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Introduction

Comparison of biological attributes among organisms or genes in a
meaningful manner requires an understanding of the evolutionary con-
nections among the respective taxa or alleles. Thus the emphasis in sys-
tematic biology is on phylogeny, namely, the evolutionary history of lin-
eages. Methods for inferring phylogeny from DNA sequences have
proliferated greatly in the last few years. Unfortunately, decisions concern-
ing which of many described methods will be used in a given study are
rarely made by weighing the advantages and disadvantages of each ap-
proach; instead, issues of availability or historical inertia often dictate such
choices. In part, this is because each method is advocated in a separale
paper, so comparisons among methods are often difficult. Our goal in this
chapter is to present a practical guide to selecting a set of methods for
phylogenetic analysis of nucleic acid sequences. We focus on the assump-
tions, advantages, disadvantages, and limitations of the various ap-
proaches. Space does not permit a description of each of the algorithms,
but many of these are described in an excellent review paper by Swofford
and Olsen.!

There are five basic steps in the phylogenetic analysis of DNA se-
quences, although some of the steps are excluded or deemphasized by some
investigators. A flowchart that includes these steps is presented in Fig. 1.
The sequences under study must first be aligned so that positional homo-
logs (the units of comparison) may be analyzed. Alignment may be
straightforward if pairwise differences are sma!l and most differences result
from substitutions, but it becomes increasingly difficult as the sequences
become more divergent and insertion/deletion events become more com-
mon. All phylogenetic analyses assume correct alignment of positional
homologs.

Once sequences have been aligned, some assessment of the presence of
phylogenetic signal is necessary. If all the sequences are identical, there is
obviously no point in additional analysis. At the other extreme, the se-
quences may be so divergent that they have been randomized with respect

! D. L. Swofford and G. Olsen, in “Molecular Systematics™ (D. M. Hillis and C. Moritz, eds.),
. 411. Sinauer, Sunderland, Massachusetts, 1990,
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FiG. 1. Flowchart of steps from obtaining the sequence data to assessing the reliability
of the final phylogenetic resuit.

to phylogenetic history. Analysis of the latter sequences will result in an
inferred phylogeny, but the phylogenetic hypothesis might as well be se-
lected at random, Many sequence analyses fall between these two ex-
tremps: some positions are highly conserved (perhaps invariant among the
species), whereas other positions are randomized with respect to phyloge-
netic history (perhaps the third positions of codons). Thus, assessment of
phylogenctic signal requires more than casual inspection of the sequences.

If phylogenetic signal is present in a matrix of sequences, then the third
step is selecting a method of phylogenetic inference. Some of the following
Questions must be answered to make an informed choice among the
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methods: (1) Are a few broad assumptions preferable to many detailed
assumptions about evolution? (2) What parameters of sequence evolution
have been examined for the sequences of interest? (3) How variable are
rates of change among the study taxa? (4) Are the primary goals of the
study to reconstruct accurate branch lengths, reconstruct branching rela-
tionships, examine details of character evolution, or some combination of
the above? (5) Is combination or comparison of data sets {now or in the
future) a goal of the study? (6) Is a particular analysis feasible given the size
of the data set and the limitations of computer time?

Once a method has been selected and the appropriate software has been
obtained, a strategy must be developed for finding the best tree under the
selected optimality criterion, The number of distinct tree topologies (ig-
noring for the moment the infinite number of possible branch lengths) for
even a modest number of taxa is very great.? For instance, with just 50
taxa, there are over 2.8 X 10™ distinct, labeled, bifurcating trees, or
roughly 10,000 times as many trees as there are atoms in the universe! If
one could develop a computer program capable of analyzing | trillion trees
a second (well beyond the capability of any existing computer), it would
still require 8.9 X 10% years to evaluate all the possible trees for 50 taxa, or
about 2 X 10% times the age of the Earth. Therefore, methods must be
selected that estimate the best-fit tree under these circumstances.

Finally, once a tree (or trees) has been obtained, some statement of
confidence in the resuits is desirable. How much better is the tree obtained
than the next-best alternative? How does the tree compare to a previous
hypothesis of relationships? Which nodes of the tree are well-supported by
the data, and which are not?

Alignment

Although alignment of DNA or RNA sequences is often quite simple
among closely related taxa, it becomes very difficult as the sequences
become more divergent. Alignment is one of the most troublesome aspects
of phylogenetic analysis, and it is an area of intensive research and refine-
ment. Details of the commonly used methods have been treated elsewhere
in this series,? so our comments are limited to some of the practical aspects
of producing aligned sequences for phylogenetic analysis.

Most methods of sequence alignment are designed for pairwise com-
parisons, although alignments among all taxa under study are necessary
before phylogenetic analysis can begin. Many of the pairwise approaches

1 ). Felsenstein, Syst. Zool. 27, 27 (1978).
3 R. F. Doolittle {ed.), this series, Vol. 183,
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are variations on the algorithm described by Needleman and Wunsch,® in
which matches are scored as positive (e.g., Ref. 1), mismatches as 0, and
gaps {corresponding to insertion/deletion events) as negative, The negative
scores for gaps can be weighted 1o account for the size of the gaps. Usually,
gaps of more than one position are not weighted in direct proportion to the
size of the gap, because it is likely that the adjacent nucleotides were
inserted or deleted simultaneously in a single event. The penalty for gaps is
typically greater than the positive score assigned to a match, but there are
no clear guidelines for assigning the relative weights. One common ap-
proach is to assign a weight of —2 to gaps, so that gaps are introduced only
if doing so results in the reduction of at least two substitutions.

Modifications of the Needleman-Wunsch criteria can also be used to
aligh multiple sequences,? although no efficient algorithms exist to ensure
optimal alignments beyond a relatively few sequences if insertion/deletion
events are common or substitution rates are high. Therefore, most investi-
gators restrict comparisons to regions in which alignments are relatively
obvious. This has the effect of restricting analyses to regions that are likely
to have the highest signal-to-noise ratio, because regions of difficult align-
ment are likely to be evolving at rates too high for effective phylogenetic
analysis. Even in regions of high signal-to-noise ratio, however, alternative
alignments are likely 10 be dependent on the weights assigned to gaps. As
an example, consider the sequences of ribosomal DNA shown in Fig. 2.
The upper alignment requires twenty-two substitutions (at twenty posi-
tions), and initial inspection might not indicate the necessity of introduc-
ing gaps. However, if matches are assigned a score of 1 and gaps are
assigned a penalty between —1 and — 3, the lower alignment is favored,
which includes four gaps and seven substitutions (at six positions).

A practical method of aligning multiple sequences is to align all pairs of
taxa using the Needleman- Wunsch algorithm, then enter the sequences
into a text processor for multiple alignment “by hand.” A less desirable
alternative is to align all taxa to a single reference taxon, but this may be
necessary if the number of taxa is great. Another alternative is to use
sequence similarity scores to determine the order of alignments (i.e., align
the most similar pairs of taxa first), All pairwise alignments can be con-
sulted for possible arrangements, and global alternatives can be evaluated
using the Needleman - Wunsch criteria. It is important to establish a priori
rules for weighting gaps, weighting sizes of gaps, and breaking ties so as not
to bias the alignments. Currently, it is not feasible to ensure that the
optimum alignment has been achieved unless the number of taxa are few
or gaps are uncommon. For this reason, areas of questionable alignments

4S. B. Needleman and C. D. Wunsch, J. Mol. Biol. 48, 443 (1970).
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Fig. 2. Alignment of a section of the 28 § ribosomal RNA gene of 10 species of verte-
brates. The upper alignment requires no gaps but does require twenty-two substitutions (at
twenty positions, marked with asterisks). The lower alignment is favored if gaps are weighted
between — 1 and — 3, which encompasses the usual range of weighting for gaps. The lower
alignment requires four gaps and seven substitutions. [Adapted from “Molecular Systemat-
ics” {D. M. Hillis and C. Moritz, eds.), p. 368. Sinauer, Sunderiand, Massachuscits, 1990.)

are often removed from consideration prior to phylogenetic analysis, be-
cause of the likelihood that positional homology has not been correctly
established.!

