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Commentaries

Accuracy of Parsimony Analysis Using Morpho-
logical Data: A Reappraisal.—ABSTRACT. In a recent
paper, W. F. Lamboy used computer simulations to evalu-
ate the accuracy of parsimony analysis using morphologi-
cal characters. Based on his simulations, Lamboy con-
cluded that parsimony analysis of morphological data is
generally highly inaccurate, that many published trees are
likely incorrect, and that current emphasis on phylogeny
reconstruction using parsimony is misplaced. In this paper
we argue that these conclusions are the result of: 1) using
an unusually small number of characters relative to the
number of taxa; 2) generating true trees that contain
polytomies; 3) using misleading measures of accuracy; 4)
summing across a biased set of simulation results to make
general conclusions; and 5) using an inappropriate index
to compare simulated data to results in the real world. We
provide recommendations for designing more rigorous
simulations of phylogenetic questions, and summarize
current knowledge of the performance of parsimony
analysis based on other simulation studies. In contrast to
Lamboy, we see great promise for accurate phylogeny
reconstruction using parsimony analysis of morphological
data.

Systematists have many difficult choices to make when
undertaking a phylogenetic analysis. For example, they
must decide what characters to sample, what species to
include, and what method they will use to build trees.
Computer simulations offer an important means for test-
ing how different approaches affect the accuracy of phylog-
eny reconstruction. Simulation studies allow one to specify
a known phylogeny and to control the conditions under
which the phylogeny and characters are generated (see
Huelsenbeck 1995). Thus, one can determine how varia-
tion in the parameters of interest affects the performance
of a method. Simulations have been used to address a
variety of systematic questions, including the relative
success of different reconstruction methods (see Hillis
1995, for a recent summary), the validity of methods for
testing the accuracy and signal of trees and data sets (Hillis
and Huelsenbeck 1992; Zharkikh and Li 1992ab; Hillis
and Bull 1993; Harshmann 1994), the benefits of including
fossil versus living taxa (Huelsenbeck 1991b), the conse-
quences of combined versus separate analysis of data sets
(Bull et al. 1993a), and the effects of concerted evolution on
phylogenetic analysis using multiple genes (Sanderson
and Doyle 1992). Most recent studies have simulated DNA
sequence data and older studies have simulated allele
frequency data (Nei et al. 1983; Rohlf and Wooten 1988;
Kim and Burgman 1988). Few simulation studies have
explicitly simulated morphological data (Lynch 1989),
although some studies have simulated generalized two-
state or multistate characters that may be interpreted as
morphological data (Rohlf et al. 1990; Hillis and Huelsen-
beck 1992). This paucity of explicit simulations of morpho-
logical characters is unfortunate, because morphology

remains the most common type of character data used in
phylogenetic analyses (Sanderson et al. 1993).

This deficiency was recently addressed by Lamboy
(1994), who undertook a simulation study to evaluate the
accuracy of parsimony analysis using morphological data.
Lamboy concluded that parsimony analysis of morphol-
ogy was often highly inaccurate, and extrapolated that
many published phylogenetic studies are probably incor-
rect. In this paper, we argue that Lamboy’s study gives a
highly misleading picture of morphology, the perfor-
mance of parsimony, and the current “state of the art” in
computer simulations of phylogenetic questions. In con-
trast to Lamboy, we see great promise for accurate phylog-
eny reconstruction using parsimony analysis of morpho-
logical data, and we give a number of recommendations
for how to evaluate and improve its success.

WHAT 1S SPECIAL ABOUT MORPHOLOGY?

Most recent simulation studies have simulated DNA
data as opposed to morphology. Given this, one might
reasonably ask: what special properties of morphological
data have been ignored that will affect their success in
reconstructing the true phylogeny? Lamboy (1994: 490)
emphasized several differences, namely: 1) relatively
few character states per character; 2) few characters
relative to the number of species, and 3) “reversals and
parallelisms.” None of these properties are unique to
morphological data. In his analyses, Lamboy used either
two states per character (which occurs variably in both
morphological and DNA studies), or four unordered states
(the maximum number typically observed in DNA
characters). Furthermore, both morphological and molecu-
lar characters can potentially have a large number of
character states, such as a complex and variable morpho-
logical feature or an allozyme locus with a large number of
alleles. The ratio of characters to taxa is highly variable in
molecular and morphological studies, but the relationship
between number of characters and accuracy (for a given
number of taxa) is clear. Except under certain combina-
tions of branch lengths (Felsenstein 1978), increasing the
number of characters generally increases accuracy (Nei et
al. 1983; Kim and Burgman 1988; Rohlf and Wooten 1988;
Charleston et al. 1994; Hillis et al. 1994a,b). In half of
Lamboy’s simulations, the ratio of characters to taxa is 1:1
(if uninformative charaters are included; otherwise, there
are more taxa than characters). This relatively small
number of characters clearly predetermines the poor
performance of parsimony, but is found only rarely in real
data sets—only 7.5% of the morphological data sets
surveyed by Sanderson and Donoghue (1989) have so few
informative characters, and the mean character to taxon
ratio is 2.9 characters per taxon for the 40 real data sets
they surveyed. Reversals and parallelisms occur in both
molecular and morphological data, and have consistently
been included in previous simulation studies. In sum-
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mary, the data sets generated by Lamboy have no special
properties that make them more relevant to morphological
studies than studies that have simulated DNA, allele
frequencies, or generalized character data.

