PHYLOGENETIC ANALYSIS OF DNA SEQUENCES

Edited by

Michael M. Miyamoto
University of Florida
Gainesville, Florida

Joel Cracraft
University of Illinois
Chicago, Illinois

New York Oxford
OXFORD UNIVERSITY PRESS
1991
13

Discriminating Between Phylogenetic Signal and Random Noise in DNA Sequences

DAVID M. HILLIS

Most parsimonious trees are really neat. I am all for them, but have you any idea about the distribution of all the trees in the universe that you might have sampled? Fitch (1984)

Nucleic acid sequences have become a major source of phylogenetic information. In order to use these data appropriately, it is critical to distinguish sequences that are saturated by change from those that are phylogenetically informative. In this chapter, I will call variation that is potentially informative about phylogenetic history "signal," and use "noise" to describe variation that is not informative. Distinguishing between signal and noise is not something that can be accomplished by use of alignment criteria, because two sequences may be identical at a large number of functionally constrained sites, and yet essentially randomized at sites where variation is tolerated (e.g., the third positions of codons). This chapter explores the use of the distributions of tree lengths as a guide to the detection of phylogenetic signal in comparative data sets.

In parsimony analysis, changes at nucleotide positions among aligned sequences are mapped onto a tree, and the number of evolutionary changes required to accommodate that tree with the data is calculated as the tree length. For any given data set, this procedure may be repeated for many thousands of trees; the tree that yields the shortest length is designated the optimal tree under the parsimony criterion. The optimal tree is thus the one that requires the fewest number of evolutionary changes. In this chapter, I argue that the shape of the distribution of tree lengths contains information useful in deciding whether or not the data set contains phylogenetic signal.

Figure 13-1 Tree-length distributions compared by Fitch (1979, 1984) and Goodman et al. (1979a).
crystallin data set is more informative (because it allows better discrimination among near-optimal solutions) than the α-hemoglobin data set.

Fitch (1984) suggested that symmetric distributions such as that for α-hemoglobin are "most likely for bushy trees where all lines emanate from a single point," whereas asymmetric distributions like that for α-crystallin are "most likely for the 'stringy' trees, those which are maximally asymmetric in their splitting and have long intervals between splits." Several authors have presented strongly skewed tree-length distributions and have suggested that such distributions are evidence for strong phylogenetic signal (e.g., Fitch, 1984; Goodman et al., 1979a; Hillis, 1985; Werman, 1986; Hillis and de Sá, 1988; Hillis and Dixon, 1989). I will argue that skewness of tree-length distributions can be a useful indicator of phylogenetic signal and is largely (but not completely) independent of tree topology.

Having looked at tree-length distributions for many data sets, I developed the view illustrated in Figure 13-2. If all tree topologies for a given set of sequences are equally optimal (i.e., of equal length), then there is neither signal nor noise in the data set. Such a data set would result in the completely unresolved bush shown in Figure 13-2a. If the real phylogeny is in the form of a bush, however, then an equal length for all possible trees is an unlikely outcome; random variation would result in some trees being shorter than others by chance alone. The distribution of trees would include some topologies that were shorter than average, and a similar number that were longer than average, so the distribution of these lengths would produce a nearly symmetrical distribution, such as those shown in Figure 13-2b and 13-2b'. The optimal topology (or topologies) in this case might be a completely symmetrical tree (Fig. 13-2b), a completely asymmetrical tree (Fig. 13-2b'), or something in between. However, if the true phylogeny was not a single polytomy and the sequences were constrained by history (i.e., contain phylogenetic information), then the tree-length distributions shown in Figures 13-2b and 13-2b' are highly unlikely. Sequences constrained by history would produce distributions of tree lengths similar to those in Figure 13-2c and 13-2c': highly asymmetrical distributions with few trees near the optimal solution. These asymmetric distributions are a consequence of congruence among characters as a result of a common phylogenetic history. Thus, many characters support the topology that reflects this history, and conflict with a large number of alternative trees.

If the view described above is correct, then it suggests a means of escaping a common problem in phylogenetic analysis. Any comparative data set can be subjected to phylogenetic analysis, even if the data contain no historical information (i.e., they are too noisy for meaningful phylogenetic analysis). Nonetheless, random variation will usually result in one or a relatively few optimal topologies (at least compared to the much larger number of possibilities). What is needed is a means of distinguishing such data sets from those that are informative about phylogenetic history. This chapter explores the causes of skewed tree-length distributions, examines the proposition that random sequence data produce symmetrical tree-length distributions, explores possible tests for skewness, evaluates the amount of signal necessary to produce significant skewness, compares real data sets to random simulations, suggests a possible "stopping algorithm" to prevent the over-resolution of phylogenies, and points to areas in need of additional research.