A worthwhile but little-used approach to alignment is to combine
alignment and phylogenetic analysis in an iterative process.’ This results in
an alignment and a phylogeny that are both “best fits” according to an
optimality criterion such as parsimony. Unfortunately, it is computation-
ally intensive to carry out such an analysis for even a few sequences
simultaneously. An initial phylogenetic estimate may be used to break ties
in multiple-alignment methods: if two alignments are equally good ac-
cording to the defined weighting criteria, the alignment that requires fewer
changes on the initial phylogenetic estimate is preferred. However, if this
tie-breaking procedure is used, it is critically important to use an unbiased
method of breaking ties in initial alignments. If this is not done, then
preconceived ideas of relationships may be favored at the expense of
globally optimal solutions. The danger in such iterative procedures is that

3 D. Sankoff, C. Morel, and R. J. Cedergren, Nature (London) 245, 232 (1973).
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they may be highly sensitive to the initial alignments, and any bias that
favors a particular alignment/phylogeny is likely to be magnified through
the iterations.

Assessing Phylogenetic Signal

Many molecular systematists assume that obvious alignment of se-
quences is sufficient to justify the use of these sequences in phylogenetic
analysis. However, sequences can be aligned with ease if a majority of the
positions are invariant and the remaining positions are randomized by
high mutation rates. Analysis of such sequences may produce an optimal
tree with a given method, but if the variable sites are truly randomized,
there is no reason to expect that the optimal tree is a good estimate of
phylogeny. In addition, it is often desirable to partition regions of DNA
sequences that are evolving at different rates {e.g., introns versus exons)
and 1o identify the regions that are most likely to be informative for a given
problem. Thus, some means of assessing phylogenetic signal in a given set
of sequences is necessary.

Many investigators have used pairwise comparisons of the sequences to
evaluate the potential phylogenetic importance of their data. For example,
the transition/transversion ratios for sequence pairs can be compared to
those expected for the sequences at equilibrium, given the observed base
compositions (i.e., relative frequencies of A, C, G, and T).* DNA se-
quences that are largely free of homoplasy (parallel fixations and reversals)
will have transition/transversion ratios greater than those for sequences
that are saturated by change, but similar to those observed for closely
related taxa (which remain highly structured). In a similar way, pairwise
divergences have been used to assess the potential phylogenetic value of
DNA sequences, by plotting percent divergence against time.? In such
plots, regions of sequences or categories of character state transformations
(e.g., transitions) that are saturated by change do not show a significant
positive relationship with time. Both the transition/transversion ratio and
sequence divergence are influenced by homoplasy, and, as such, both can
provide insights into the potential phylogenetic value of sequence data.

Another way of detecting the presence of phylogenetic signal in a given
data set is 10 examine the shape of the tree-length distribution that results
from a parsimony analysis of all possible trees or a random subset of all

s A. Larson, in “Phylogenctic Analysis of DNA Sequences” (M. M. Miyamoto and J. Cra-
craft, eds.), p. 221. Oxford Univ. Press, New York, 1991.

7 M. M. Miyamoto and S. M. Boyle, in “The Hierarchy of Life: Molecules and Morphology
in Phylogenetic Analysis” (B. Femholm, K. Bremer, and H. Jornvall, eds.), p. 437. Elsevicr
Science Publ., Amsterdam, 1989,
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Fi6. 3. (a) Nearly symmetrical tree-length distribution, based on an analysis of a-hemo-
globin sequences from eight orders of mammals. Such distributions indicate that little or no
phylogenetic signal is present in the data set. (b) Strongly skewed tree-length distribution,
based on an analysis of a a-crystallin sequences from eight orders of mammals. This distribu-

tion indicates that the data are significantly nonrandom and, therefore, potentially informa-
tive about phylogeny. (Based on data from Refs. 8 and 9.)

trees.®-'® Distributions that are close to symmetrical (Fig. 3a) indicate little
or no structure in a data set; random sequences produce nearly symmetri-
cal tree-length distributions. A strongly lefi-skewed tree-length distribution

* W. M. Fitch, Syst. Zool. 28, 375 (1979).
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(Fig. 3b) is an indication of the presence of correlated characters, which are
expecied if phylogenetic signal is present (the correlation is the result of the
shared history of the taxa). If there is no indication that the data are more
structured than random sequences, there is little point in pursuing further
phylogenetic analysis of the data. Skewness is measured by the g, statistic,
and tables of critical values of this statistic'' for various numbers of taxa
and characters should be consulted to test for the presence of nonrandom
sequence variation. Skewness is calculated automatically in exhaustive
and/or random-tree searches of two phylogenetic analysis software pack-
ages (PAUP and MacClade; see Implementation, below).

Figure 4 shows why tests for structured data are important, and that

- 100 . ® hd
g £t
= @ 90
38 '
‘Ea 801 o ot
*ﬁg N
e L}
TR 704 * .
.Eﬂg .'O . [ ]
g, 601 -t
g% . .

f E i -
§£ 50 + . l.
- .
"'6§ 40 1 L] L]
Bg-*" e |*" %" 0 .

'R 304 [ Y [ hd * 9 .
58 e .
Fs RN
o 2 201 : u'_.. !
5: L] " *
2 © 101 I o N T
A ) .-

0 - ——ikr L R
-2.0 -1.5 -1.0 -0.5 0.0 05

£,

FiG. 4. Relationship between length of the correct tree and skewness of the tree-length
distribution in simulated phylogenics. The optimal (most parsimoniocus) tree is likely to be
the correct tree only in analyses of data scts that produce tree-length distributions which are
significantly more skewed than expected from random data. The shaded regions correspond
to the 95% (dark) and 99% (light) confidence limits for g, (the skewness statistic) for random
sequence data. (Adapted from Ref. 12).

* M. Goodman, J. Czelusniak, and G. W. Moore, Syst. Zool. 28, 379 (1979).

" D. M. Hillis, in “Phylogenetic Analysis of DNA Sequences” (M. M. Miyamoto and J.
Cracraft, eds.), p. 278. Oxford Univ. Press, New York, 199},

' D. M. Hillis and J. P. Huelsenbeck, J. Hered. 83, 189 (1992).
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skewness of tree-length distributions is a useful indicator of data sets that
are likely to be phylogenetically informative. In simulated phylogenies (in
which the true tree is known),!? data sets that produce significantly skewed
tree-length distributions are also likely to produce the correct tree topology
in phylogenetic analysis (in this case, using parsimony). However, data sets
that produce distributions not significantly different from those obtained
from random data (because of high mutation rates) are unlikely to yield
trees that resemble the true phylogeny. '

Other tests for assessing phylogenetic signal using trees involve repeat-
edly randomizing characters within data matrices, rather than comparing a
given data set to results obtained from random sequences.'>'4 These meth-
ods are thus less sensitive to base-compositional or other biases, because
the original data are randomized among taxa. However, they also require
much greater computational time and are thus less suited for initial assess-
ments of phylogenetic signal than for assessment of confidence in results
(see below).

Choosing a Method of Phylogenetic Inference

Assumptions

The first aspect of choosing a method of phylogenetic inference is
deciding which assumptions and models one is willing to accept. The
choice is important because whenever assumptions of a model are not met
by the real patterns of nucleotide substitutions, errors may be introduced
into the tree construction. Models of evolutionary processes must reflect
biological reality, and the extent to which they fulfill this goal will influence
the phylogenetic inferences they provide. It is not always predictable which
assumptions, when violated, will affect the phylogenetic estimate. Many
different kinds of macromolecules exist, and models that do not take into
account this huge amount of variability are bound to fail for some molecu-
lar systems, As discussed in the previous section, there is no reason to
believe that all molecules or all regions of a single molecule will reflect
phylogenetic history. To carefully practice phylogenetic inference one
must know more about the specific molecule being examined before it is
used to reconstruct phylogeny. It is best if the evolutionary models are
chosen based on the molecules that are being studied.

Assumptions are directly related to the evolutionary process of nucleo-

12 3 P. Huelsenbeck, Syst. Zool. 40, 257 {1991).
1 J. W, Archie, Syst. Zool. 38, 239 (1989).
1 D, P. Faith and P. §. Cranston, Cladistics 7, 1 (1991).
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tide substitution. One must decide what general assumptions are accept-
able for the particular molecule being examined and then choose among
the models of phylogenetic inference by the assumptions incorporated in
the different tree construction procedures. Most methods share certain
assumptions: the characters are evolving independently; the comparisons
involve orthologous genes; positional homology has been inferred
correctly; and, in many cases, the nucleotide changes examined are neu-
tral .1

Sequence data are naturally a character-based information source com-
prising four bases (e.g., A, C, G, and T for DNA) and gaps (insertions/dele-
tions). Multiple mutation events (Fig. 5) can effectively randomize a par-
ticular nucleotide position with respect to phylogenetic history. There are
12 possible ways that bases can be substituted, and phylogenetic ap-
proaches differ in their treatment of these (Fig. 6). The various methods of
phylogenetic inference differ in their assumptions of the pattern of evolu-
tionary change. The observed mutations are analyzed using an explicit or
implicit model of nucleotide substitution. Thus, whether one uses a char-
acter-based or a distance-based approach to phylogenetic reconstruction,
assumptions about the evolutionary process must be made. For a general
approach, the most realistic models are limited to a few assumptions, well
supported by available evidence. This is important because the more as-
sumptions made, the more likely some of themn will be incorrect for the
specific macromolecule being examined.