Are there any general and unique properties of
morphological data that could affect accuracy and that
could have been simulated? One difference is that the
heritability of morphological characters is usually un-
known, allowing the possibility that some characters do
not have a genetic basis and thus could be misleading
about phylogeny. Furthermore, many morphological char-
acters involve continuous variation (whether they are
recognized as such or not; Stevens 1991). One could also
argue that molecular frequency data are continuous, but
discrete morphological characters can be treated as
frequencies as well (Wiens 1993, 1995). Thus, the presence
of continuous variation (such as the length of a stamen or
bone) in morphology appears to be another legitimate
difference. Although not cited by Lamboy, the accuracy of
phylogenetic analysis using continuous morphological
variation has been addressed explicitly in a previous
simulation study (Lynch 1989).

Other differences between molecular and morphologi-
cal data are not so clear. For example, non-independence
has been postulated for both molecular (Wheeler and
Honeycutt 1988; Korber et al. 1993) and morphological
data (Winterbottom 1990), and is a general problem that
needs to be addressed in more simulation studies. Fossils
offer special problems and rewards, but are no longer
restricted to morphology (DeSalle et al. 1992), and have
received some attention in simulation studies (Huelsen-
beck 1991b). Although most molecular characters do not
have ontogenies, the legitimate role of ontogenetic
information in phylogenetic analysis, aside from being a
source of new characters, has been greatly overestimated
(Mabee 1993).

Instead of exploring any of these properties, Lamboy
chose to vary primarily a parameter (number of charac-
ters) which has a relatively well-known effect on accuracy.
The effects of other parameters he varied (number of states
per character, polytomous speciation, different types of
homoplasy) is not always obvious from other studies, but
Lamboy’s assessment of their impact on accuracy is
seriously compromised by the design of his study.

PROBLEMS OF DESIGN:
To ESTIMATE THE IMPOSSIBLE TREE

In Lamboy’s simulations, many of the true trees
contained polytomies. Lamboy stated (p. 491) that these
unresolved trees “provide a more realistic array of tree
topologies than the sets of completely resolved trees used
in many previous studies.” We seriously question the idea
that the simultaneous splitting of eight species (p. 491) is
in any way “realistic.” Yet, Lamboy’s description of his
tree generating method (p. 491) suggests that polytomous
splitting occurred frequently in his simulated phylogenies.
Furthermore, Lamboy considered a methods ability to
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leave these polytomies unresolved to be an important
component of accuracy. This is certainly a dramatic
departure from previous notions of the concept (see
review by Hillis 1995). Most phylogenetic approaches
assume that the tree is dichotomous, and resolve the tree
wherever support exists (there are parsimony methods
that do not resolve polytomies if there is insufficient signal
to do so, but these methods were not examined by
Lamboy; Crandall et al. 1994). Although it might have
been interesting to see how violations of the dichotomy
assumption affect accuracy, this information is unavailable
from Lamboy’s paper. Instead, this basic assumption is
violated throughout the simulations with unknown (but
seemingly high) frequency. Thus, the problem of polyto-
mous model trees represents a confounding factor that by
itself would seriously compromise the validity of the
conclusions.