THE CAUSES OF SKewed TREE-LENGTH DISTRIBUTIONS

To understand why data sets with strong phylogenetic signal produce skewed tree-length distributions, consider a data set on eight taxa (Figs. 13-3—13-
The effects of tree topology on tree-length distributions can be assessed by considering the kinds of characters that would be produced by the different topologies. For eight taxa, there are only four unrooted, unlabeled topologies (Fig. 13-4). Each internal branch in the topology is supported by either a two/six, a three/five, or a four/four character; the numbers of each of these types of internal branches are shown in Figure 13-4. If one assigns two characters to each internal branch, the distributions for each topology would be as shown in Figure 13-5. Note that all of these distributions are strongly skewed, although not all to the same degree. A common measure of skewness is the g_1 statistic—the third central moment divided by the cube of the standard deviation (Sokal and Rohlf, 1981).

For n trees of length T, g_1 is calculated as

$$g_1 = \frac{1}{n} \sum_{i=1}^{n} \frac{(T_i - \bar{T})^3}{s^3}$$

where s is the standard deviation of the tree lengths. This statistic is negative for distributions with left-skew, 0 for symmetric distributions, and positive for distributions with right-skew. The skewness of the distributions in Figure 13-5 varies from $g_1 = -1.096$ to $g_1 = -0.6637$. Therefore, although tree topology has a qualitative influence on skewness, the qualitative result (strong left-skew) is the same for all topologies. It is interesting to note that symmetry of the tree topology appears to have little influence on skewness.
Figure 13-4 Distinct unrooted tree topologies for eight taxa, numbers of internal branches supported by each class of binary character, and the relative spans of the tree-length distributions.

EXPERIMENTS WITH RANDOM SEQUENCES

To address the behavior of tree-length distributions in the absence of phylogenetic signal, random data matrices were constructed in the following manner (Fig. 13-6). One hundred matrices each with six, seven, or eight sequences, each 100 nucleotides long, were created using the random data generator in the computer program MacClade (version 2.97; Maddison and Maddison, 1991). This version of the program uses the random number generator in the Macintosh tool box to generate random data (D. Maddison, personal communication). The four nucleotides were given equal probabilities of occurring, so the frequency of each nucleotide was approximately 0.25 in each sequence. All possible tree topologies were analyzed for all 300 random matrices using Swofford’s (1990) Phylogenetic Analysis Using Parsimony computer software package (PAUP version 3.0).

To address the effects of the length of sequences on skewness, two additional sets of 100 matrices each of random data were generated for eight taxa. These data sets consisted of sequences 30 positions long and 200 positions long, respectively.

Two examples of tree-length distributions from the eight-taxon data sets are shown in Figure 13-7; figured are the distributions with the strongest left-hand and right-hand skews, respectively. The distribution of g_i scores for the tree-length distributions from all the random data sets are shown.

Figure 13-5 Effect of tree topology on tree-length distributions. Each internal branch is assigned a length of two character changes.
Discrimination between photometric signal and noise.

The results of the experiments show that the photometric signal can be detected in otherwise random data sets. Even small percentages of photometric signal can be detected by the methods described. The least detectable signal (LDS) has been measured at 20% of the signal-to-noise ratio (SNR) level required for detection. The LDS for a given number of traces (Fig. 13.1) is defined as the smallest signal-to-noise ratio (SNR) level at which the signal becomes detectable. The LDS is a measure of the minimum detectable signal for a given number of traces.

Figure 13.2: Examples of photometric distributions from random sequences.

Figure 13.3: A test of the LDS for a given number of traces.

Although the photometric signal is weak, it is detectable in random data sets. The signal-to-noise ratio (SNR) for each trace is calculated using the formula:

\[SNR = \frac{signal}{noise} \]

The SNR for each trace is then averaged to obtain the overall SNR for the sequence.

In Figure 13.4, the average SNR for each trace is shown. The average SNR for the sequence is then calculated using the formula:

\[\text{Average SNR} = \frac{\text{Sum of SNRs}}{\text{Number of traces}} \]

The average SNR is then used to estimate the LDS for the sequence.