Species | Spacies Il
c c

N\,

Time

Ancestor of Species{and ll

FiG. 5. Example of unobservex multiple substitution events between two distantly related
species (1 and I1). Although three mutations have occurred since the common ancestor,
species § and species Il show no differences.

1 ], Felsenstein, Annu. Rev. Genet. 22, 521 (1988).
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F1G. 6. The 12 possible pathways of substitution (base M 1o base M) for the four nucleo-
tides of DNA (A, C, G, and T). Lowercase letters (a-/) represent the individual frequencies of
cach substitution. The symbols w- z therefore correspond 1o the probability of a base remain-
ing unchanged [e.g., w= 1 —(a+ b+ ).

Weighting

By examining the way in which nucleotide substitutions are weighted
by the various phylogenetic methods, one can understand the evolutionary
assumptions that must be accepted if one is to utilize any particular
method. Nucleotide substitutions can be subdivided either across sites or
across mutations. A natural division of nucleotide site change in protein-
coding gencs is based on codon structure. One can treat sites preferentially
by whether the mutation causes the amino acid to change {(nonsynony-
mous change) or remain the same (synonymous change). Further subdivi-
sion exists in the base position of the codon (first, second, or third position)
and the number of codons that code for the same amino acid (redundancy,
multiplicity class, or degenerate sites). The amino acid code is not univer-
sal; thus, different ruies may be needed in these cases with regard to
redundancy. Codon structure is only relevant to gene sequences that are
translated.

The 12 possible types of nucleotide substitution can be treated differ-
ently (assuming nonsymmetry of change, ¢.g., the frequency of A to C does
not equal that for C to A) or treated equally, or any combination of these
substitutions can be grouped. One obvious division of base substitutions is
to treat transitions {(changes of purine to purine or pyrimidine to pyrimi-
dine) separately from transversions {(change of purine 1o pyrimidine or vice
versa). Insertion/deletion events can also be treated as a separate type of
mutation. Additionally, nucleotide substitutions can be preferentially
treated by a combination of position and mutation (e.g., transversions
occurring in the first and second codon positions).

There are several large classes of DNA sequences which are not trans-
tated, including those for structural RNAs [ribosomal RNAs (rRNAs) and
transfer RNAs (tRNAs)], pseudogenes, and repetitive DNAs [e.g., short
and long interspersed repeated sequences (SINES and LINES)]. Ribosomal
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RNA and tRNA genes are constrained by the secondary structures of their
products, Their double-stranded (stem) and single-stranded (loop) regions
could be treated as a major division of nucleotide site change.'® Multigene
families and repetitive DNAs are influenced by several different mecha-
nisms including unequal crossing-over, gene conversion, and sequence
transposition which could affect the types and rates of nucleotide substitu-
tion observed, At present few general guidelines are available to account
for the particular structure and molecular evolution of these macromole-
cules,

A Priori and A Posteriori Weighting

All methods weight nucleotide change either equally or selectively,
before the analysis (a priori) and/or after an initial phylogeny is built (a
posteriori). When phylogeneticists pick and choose among the available
characters by weighting them, they must justify their rationale; otherwise,
one is left with subjective interpretations and considerable confusion for
phylogenetic inference. Although there is a great diversity in the way that
one can subdivide molecular mutation {see above), it is often unclear
which types of characters will consistently provide the greatest signal for
phylogenetic inference. Any a priori seJection may bias the results in favor
of a preconceived notion of the evolutionary process. However, weighting
of characters can also be approached by a posteriori methods, in which one
Jjudges the relative importance of characters by the levels of homoplasy
observed {rather than expected as done a priori). In a posteriori weighting,
an approximation of a phylogeny is first made, homoplasy is then mea-
sured for each character on the tree, and weighting is applied to characters
based on the amounts of homoplasy observed. Possible weighting schemes
(both a priori and a posteriori) are limited only by the finite ways in which
macromolecules are organized, the possible mutations by which nucleo-
tides can change, and the infinite number of relative weights that could be
applied to these substitutions.

When one chooses weights for particular changes, it is usually on the
basis of the assumed prevalence of the mutation, with more rapidly evolv-
ing changes given less weight and more conservative ones greater weight.
One must be willing to accept the hypothesis that where more mutations
are taking place there will also be greater chances for homoplasy. One
assumes that within a “conservative” gene region, all mutations have
occurred slowly, incorporating little homopiasy, thereby making these
characters more reliable.

% S A. Gerbi, in “Molecular Evolutionary Genetics” (R. J. Macintyre, ed.), p. 482. Plenum,
New York, 1985,
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Evolutionary processes that should be closely monitored include
whether one mutation is favored over another and whether one gene region
evolves differently from another. This can take the form of differential
mutation rates for different gene positions or mutations. To add to the
complexity, observed differential rates are known for various organisms
over the same positions and mutations."” Despite this complexity, Nei!®
has stated that “the pattern of evolutionary change is well understood,”
but, in our opinion, only in broad terms. If selection is invoked, this further
complicates understanding the evolutionary process to the extent that
Lewontin'? has remarked that “‘sequences with significant but intermediate
constraints on amino acid replacements are in principle unanalyzable.”
For phylogeneticists to have a hope of accurately reconstructing history,
one must be able to make some predictions about the processes by which
macromolecules evolve. Choosing a macromolecule to address a specific
phylogenetic question and choosing an appropriate inference method with
which to analyze the comparative sequence data are two manifestations of
this problem; the latter is addressed in our next sections.

Phylogenetic Reconstruction

Deciding which evolutionary processes are affecting the molecule under
study is only the first step toward the resolution of a phylogeny. Numerous
alternative methods are currently available (Fig. 1), and each makes differ-
ent assumptions about the molecular evolutionary process. Some methods
are more general and may apply to a wider range of macromolecules and
phylogenetic questions, whereas others are restricted to specific types of
phylogenetic problems. To assume that any one method can solve all
problems is naive, given the complexity of genomes and their evolution.
The various phylogenetic methods are interconnected, and we have pro-
vided one interpretation of their linkages (Fig. 1). The assumptions, weak-
nesses, and strengths of each are discussed in more detait below.

Distances and Sequence Divergence

Phylogenetic analyses of sequences can be conducted by analyzing
discrete characters (i.e., the nucleotides themselves) or by making pairwise
comparisons of whole sequences (the distance approach). Deciding
whether to use a distance-based or a character-based method depends on

"7 R. J. Britten, Science 321, 1393 (1986).

" M. Nei, in “Phylogenetic Analysis of DNA Sequences” (M. M. Miyamoto and J. Cracraf,
cds.), p. 90. Oxford Univ. Press, New York, 1991,

¥ R. C. Lewontin, Mol. Biol. Evol, 6, 15 (1989).
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the assumptions one is willing to accept and the goals of the study. If one
chooses a distance method for phylogenetic inference, then an assumption
that a single coefficient of sequence similarity or dissimilarity provides an
accurate measure of evolutionary divergence has been accepted. Distance-
based approaches may incorporate the various types of change in estimat-
ing a single divergence value, leading to a matrix of all pairwise compari-
sons of the taxa studied. In one sense, the transformation of nucleotide
sequence variation to a distance value reduces the available information.
However, others have noted that distance approaches may use more of the
available information than some character methods such as parsimony
procedures which rely only on “phylogenetically informative positions”
(see Table 111) and ignore variation unique to single taxa.?® An estimate of
nucleotide divergence often uses a model of substitution to “correct” for
(unobserved) multiple substitution events occurring between the more
divergent pairs of taxa (Fig. 5). Weighting of substitutions is usually done a
priori. One can sort the various estimates of divergence (Table I)*' by the
number of parameters incorporated in the algorithms to calculate these
divergence values. The more complicated models attempt to use numerous
parameters of substitution in their calculations.

