of, 310–313
    behavioral constraints in, 312
    biological constraints in, 311
    during bottleneck event, 312–313
    environmental constraints in, 311
    spatial constraints in, 312
    temporal components in, 313
  population theory and, 297–298, 299
  variation predictions for, 298