In Figure 13.5, the LDS for each trace is shown. The LDS for the sequence is then calculated using the formula:

\[\text{LDS} = \text{Average SNR} + \text{noise} \]

The LDS for the sequence is then used to estimate the photometric signal in the random data set.
Figure 13-8 The distributions of skewness statistics (g_i) for the 300 random sequence matrices (six, seven, and eight taxa). The dashed vertical lines indicate the g_i score for symmetrical distributions. The lower 5% (shaded) and 1% (black) of each distribution is indicated.

Figure 13-9 The proportions (shaded area) of skewness scores for the random sequence-data matrices that are not significantly different from scores for normal distributions (six, seven, and eight taxa).

Table 13-1 Critical Values for g_i Statistics of Tree-Length Distributions for Six, Seven, and Eight Taxa*

<table>
<thead>
<tr>
<th>Number of Taxa</th>
<th>P</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>-0.51</td>
<td>-0.45</td>
<td>-0.34</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>-0.67</td>
<td>-0.60</td>
<td>-0.47</td>
<td></td>
</tr>
</tbody>
</table>

*Scores lower than those shown are outside of the 95% or 99% confidence limits for distributions derived from random data.

Figure 13-10 The effect of length of sequence on g_i statistics. The three samples each contain 100 matrices of eight taxa; the lengths of the random sequences are 30, 100, and 200 nucleotides. The lowest 1% of the distribution is indicated by a single line, the lowest 5% of the distribution is indicated by an open bar plus the line, and the remaining portion of the distribution is indicated by a solid bar.

ANALYSIS OF REAL SEQUENCES

I have examined skewness of tree-length distributions from several real sequence data sets, all with at least eight taxa. Except for the α-hemoglobin data discussed by Fitch (1984) and above, all of these were significantly more skewed than the distributions from random data matrices ($P < 0.05$; Table 13-1 and Fig. 13-12). Only one of these distributions (that for mitochondrial cytochrome b genes) was even within the observed bounds of the g_i values for the random matrices. The mitochondrial cytochrome b data set consists of sequences on eight species of vertebrates, including an actinopterygian fish, two amphibians, a bird, and four mammals. If one of the two most closely related taxa (sheep and cow) are removed from

Figure 13-11 The effect on skewness of adding signal to otherwise random sequence matrices (see text). The g_i scores represented by open boxes in the lower portion of the figure correspond to distributions produced from random data (the most left-skewed, symmetrical, and right-skewed distributions are used as examples). The shaded boxes indicate the g_i scores for the distributions after the addition of 10% or 20% signal, as indicated.
this data matrix, the tree-length distribution becomes much less skewed, indicating that it is the inclusion of these relatively closely related species that accounts for most of the phylogenetic signal in these sequences.

The observations from the mitochondrial cytochrome b data set suggest an algorithm that could be used to prevent over-resolution of phylogenies (reading beyond the signal) in sequence data sets. The execution of this algorithm is shown in Figure 13-13 for the ribosomal RNA (rRNA) sequences presented by Field et al. (1988) for eight species of deuterostomes.

1. Determine the skewness of the tree-length distribution for all possible trees (or a random sample thereof—MacClade and PAUP each have options for this purpose).
2. If the distribution is significantly skewed, then find the best-supported branch that unites two or more of the taxa (e.g., by bootstrapping or counting synapomorphies) and continue to step 3. If the distribution is no more skewed than would be expected from random data, then stop.
3. Repeat step 1 for all remaining tree topologies, given the branch determined in step 2.
4. Repeat step 2, saving any branches previously determined (continue repeating steps 1 and 2 until the distribution of all remaining trees is no more skewed than expected from random data).

One objection to this algorithm is that tree resolution cannot proceed beyond a tree of five unresolved lineages (Fig. 13-13), because the number of possible tree topologies (15) is too small to examine skewness (see Table 13-2). However, I have found that for most sequence data sets, the tree-length distribution is no longer skewed well before this point; therefore, this limitation may not be too severe. Another objection is that the overall probability of making a type-I error increases as the number of resolved branches increases, so the initial level of \(\alpha \) must be set quite low in order to keep the overall \(\alpha \) below 0.05. This reduces the power of the test. There also may be objections that a single branch is determined at each step, whereas the phylogenetic information may be distributed across more than one branch. Nonetheless, I present this algorithm as an example of the possible uses of tree-length distributions, although I do not advocate its use until tree-length distributions have been studied in greater detail.
Table 13-2 Number of Distinct Unrooted Trees for Three or More Taxa, and the
Recommended Methods of Analyzing Tree-Length Distributions