Both the type and the position of a mutation have been incorporated
into the parameters of divergence values. For example, a one-parameter
model treats all nucleotide substitutions as equal, whereas a two-parameter
model subdivides nucleotide change into transitions and transversions,
Three-, four-, six-, and twelve-parameter models have been proposed?2?3
although one could envision seven- to eleven-parameter models depending
on which classes of nucleotide change are grouped. The simplest estimates
of nucleotide difference count up the total number of substitutions (some-
times including gaps) and divide by the number of base pairs examined,
making no attempt to “correct” the distance value,24?$ For closely related
taxa (when substitution events are relatively low, sequence differences
<10%) different estimates of uncorrected and corrected divergence have
been shown to give similar values. As distance increases, so does the
underestimation of divergence by many methods. When divergence values
are very large between taxa, all estimates become suspect.? Proponents of

2 D. Penny, M. D. Hendy, and M. A. Steel, in *“Phylogenetic Analysis of DNA Sequences”
(M. M. Miyamoto and J. Cracraft, eds.), p. 155. Oxford Univ. Press, New Yozk, 1991.

2t T, Gojobori, E. N. Moriyama, and M. Kimura, this series, Vol. 183, p. 531.

22 C. Lanave, G. Preparata, C. Saccone, and G. Serio, J. Mo/, Evol. 20, 86 (1984).

M C. Saccone, C. Lanave, G. Pesole, and G. Preparata, this series, Vol. 183, p. 570.

2 M. M. Miyamoto, J. L. Slightom, and M. Goodman, Science 238, 369 (1987).

13 M. Nei, “Molecular Evolutionary Genetics.” Columbia Univ. Press, New York, 1987,

% T. Gojobori, K. Ishii, and M. Nei, J. Mol. Evol. 18, 414 (1982).
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TABLE 1
ESTIMATES OF DIVERGENCE”

Method Comments Refs.?

Nucleotide-based methods
Uncorrected approaches Only account for observed differences
p (difference) Accounts for obscrved substitutions and/or gaps 12

Corrected approaches Attempt to account for unobserved parallel substitutions and 2
reversals in addition to observed differences. For o (diver-
gence), corrections are added for multiple substitution events
by adopting some distribution of nucleotide change (c.g.,
Poisson distribution) and by weighting substitutions

One-parameter All nucieotide substitutions treated as equat 3
Two-parameter Transitions treated differently than transversions 4
Three-parameter ‘Two classes of transversion with all iransitions treated equally  §
Four-parameter Two classes of transversion and two classes of transition 6,7
Six-parameter Four classes of transversion and two classes of transition 89
Codon-based methods
Unweighted pathway Synonymous and nonsynonymous changes, with each further 10
subdivided into three categories of nucleotide substitution

Miyata and Yasunaga's Pathways from one amino acid to another are weighted by 11
weighted pathway biochermical similarity of amino acid replacement

Nei and Gojobori's un- Takes into account codon position (Arst, sccond, or third) and 2, 12
weighted pathway | whether change is synonymous or nonsynonymous (un-

weighted version of Miyata and Yasunaga's method)
Li, Wu, and Luo’s weighted  Changes weighted as nondegenerate, 2-fold degenerate, or 4- 13

pathway fold degenerate sites, and by expected to observed frequencies
of base pair mutations ‘
Four-parameter Multiplicity classes for 2-, 3-, 4-, and 6-fold degencrate codon /14

groups are used to estimate number of synonymous substitu-
tions per codon. Several options are available for represent-
ing constraints on amino acid replacements

*# Formulas for each estimate can be obtained from Gojobori et af 2!

b Key 1o references: (1) D. L. Swofford and G. Olsen, in *Molecular Systematics™ (D. M. Hillis and C.
Morntiz, eds.), p. 411. Sinauer, Sunderland, Massachusetts, 1990 (see p. 428 for generalized formu-
las); {2) M. Nei, in “Molecular Evolutionary Genetics™ (M. Nei, ed.), p. 64. Columbia Univ. Press,
New York, 1987; (3) T. H. Jukes and C. R. Cantor, in “Mammalian Protein Metabolism 111" (H. N,
Munroe, ed.), p. 21. Academic Press, New York, 1969; (4} M. Kimura, J. Mol. Evol. 16, 111 (1980);
{5) M. Kimura, Proc. Natl. Acad. Sci. U.S.A. 78, 454 (1981); (6) F. Tajima and M. Nei, Mol. Biol.
Evol 1, 269 (1984); (7) N. Takahata and M. Kimura, Genetics 98, 641 (1981); (8) T. Gojobori, K.
Ishii, and M. Nei, J. Mol. Evol. 18, 414 (1982); (9) M. Hasegawa, H. Kishino, and T. Yano, J. Mol.
Evol. 22, 160 (1985, (10) F. Perler, A, Efstratiadis, P. Lomedico, W. Gilbert, R. Kolodner, and J.
Dodgson, Cell (Cambridge, Mass.) 20, 555 (1980); (11) T. Miyata and T Yasunaga, J. Mol. Evol. 16,
23(1980), (72) M. Nci and T. Gojobori, Mol. Biol. Evol. 3, 418 (1986); (13) W.-H. Li, C.-I. Wu, and
C.-C. Luo, Mol. Biol. Evol. 2, 150 (1985); (14) R. C. Lewontin, Mol. Biol. Evol. 6, 15 (1989},
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distance encourage the use of “appropriate distance measures,” Divergence
measures that are often regarded as “inappropriate™ include approaches
which add gaps to the calculation (owing to the difficulties in alignment
and modeling of these mutations), equally weighted procedures (except
when used for closely related taxa) which generally do not “correct” for
multiple substitution, and methods that attempt to take selection factors
into account. The simplest of the “appropriate” divergence measures is the
two-parameter method of Kimura.?” This model appears to estimate diver-
gence as well as the more complicated algorithms, over a broad range of
divergences, and without the need for additional specifics about the evolu-
tionary process,

Clustering Algorithms for Distance Data

Methods for clustering distance data can be broken down into those
that rely on clocklike mutation rates and those that are less sensitive to this
assumption. Two commonly used algorithms that rely on clocklike behav-
ior are the unweighted and weighted pair group methods using arithmetic
means (UPGMA and WPGMA, respectively). These algorithms assume
that the data are ultrametric (i.e., clocklike), a property that is often not
satisfied by sequence data. Owing to this assumption, UPGMA and
WPGMA have largely been replaced by alternative methods that do not
rely on this assumption (Table I1). The neighbor joining method does not
depend on ultrametric data, although it may rely on the assumption of
additivity"'® (i.e., the evolutionary distance between any two taxa is equal
to the sum of the branches that join them). Nonreliance on ultrametric
data is a desirable quality for any algorithm as many molecules are not
clocklike, even among closely related taxa. The neighbor joining method,
because of its ability to handle unequal rates, its connection to minimum-
length trees (see below), and its ease of calculation with regard to both
topology and branch lengths, has become a popular approach for analyzing
sequence distances.

Multiple-tree methods ( Table II) rely on a defined criterion of optimal-
ity, unlike the single-tree algorithms above which give an answer (usually a
single tree topology), but do not select it according to some objective
measure of fit or provide a method for ranking alternatives. Optimality is
defined as an objective quantity, measuring the conformity of the original
data (distance or character) to a tree. Each algorithm is designed to find the
best tree given its optimality criterion and different searching methods are
employed for this purpose.! If one does not agree with the criterion to be
optimized, then neither the approach nor the searching method for identi-

1 M. Kimura, J. Mol. Evol. 16, 111 (1980).
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TABLE 11
CLUSTERING ALGORITHMS UsING DISTANCE DATA

Method Comments

Rels.*

Methods that provide single topology by following specific series
of steps. No specific optimality criterion is used to select tree
Groups taxa in order of decreasing similarity (or increasing dis-
similarity); assumes constant rate of evolution

Heuristic approach for estimating minimum evolution phylog-
eny (see below)

Methods that use optimality criterion to compare allernative
topologies and to select final tree

Best tree chosen as that which maximizes fit of observed (origi-
nal) versus tree-derived (patristic) distances, as measured by %
standard deviation statistic. Branch lengths are determined by
linear algebraic calculations of observed distances among
three diflerent 1axa interconnected by common node

Distance Wagner procedure  Assumes that patristic distances must be greater than or equal to
observed distances {e.g., ncgative branch lengths are not per-
mitted). Best tree chosen is that with shortest overall tree
Jength

Maximizes the four point condition for an additive tree (see
text); different quartets of taxa are examined one at a time
when five or more taxa are represented

Computes sum of all branch lengths for each tree, considening all
possible topologies, and chooses phylogeny which minimizes
total overall length. A Fitch-Margoliash approach is used to
calculate branch lengths

Single-tree algorithms
UPGMA and WPGMA
Neighbor joining method
Multiple-tree algorithms

Fitch -~ Margoliash method

Neighborliness

Minimum evolution

3.6

78

¢ Key to references: (1) P. H. A, Snecath and R. R, Sokal, “Numerical Taxonomy,” Freeman, San
Francisco, 1973; {2) N. Saitou and M. Nei, Mol. Biol. Evol. 4, 406 (1987);, (3) W. M. Fitch and E.
Margoliash, Science 158, 279 (1967); (4) ). S. Famis, Am. Nat. 106, 645 (1972); (5) S. Sattath and A.
Tversky, Psychometrika 42, 319 (1977); (6) W. M. Fitch, J. Mol. Evol 18, 30 (1981); (7} L. L.
Cavalli-Sforza and A. W. F. Edwards, Am. J. Hum. Genet. 19, 233 (1967); (8) N. Saitou and T.

Imanishi, Mol. Biol. Evol. 6, 514 (1989).
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the least-squares method). For the distance Wagner method, the observed
distance values impose a minimum bound on the branch lengths, thereby
ensuring that the tree-derived distances are always greater than or equal to
the original ones. The selected topology becomes the one of minimum
length, where length is determined as the sum of lengths over all branches
of the tree. The neighborliness method compares the distances (d) of the
three possible groupings of four taxa (A, B, C, D). Under the assumptions
of the four-point condition, two relationships must be satisfied for A-B
and C-D to be clustered: (i) d(A, B) + d(C, D) < d(A, C} + 4(B, D); and
(i) d(A, B) + d(C, D) < d(A, D) + d(B, C). For larger phylogenetic prob-
lems, four-taxon comparisons are conducted for all possible subclusters,
and paired taxa are clustered by their arithmetic means. Minimum evolu-
tion is the exhaustive implementation of the neighbor joining method (a
single-tree heuristic approach). Branch lengths are optimized using the
Fitch—Margoliash method and are added to determine the overall length
of the tree. The tree with the minimal overall length is then selected,

Character-Based Approaches

Rather than reducing all of the individual variation to a single diver-
gence value, character-based methods treat each substitution separately. By
counting each mutation event, one determines the relationships among
organisms by the distribution of mutations observed (Table II). These
methods are preferred for studying character evolution, for combining

fying the optimal tree will satisfy its opponents. In turn, the algorithms
used to calculate optimality and to search for optimal trees limit the ability
of the investigator to satisfy the original criterion (see below). Quantitative
phylogeneticists are continually upgrading their software to improve the
speed and accuracy of finding the optimal solution.

Several criteria of optimality are used for building distance trees {Table
I1). Each approach permits unequal rates and assumes additivity. The
Fitch - Margoliash method minimizes the deviation between the observed
pairwise distances and the path length distances for all pairs of taxa on a
tree. This fit is measured by percent standard deviation (one calculation of

justing for homoplastic change. Designed for four-taxon problems
where homoplasy is expected to be abundant (e.g., for distantly related
taxa with unequal rates of evolution)

TABLE HI
CHARACTER-BaSED METHODS OF TREE CONSTRUCTION
Method Comments Refs.?
Parsimony Selects phylogeny that minimizes number of evolutionary changes for J
data set. Approach relics on phylogenetically informative characters
(i.c.. those with two or more states shared by two or more taxa)
Maximum likelihood  Calculates probability of data set, given particular model of evolutionary 2
change and specific topology
Method of invariants* Counts number of transversion events supporting phylogeny after ad- 3, 4

¢ Commonly known as evolutionary parsimony.

b Key to references. (1} See review by D. L. Swofford and G. Olsen, in “Molecular Systematics™ (D. M.
Hilis and C. Mortiz, eds.), p. 411. Sinaver, Sunderland, Massachusetts, 1990; {2} J. Felsenstein, J.
Mol Evol 17, 368 (1981); (3} 1. A. Lake, Mol. Biol. Evol. 4, 167 {1987); (4) R. Holmquist, M. M.

Miyamoto, and M. Goodman, Mol. Biol. Evol. 8§, 217 (1988).
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multiple data sets or sequentially adding data, and for inferring ancestral
genotypes. All sequence information is retained through the analyses; no
information is lost in the conversion to distances. Therefore, character-
based methods are often preferred when they are feasible. The chief disad-
vantages are the greater computational time they require and the greater
difficulty of correcting for multiple substitutions,

Parsimony

Parsimony is the principle of logic that simple explanations should be
preferred over more complex explanations. In the context of phylogenetic
inference, the most parsimonious tree is the tree that requires the fewest
evolutionary changes 1o explain the data. Parsimony remains the most
popular character-based approach for sequence data. This popularity is due
to its logical simplicity, its ease of interpretation, its prediction of both
ancestral character states and amount of change along branches, the avail-
ability of efficient and powerful programs for its implementation, and its
flexibility in terms of maximizing weighting strategies and conducting
character analyses. Parsimony procedures search for the phylogeny that
minimizes the number of evolutionary events required to explain the
original data. Parsimony, which permits unequal rates, assumes that ho-
moplasy occurs at levels that do not interfere with phylogenetic inference,
When more than one of the taxa in a study is connected to the tree by an
excessively long branch and rates of mutation are relatively high, parsi-
mony procedures can be expected to converge onto the wrong tree even as
more data are added.2® However, inconsistency under these conditions is a
property of many tree-building procedures. The excessive homoplasy may
be avoided by assigning greater weight to the more conservative sites or
gene regions (e.g., functional domains) and/or by giving more weight to the
slower types of nucleotide change (e.g., transversions). With parsimony
procedures, a wide range of weighting schemes is possible (Table IV).

Weighting strategies must be considered for parsimony analyses as they
are for all phylogenetic methods. Weighting is practiced even when weights
are not specified, in that all changes are uniformly counted. Thus, no
attempt to weight nonetheless carries an assumption about the evolution-
ary process. Current parsimony programs are well designed to implement
sophisticated weighting schemes, and, as such, weights based on at least
general patterns of molecular evolution are encouraged (e.g., first and
second codon positions versus third), as long as they are explicitly
presented and defended.

2 ). Felsenstein, Syst. Zool. 27, 401 (1978).
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TABLE IV
METHODS OF CHARACTER WEIGHTING
Weighting method Commenis* Refs?

Uniform weighting
Nonuniform weighting
Across posilions

Codon positions

Stems and loops

Within positions
Transilions versus trans-
versions

Relative substitution fre-
quencies

Weighting by base compo-
sition

Synonymous versus non-
synonymous change

Within and across positions

Successive approximations

All characters and changes are given equal weight

Selective weighting of particular characters and/or changes

Emphasizes structural/functional differences between gene re.
gions or base positions

Selective weighting of first, second, and third codon positions in
translated genes, because of redundancy of genetic code, A
general rule is that third-codon positions are under less selec-
tive constraint than first and second and, as such, are more
likely to change than the latter

Selective weighting of double-stranded (stem) versus single-
stranded (loop) regions of structural RNAs (tRNA and
rRNA), reflecting constraints on stem tegions 10 maintain
secondary structure through base pairing

Emphasizes mutational bias

Weighting of transition bias which is most evident in vertebrate
mitochondrial DNA but apparent in other systems as well,
The general rule is that transitions occur more frequently
than transversions and, as such, deserve less weight than the
latter -

The 12 possible substitutions (Fig. 6) are weighted differently
according to relative frequencies. Different combinations of
the 12 substitutional types can be recognized, with transi-
tion/transversion categorizations representing one extreme
(sce above)

Weighting schemes based on either observed or expected base
compositions of sequences being examined. This approach
assumes that base frequencics reflect substitutional frequen-
cies

Unlike synonymous mutations, nonsynonymous changes alter
primary sequence of a polypeptide and, as such, are under
greater selective constraint and occur less frequently. Non-
synonymous mutations therefore warrant greater weight

Refers 1o weighting for both positional effects and mutational
bias. A large number of combinations are possible

A posteriori weighting of characters according to levels of ho-
moplasy, as judged with an initial estimate of topology. Sub-
sequent reiterations of weighting and tree construction are
performed until topology stabilizes. Dynamic weighting uses
successive approximations approach 1o weight sequence data
both across and within positions

2-4

@ See Swofford and Olsen' for review,
® Key to references: (1) M. J. Dixon and D. M. Hillis, Mol Biof, Evol. 10, 256 (1993); 72} ). S. Farris,
Syst. Zool. 18, 374 {1969Y; (3} D. Sankoff and R. J. Cedergren, in “Time Warps, String Edits and
Macromolecules: The Theory and Practice of Sequence Comparisons” (D. Sankoff and J. B. Krus-
kal, eds.), p. 253, Addison-Weslecy, London, 1983; (4) P. L. Williams and W. M. Fitch, in “The
Hierarchy of Life: Molecules and Morphology in Phylogenetic Analysis” (B. Fernholm, K. Bremer,
and H. Jomvall, eds.), p. 453. Elsevier Science Publ., Amsterdam, 1989,
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Maximum-Likelihood Methods

Statistical models have been developed for character-based nucleotide
change. By considering each site separately, one determines the likelihood
of these changes in the data, given a particular topology and model of
molecular evolution. The maximum likelihood method therefore depends
heavily on the model chosen and on how well it reflects the evolutionary
properties of the macromolecule being studied. Because of questions abo_ut
the accuracy of the models, coupled with the computational complexities
of the approach, maximum-likelihood methods have not received the
attention that they probably deserve. The more recent versions of maxi-
mum likelihood rely on models of evolution that are quite sophisticated,
taking into account the possibility of unequal rates of change among
lineages, site-specific rate variability, and the random distribution and/or
clustering of variable sites. However, it remains unclear whether these
more complex models will be better at phylogenetic inference than the
more general ones since the former demand specific insights about the
evolutionary process (information which is not typically available).