<table>
<thead>
<tr>
<th>Number of Taxa</th>
<th>Number of Unrooted Trees</th>
<th>Method of Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>Too few trees</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>Too few trees</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>Too few trees</td>
</tr>
<tr>
<td>6</td>
<td>105</td>
<td>Exact enumeration</td>
</tr>
<tr>
<td>7</td>
<td>945</td>
<td>Exact enumeration</td>
</tr>
<tr>
<td>8</td>
<td>10,395</td>
<td>Exact enumeration or random sampling</td>
</tr>
<tr>
<td>9</td>
<td>135,135</td>
<td>Exact enumeration or random sampling</td>
</tr>
<tr>
<td>10</td>
<td>2,027,025</td>
<td>Exact enumeration or random sampling</td>
</tr>
<tr>
<td>11</td>
<td>34,459,425</td>
<td>Exact enumeration or random sampling</td>
</tr>
<tr>
<td>≥12</td>
<td>≥654,729,075</td>
<td>Random sampling</td>
</tr>
</tbody>
</table>

IMPLEMENTATION AND DIRECTIONS FOR FUTURE RESEARCH

This study suggests that tree-length distributions can provide an accurate and sensitive indication of the presence of phylogenetic signal in comparative sequence data sets. Skewness statistics provide a simple means of evaluating these distributions, which are often determined as a by-product of phylogenetic analysis. In response to these findings, David L. Swofford and David R. Madison have recently developed PAUP and MacClade, respectively, so that these programs now provide g1 statistics for tree-length distributions.

Although I have used the conventional measure of skewness (g1) as a guide to the detection of phylogenetic signal, other measures (e.g., the other odd central moments) may prove to be even better indicators of signal. However, considerable additional research needs to be conducted before any measures of skewness can be used meaningfully with regularity. Simulations with random data (or exact solutions) need to be conducted for greater numbers of taxa (Table 13-2), the effects of base composition and length of sequence need to be studied in greater detail, and additional studies need to be conducted on the effects of different levels of signal and noise (or the effects of two sets of conflicting signal). Despite the need for these additional studies, this study indicates the general usefulness of tree-length distributions in phylogenetic analysis.

ACKNOWLEDGMENTS

I thank J. Coddington, B. I. Crother, M. T. Dixon, J. S. Farris, J. Felsenstein, K. Halanych, A. I. Hillis, W. M. Fitch, and M. White for helpful discussion, comments on the manuscript, and other assistance. D. R. Madison and D. L. Swofford provided test versions of their respective pro-

REFERENCES

grams, without which this study would not have been possible. J. J. Bull has provided constant input and advice on this work, and I am especially grateful for his efforts. This study was supported by National Science Foundation grants BSR-8657640 and BSR-8796293.
When are Phylogeny Estimates From Molecular and Morphological Data Incongruent?

DAVID L. SWOFFORD

Many sources of information may be available for use in inferring phylogenetic relationships among a group of taxa. Because different character sets share a common evolutionary history, we expect reliable methods of phylogenetic analysis to recover the correct evolutionary tree regardless of the kind of data employed. To the extent that character sets "tell the truth" about their past, phylogenies inferred from different character sets should be congruent with the true tree and therefore with each other. This line of reasoning suggests that congruence among data sets might provide the strongest achievable evidence that a proposed phylogeny is accurate (e.g., Penny and Hendy, 1986). In practice, however, the ideal of perfect congruence is frequently not achieved. Phylogenies estimated from additional character sets typically disagree in minor details and sometimes contain major discrepancies.

When phylogeny estimates from two character sets disagree in nontrivial ways, we are confronted with a dilemma: both of the estimates cannot be correct, so how do we reconcile the differences? One explanation is that one of the data sets is simply unreliable and that no method of phylogenetic reconstruction could be expected to recover the correct tree given the poor quality of the data. At one time or another, most of us have witnessed or participated in vigorous debates about the relative strengths of alternative sources of information or about the power versus futility of particular techniques. The increase in prominence of molecular approaches to systematics has increased the frequency of such exchanges, especially when molecular evidence controverts traditional notions of phylogenetic rela-