Methods of Invariants

Phylogenetic inference methods have been developed for selecting the
correct topology when large amounts of homoplasy exist, as when rate
heterogeneities occur among distantly related branches. By relying on a few
specific patterns of nucleotide vaniation that represent the most conserva-
tive changes, one can avoid the abundant homoplasy while recognizing
signal. In evolutionary parsimony, quantities called “operator invariants™
are calculated for the three possible topologies of four taxa. Each invariant
reflects specific patterns of shared transversions corrected for homoplastic
similarity. These calculations are based on the vanable positions with two
purines and two pynmidines. Zero-value invartants represent cases in
which random multiple mutation events have canceled each other out,
and, as such, a chi-squared (x?) or binonial test is used to identify the
correct topology as the one with an invariant significantly greater than
zero. Evolutionary parsimony assumes that the transversion rates between
the two types of transversions for each given base are equal {(¢.g., the
frequency of A to C is the same as A to T). A recent modification of the
procedure has been proposed which corrects such inequalities by taking
into account base compositional differences.”

The method of invariants recognizes that there are 36 patterns of
transitions/transversions (called spectral components) for four taxa. Dif-

B A, Sidow and A. C. Wilson, J. Mol. Evol. 31, 51 (1990).
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ferent methods of phylogenetic inference rely on various combinations of
these components, with 12 used to calculate the three operator invariants
of evolutionary parsimony. Unlike parsimony, the method of invariants
does not construct intermediate ancestors, and it is limited to direct com-
parisons of only four taxa at any one time, When more than four taxa are
considered, all possible quartets are typically analyzed and a composite tree
constructed from the individual results. Relatively long sequences are
needed by the procedure 1o obtain enough transversions for its statistical
tests.

Searching for Optimal Trees

Once an optimality criterion has been selected, it is necessary to calcu-
late or estimate the best tree for the given criterion. For relatively few taxa
(up to as many as 20 or 30, depending on the level of homoplasy present in
the data), it is possible to use exact algorithms that will be certain to find
the optimal tree. For greater numbers of taxa, one must rely on heuristic
algorithms (i.e., useful and efficient algorithms that approximate the exact
solutions but may not give the optimal solution under all conditions).
When heuristic algorithms are used, it is always a possibility that a better
solution exists. Therefore, the use of heuristic algorithms should be de-
scribed exactly so that alternative procedures can be explored by other
workers who wish to search for better solutions.

Variations of two exact algorithms (algorithms that will always find
the optimal solution) are commonly used. The first is to search exhaus-
tively through all possible tree topologies for the best solution(s). This
method is computationally simple for 9 or fewer taxa (for which there are
=135,135 labeled, unrooted, bifurcating trees) and is only moderately
time-consuming for 10 or 11 taxa (2,027,025 and 34,459,425 trees, respec-
tively).2 For 12 taxa, the evaluation becomes laborious (654,729,075 trees),
and for 13 or more taxa (=13,749,310,575 trees) the calculations are
usually impractical. The chief advantages of exhaustive searches are (1) the
optimal tree(s) is always found and (2) all other possibilities can be ranked
with respect to the optimal solution(s).

If an exhaustive search is impractical for a given data set, another exact
algonithm can be used that is generally much faster, namely, the branch-
and-bound algorithm.*® Most impiementations of this algorithm calculate
an initial upper bound for a tree (using one of the heuristic methods
described below) and then search exhaustively along paths that lead to all
possible trees by sequentially adding taxa, If the upper bound is reached

¥ M. D. Hendy and D. Penny, Math. Riosci. 59, 277 (1982),
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before all the taxa have been added to the tree, then no more trees along
that search path need be examined, because any further addition of taxa
could only increase the length of the tree. If all taxa are added and the
upper bound has still not been reached, then a shorter tree has been found.
The upper bound is reset to this new score, and the search is continued. In
this way, the shortest iree can always be found, even though many trees (all
of which must be longer than the upper bound) are never examined by the
algorithm, _

Although the branch-and-bound algorithm will always find the shortest
tree, it cannot rank suboptimal solutions if implemented as above (its usual
form). However, the best implementations of this algorithm (e.g., as in the
Phylogenetic Analysis Using Parsimony or PAUP program?') allow an
investigator to save all trees that are shorter than or equal to a specified
bound. In this way, it is possible to look at the lower end of a tree-length
distribution, even for relatively large numbers of taxa, and thereby rank all
alternatives near the optimal solution(s).

If the exact algorithms described above are not feasible for a given data
set (the limitation is usvally number of taxa), then various heuristic ap-
proaches can be tried. The heuristics used should be described in sufficient
detail that they can be replicated, and so that alternative searches can be
attempted. It is also worthwhile to discuss the number of alternative solu-
tions examined, to give a sense of the thoroughness of the search.

Most heuristic techniques start by finding a reasonably good estimate of
the optimal tree(s) and then attempting to find a better solution by exam-
ining structurally related trees. The initial tree is usually found by a step-
wise addition algorithm.'?* These algorithms add taxa sequentially to a
tree, in each step adding the new taxon at the optimal piace in the growing
tree. Once a taxon is added to the tree, however, the tree is constrained for
the next round of addition. Therefore, it is likely that the solution that is
optimal when only a few taxa are joined together will not be globally
optimal for these taxa when the tree is complete (hence, the “inexact™
nature of stepwise addition algorithms). The various stepwise addition
algorithms differ primarily in the order in which taxa are added to the tree.
The simplest (and usually least efficient) algorithms simply add taxa in the
order in which they appear in the matrix, Other implementations base the
addition of sequences on their distance to a reference taxon or on the
number of steps they add to the growing tree.!

After an initial tree has been obtained (either by stepwise addition or

N D. L. Swofford, “PAUP: Phylogenetic Analysis Using Parsimony, Version 3.0.” Hlinois
Natural History Survey, Champaign, Iillinois, 1990.
3] 8. Farris, Syst. Zool. M, 21 (1970).
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user input), it can often be improved by examining related topologies by a
family of procedures known as branch swapping. Several alternatives are
commonly implemented and are described by Swofford and Olsen.t All
involve rearranging branches of the initial tree to search for a shorter
alternative (or one equal to or shorter than a specified limit). Because any
of these methods may be the most efficient under certain circumstances, it
is often necessary to 1ry as many options as are available to be reasonably
sure of finding the optimal soltution.

Another strategy that may be used for large data sets is to reduce the
number of possible topologies by constraining the analyses to look at a
subset of trees with exact algorithms, This approach is useful if a study is
designed to address specific questions. For instance, assume the relation-
ships among 10 families of angiosperms are in debate, but no one questions
the monophyly of each of the 10 families. Also assume that orthologous
sequences are available for three species of each of the 10 families. Under
such circumstances, it may be desirable to conduct at least one analysis in
which the 10 families are each constrained to be monophyletic, because an
exact solution is thereby possible (there are only ~ 1.2 X 10" trees if the 10
families are constrained to be monophyletic but ~8.7 X 10% trees if they
are not). Of course, the prior hypotheses of monophyly are being assumed
rather than tested, but this is appropriate under the conditions described.

Assessing Confidence in Results

Testing How Well Sequence Data Support Trees

Once the data are collected and a topology constructed, it is necessary
to evaluate the reliability of those data and the supported tree. It is impor-
tant to keep in mind that even randomly generated data can lead to a
single, best result. Therefore, several methods exist for testing the robust-
ness of the final topology using analytical and resampling procedures
(Table V),

A problem in assessing confidence when there are more thar four taxa
is that the number of trees available for testing increases dramatically,
Thus, few methods can reliably compare the more complex phylogenies,
As the size of individual trees increases, the stringency of the tests increases
as well, It is generally recommended that subsets of taxa be examined
instead, from within the more complex topologies, focusing on specific
major questions targeted before the analysis (see below). Alternatively one
could limit the comparisons to just those topologies deemed plausible for
biological reasons {e.g., a previous hypothesis of relationship based on
independent data).
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Wilcoxon rank-sum test,
sign test, winning sites
method

Confidence limits without
clock

Confidence limits with
clock

Wiliams/Goodman
confidence limits

For evolutionary parsimony
For maximum likelihood

Likelihood ratio test

For distance approaches
Branch length variances

Resampling techniques

Booststrapping

TABLE V
METHODS FOR ASSESSING CONFIDENCE IN RESULTS
Method Comments Refs.e
Analytical techniques
For parsimony procedures

Determines whether significant character support exists forone  7-3
tree relative to a second. Wilcoxon rank-sum test altows one
1o assign mutations different weights (i.e., transversions fa-
voring one tree are given greater importance than transi-
tions). For six or fewer taxa and no ordering as above, Wil-
coxon rank-sum test reduces to simpler sign test. In winning
sites method, binomial test is used to determine whether a
greater number of phylogenetically informative positions
(sensu parsimony) supports one tree versus a second

Assumes worst-case scenario for four taxa (two unrelated taxa 4
with fast rates of evolution, with other two and common
stem experiencing virtually no change). Under these condi-
tions, two unrelated taxa are expected 10 share 3/16 of their
positions by chance alone. Thus, to be statistically signifi-
cant, a trec must be supported by more than 3/16 of its
characters

Here, polytomy (star phylogeny) for four taxa is taken as §
worst-case situation. Thus, probability that a phylogeneti-
cally informative site supports a tree is same for all three
resolutions of polytomy, 1/3

Similar to approach just described, except that a clock is not 6
assumed. Method is based on a worst-case situation whereby
support for correct tree is = 1/3 and = 2/3 for the two incor-
rect topologics combined

A chi-square or binomial test is used to determine which phy- 7
logenetic invariants deviate significantly from zero and
which do not

Ratio of likelithood scores for selected tree and star phylogeny 2, 8, 9
is treated as a chi-square statistic with one degree of freedom.
Alternatively, standard normal test of the mean and variance
of the difference of their likelihood scores can be used to
compare one tree to another :

An internal branch length is considered significant only if its [0~ 12
length plus or minus two standard crrors cxceeds zero

Characters of oniginal daia set are randomly sampled and a tree
is produced from new matrix. Many resampled matrices are
analyzed (usually # 100). Frequency of replication of a group
is taken as measure of its statistical reliability or, at least, its
stability

Characters are randomly sampled with replacement, leading to 13, 14
new data set of same size as original
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TABLE V continued

Method Comments Refs,.

Jackknifing

CI'}aractcrs arc randomly sampled without replacement, lead- 15, 1.
ing to new data set smaller than original one. Jackknifing of
taxa is sometimes done instead of characters

* Key to references: (1) A. R. Templeton, Evolution 37, 221 (1983); (2) J. Felsenstein, Annu. Ren

Genet. 2?, 521 (1988); (3} E. M. Prager and A. C. Wilson, J. Mol. Evol. 27, 326 (1988); (¢) |
Felsenstein, in “Statistical Analysis of DNA Sequence Data™ (B. Weir, ed), p. 113 Dckke;- Ne
Yprk, 1983, (5) ). Felsenstein, Syst. Zool. 34, 152 (1985); (6) S. A. Williams and M., C;oodman‘ Mo,
Biol. Evol. 6, 325 (1989). {7} J. A. Lake, Mol. Biol. Evol 4, 167 {1987); (8) H. Kishino ﬂl;d M
Hasegawa, J. Mol. Evol. 29, 170 (1989); (9) J. Felsenstein, J. Mol. Evel. 26, 123 (1987); (10} M. Nei
J. C. Stephens, and N. Saitou, Mo/, Biol. Evol. 2, 66 (1985); (11) M. Hasegawa, H. Kj'shino a;ld T
Yano, J Mol. Evol 22, 160 (1985); (12) W.-H. Li, Mol Biol. Evel, 6,424 (1989); (13) ). Fcls::nslein
Evolution 39, 783 (1985); (14} D. M. Hillis and 1. J. Bull, Syst. Biol. 42, 182 (1993); (15) 8. Lanyon
Syst. Zool. 34, 397 (1985); (16) D. Penny and M. Hendy, Mol. 8iol. Evol, 3,403 (1.986). .

Groups to be evaluated need 1o be specified a priori, otherwise prob-
lems qf multiple testing can lead to an urircasonably high probability of
accepting some group as significantly supported. In addition, the following
lests assume that each nucleotide substitution is independent and derives
ftror.n a large sample, assumptions which often are not met. Despite these
limitations, many systematists have argued for the importance of placing
phylogenetic inference in a statistical framework and for improving the
“primitive state™ of testing its reliability.3?

Analytical Methods

Analytical procedures for testing phylogenetic reliability operate by
c_omparing the support for one tree to that for another, under the assump-
tion of randomly distributed data. These methods have been extensively
dcyeloped for parsimony procedures, with one of the earliest approaches
using the Wilcoxon rank-sum test to compare the number of unique
changes favoring one topology over a second. When fewer than six taxa are
considered, this test reduces to the simpler sign test and binomial test (the
latter being the winning sites method of Prager and Wilson),

Another approach for testing parsimony results has been to compare
the support for the best tree against that expected for a worst-case situation.
If no molecular clock is assumed, then the worst-case scenario for four taxa
occurs when two unrelated lineages evolve randomly and rapidly, coupled

¥ W..H. Li and M. Gouy, in “Phylogenetic Analysis of DNA Sequences™ (M. M. Miyamoto
and J. Cracrafl, eds.), p. 249. Oxford Univ. Press, New York, 1991,
ME M. Prager and A. C. Wilson, J. Mol, Evol. 27, 326 (1988).
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with virtually no change in the other two lineages or the central branch,
Under these conditions, one expects two unrelated taxa to share 3 of 16
nucleotide sites by random chance alone. If a molecular clock is assumed,
the worst-case situation becomes a trichotomy, with the probability of a
phylogenetically informative site (sensu parsimony) supporting any one
resolution being 1 in 3. Tables have been calculated for each of these cases,
summarizing the number of unique changes and extra steps needed 1o
favor statistically one tree over another, relative to the availability of
sequence data and phylogenetically informative positions. A recent devel-
opment of the above tests is the Williams-Goodman approach which does
not assume a molecular clock. Instead, this approach assumes that the
correct tree will be supported by one-third or more of the informative
positions, whereas the two incorrect topologies together will be supported
by a total of two-thirds or fewer of the informative sites. Each of the above
procedures is largely restricted to four taxa, although at least one heuristic
test has been developed to extend this type of approach to five taxa or
more.?® The null model used by these tests assumes equal support for the
trees being compared. A significant departure from this expectation im-
plies that more support, greater than expected by chance alone, exists for
the best tree relative to the alternatives.

The method of invariants?® uses a y? test or binomial test to determine
which phylogenetic invariants deviate significantly from zero and which do
not. Significant departure of an invariant from zero indicates that the
associated topology is well supported. In likelihood techniques, one tests
the significance of the internal branch length of a tree for four taxa against
the null model of an unresoived trichotomy. Here, the logarithm of the
ratio of the maximum likelihood scores for the best tree and unresolved
phylogeny is treated as a x? statistic, with one degree of freedom. This
approach can be extended to more than four taxa. Alternatively, one can
compare two maximum likelihood trees in a heuristic way by the mean
and variance of the difference of their likelihood scores. Analytical tests
of tree reliability for distance approaches have also been developed, with
the most popular relying on tests of the variances of internal branch
lengths. If an internal branch length plus or minus two times its standard
error is greater than zero, then it is considered well-supported at the
a = 0.05 level.

Resampling Techniques

Resampling procedures estimate the reliability of a phylogenetic result
by bootstrapping or jackknifing the characters of the original data set. In
bootstrapping, a new data set of the original size is created by sampling the

- -~
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available characters with replacement (Fig. 7). Thus, some characters be-
come represented more than once, others only once, and others not at all
in each bootstrapped data set. In contrast, jackknife methods randomly
drop one or more data points (or taxa®?) at a time, thereby creating smaller
data sets by sampling without reptacement. In either case, a phylogeny is
then reconstructed from the resampled data set, and the replication of
individual nodes is tallied. The frequency at which a node reappears
among different permutations is taken as a measure of its reliability or, at
least, of its relative stability (but see below).

Resampling procedures for testing phylogenetic reliability (particularly,
the bootstrapping approach) are currently popular, primarily because of
the wide availability of powerful and efficient algorithms for their imple-
mentation. These approaches have largely been used in conjunction with
parsimony procedures, but they can be used in combination with other
methods as well (e.g., bootstrapping of sequence positions prior to a dis-
tance analysis using the neighbor joining method). The interpretation of
bootstrap proportions varies among authors; the values provide unbiased
but highly imprecise estimates of repeatability (the probability that the
result would be found again given a new sample of characters from the
same distribution) and biased, but usually conservative, estimates of phy-
logenetic accuracy (the probability that the result represents the true phy-
logeny).”® However, the degree of bias in the accuracy of estimates varies
from node to node in a given tree, as well as from study to study, so
bootstrap proportions are not directly comparable with each other. None-
theless, they are sometimes used as relative measures of confidence among
nodes within a single phylogenetic estimate.*®

Faith and Cranston'* have developed a procedure (the cladistic permu-
tation tail probability) that randomizes the assignment of character states
to taxa at individual sites, while retaining the original configuration of
variation at each position. A tree is then constructed and the process
repeated to yield a distribution of tree lengths givén separate randomiza-
tions of the data. The length of a tree is then compared to this distnbution
10 test its departure from lengths expected from randomness. Trees with
original overall lengths less than or equal to the shortest 5% of the random-
ized trees are taken to have significant cladistic structure.

33 ). A. Lake, Mol Biol. Evol. 4, 167 (1987).

¥ H, Kishino and M. Hasegawa, J. Mol. Evol. 29, 170 (1989).
1 8, Lanyon, Syst. Zool. 34, 397 (1985).

31 0y, M. Hillis and J. J. Bull, Syst. Biol. 42, 182 (1993).

¥ M. 1. Sanderson, Cladistics S, 113 (1989).
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FiG. 7. Bootstrap analysis among characters in a parsimony analysis. The tree to the right
f cach matrix is the most parsimonious tree for that matrix. The final results of the bootstrap
nalysis are shown in the tree at the bottom. The numnber of times each branch was supporied

the bootstrap replication is shown as a percentage. Outgroup rooting carries the assump-
ron of ingroup monophyly, so no confidence interval can be assigned to the branch that

nites the ingroup.
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Statistical versus Phylogenetic Significance

A statistically significant result does not guarantee that an accurate
reflection of the phylogeny has been achieved, Rather, it only suggests that
a specific topology is strongly supported by a particular method of analysis
of the sequence data. This discrepancy can occur because of two different
reasons: (1) the statistical significance reflects systematic error that caused
the chosen procedure 1o converge on the wrong topology; and (2) the
current topology is correct, but it constitutes a gene tree, which may differ
from that for the species owing to allelic polymorphism and lineage sort-
ing, gene duplications or conversion, horizontal transfer, or other molecu-
lar evolutionary phenomena. Because of these two possibilities, one cannot
accept a tree as correct, given only one set of sequences, even if the current
results are considered statistically significant.

The ultimate criterion for determining phylogenetic reliability rests
instead on tests of congruence among independent data sets representing
both molecular and nonmolecular information_ 44! Different character
types and data sets are unlikely to suffer from the same evolutionary biases,
and, as such, congruent results supported by each are more likely 1o reflect
convergence onto the single, correct tree. In the absence of 2 priori knowl-
edge of the truth, congruence remains thefinal arbiter. Systematists have
always relied on concordance in this way to test their hypotheses, and it is
therefore not surprising that a similar role for congruence in molecular
phylogenetics is starting to emerge as well.

Implementation

No single computer program or package will allow an investigator to
conduct all of the analyses described herein. We do not address alignment
programs, which were the subject of a recent volume in this series.” Many
programs for phylogenetic analysis have been described in the literature
and are available by writing the authors of the original papers. The follow-
ing programs are widely used and easily available, either for free or for a
small fee. This list is not exhaustive but provides a starting point for
conducting most of the analyses described in this chapter.

The PAUP (Phylogenetic Analysis Using Parsimony) program was
written by David L. Swofford (Smithsonian Institution, Washington, D.C.;
program available from Illinois Natural History Survey, 607 E. Peabody
Drive, Champaign, IL 61820). It is a highly versatile, interactive program

“*D. M. Hillis, Annu. Rev. Ecol. Syst. 18, 23 (1987).
“ M. M. Miyamoto and J. CracraR, in “Phylogenctic Analysis of DNA Sequences” (M, M.
Miyamoto and J. Cracraft, eds.}, p. 3. Oxford Univ. Press, New York, 1991,
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for character-based analyses that allows a wide variety of weighting
schemes and modifications of parsimony and methods of invariants. It also
conducts bootstrapping, random sampling of trees, analyses of tree-length
distributions, consensus analyses, and character analyses, and it has rou-
tines for producing camera-ready output of trees. The full-featured pro-
gram currently is available only for Macintosh computers; an earlier ver-
sion that lacks many of the advanced features is available for MS-DOS
machines (an update is planned). Some versions are also available as C
source code for use on workstations and mainframes. .

Hennig86 was written by James S. Farris (American Museum of Natu-
ral History, New York, NY 10024). It is a fast and eflective parsimony
program. It is ofien faster than PAUP but has many fewer features and
options. However, Hennig86 does contain a routine for successive approx-
imation a posteriori character weighting.

Phylip (Phylogenetic Inference Package) was written by Joseph Felsen-
stein (Depariment of Genetics, SK-50, University of Washington, Seattle,
WA 98195). The package includes a diverse collection of programs, in-
cluding routines for calculating estimates of divergence and programs for
both distance-based and character-based phylogenetic analyses. The parsi-
mony programs are much slower and less efficient than in PAUP or
Hennig86, but Phylip implements many methods that are not widely
available elsewhere (e.g., maximum likelihood, many of the distance-based
approaches). The package is distributed in Pascal source code or is avail-
able in precompiled versions for most computers.

The MacClade program, written by Wayne P, Maddison and David R.
Maddison [Department of Ecology and Evolution (WPM) and Depart-
ment of Entomology (DRM), University of Arizona, Tucson], is another
program for parsimony analyses. However, it is primarily designed for
interactive tree manipulation and studies of character evolution, rather
than for finding most-parsimonious trees. It contains many features espe-
cially designed for analysis of DNA sequences and numerous features for
the production of camera-ready tree output. It is completely compatible
with PAUP, so the two programs are effectively used in combination.
MacClade is available only for Macintosh computers; it is available from
Sinauer Associates (Sunderland, MA 013735).

NJTREE, UPGMA, and TDRAW were written by Li Jin, J. W. H.
Ferguson, N. Saitou, and J. C. Stephens (contact Li Jin, Center for Demo-
graphic and Population Genetics, University of Texas Health Science
Center at Houston, P.O. Box 20334, Houston, TX 77225). These programs
build neighbor joining and UPGMA trees. They are written in FOR-
TRAN-77; precompiled versions are available for MS-DOS computers.

NIDRAW, NJBOOT, and related programs and available from M. Nei
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and T. S. Whittam (Institute of Molecular Evolutionary Genetics, Penn
State University, 328 Mueller Laboratory, University Park, PA 16802-
5303). These programs are available precompiled for MS-DOS computers,
They are used for computing various DNA distances and for constructing
and testing neighbor joining trees.

ANCESTOR, WTSUBS, AUTSUBS, and ALLTOPS were written by
P. L. Williams and W, M. Fitch (contact W, M. Fitch, Department of
Ecology and Evolutionary Biology, University of California, Irvine, CA
92717). These FORTRAN programs are available in uncompiled form or
precompiled for MS-DOS computers. The various programs are designed
for gf:nerating ancestral states, choosing among tree topologies, and per-
forming various aspects of dynamically weighted parsimony procedures.

Acknowledgments

Our work has been supported by the National Science Foundation (DEB 91-22823 and
DEB 92-21052 10 D.M.H.; BSR 88-57264 and BSR 89-18606 to M.M.M.). We thank Cliff
Cunningham, Winston Hide, David Swofford, Elizabeth Zimmer, and the Smithsonian
Molecular Phylogenetics Discussion Group for comments on the manuscript.