MEASURING ACCURACY: ALL OR NOTHING

Lamboy used several measures to assess the accuracy of
the estimated trees, including “percent of phylogenies for
which the true tree was among the set of most parsimoni-
ous,” “percent of most parsimonious trees that were the
true tree,” and “percent of strict consensus trees that were
the true tree.” The common theme among these measures
is that an estimated tree is either identical to the true tree
(including any polytomies) or is wrong. Although this “all
or nothing” approach to measuring accuracy is appropri-
ate for trees with a single internal stem (i.e., a four taxon
unrooted tree; e.g., Kim and Burgman 1988; Huelsenbeck
and Hillis 1993), it is not appropriate for a tree with eight
species, as in Lamboy’s simulations. For eight taxa, the
estimated tree can be wrong but still have an undeniable
similarity to the correct tree, or could be wrong and have

1no nodes in common with the true tree (Fig. 1). Lamboy’s

criteria would give these incorrect trees equal weight. The
dismal picture of the success of parsimony and morphol-
ogy that Lamboy paints is due in large part to these
insensitive and misleading measures of accuracy. Hillis et
al. (1994a) identified this problem as one of the principal
sources of bias in simulation studies; to avoid this bias,
they recommended that methods be scored using the
average number of correctly resolved components among
all equally optimal solutions.

Lamboy’s use of polytomous trees as true phylogenies
confounded the measuring of accuracy in other ways as
well. Lamboy considered the “percent of time the strict
consensus tree was identical to the true tree as the primary
measure of accuracy” (p. 489). Strict consensus trees are
rarely interpreted as estimates of phylogeny, probably
because they are simply collapsing nodes of disagreement.
Using this index of accuracy, all the most parsimonious
trees might contradict the true tree, but the resulting
consensus tree would be considered “correct.” Thus, using
the consensus tree as a measure of accuracy confuses
polytomies due to simultaneous speciation with those due
to character conflict.
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FIG. 1.  An example showing that two estimated trees
can be incorrect but nevertheless differ greatly in their
similarity to the true phylogeny. This illustrates the need
to use a measure of accuracy that takes into account the
proportion of correctly resolved clades, not simply
whether a tree is right or wrong.

PROBLEMS OF INTERPRETATION

The main conclusion of Lamboy’s study was that
parsimony rarely finds the correct tree for morphological
data sets (p. 489). This conclusion was based on summing
his measure of accuracy across all of his simulations. This
unorthodox practice carries with it the implicit assump-
tion that the frequency of the various conditions in all the
simulations is somehow meaningful, or at least unbiased.
Yet, in half the simulations the ratio of infgrmative
characters to taxa was unusually low (one informative
character per species or fewer). Prior simulation studies
have shown the relationship of number of characters to
accuracy time and time again, a conclusion also noted by
Lamboy. Clearly, summing across the simulations gives
neither a realistic nor unbiased picture of the performance
of parsimony; values will shift markedly one way or the
other depending on the sample of conditions simulated.

After reporting the summed results of his simulations,
Lamboy used his results to infer how often real morpho-
logical data sets estimate the true tree using parsimony.
Rather than reporting how often simulated data sets with
comparable numbers of characters estimated the true
phylogeny, Lamboy used the consistency index of real and
simulated data sets to guide his comparisons. This was an
extremely poor choice of indices, because the consistency
index is highly sensitive to the number of taxa in an
analysis (Archie 1989a,b; Sanderson and Donoghue 1989,
and subsequent authors). This property of the consistency
index is uncontroversial (contra Lamboy, p. 493), and
renders Lamboy’s comparisons invalid; for example, he
compared his data sets of eight species to real data sets
with as many as 68. Lamboy compounded this error by
comparing consistency indices of data sets with uninforma-
tive characters removed (from the literature) with his data
sets, which included uninformative characters. This
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artificially inflated the measure for his data sets. Thus,
Lamboy’s claim that “maximum parsimony probably
performs more poorly with most real morphological data
sets than it did with most simulated data sets analyzed” is
completely unsubstantiated.

Finally, Lamboy concluded (p. 502) that “I advise
caution in using the results of phylogeny reconstruction to
make inferences about any biological processes or patterns
that depend upon exact knowledge of the historically true
phylogeny.” We wholeheartedly agree with this statement.
Yet, systematists and users of phylogenies are not so
helpless in evaluating the robustness of their results.
Methods now exist to statistically distinguish between
well and poorly-supported nodes (e.g., bootstrapping,
Felsenstein 1985; Faith’s 1991 PTP test) and whether or not
whole data sets contain useful phylogenetic information
(e.g., g1 index, Hillis 1991; Archie’s 1989a randomization
test). The performance of many of these methods has now
been tested with simulated and/or experimental phylog-
enies (e.g., g7 index: Hillis 1991; Huelsenbeck 1991a; Hillis
and Huelsenbeck 1992; bootstrapping: Zharkikh and Li
1992a,b; Hillis and Bull 1993; Harshmann 1994). Based on
his description of his data-generating methods, we
question whether Lamboy’s simulated trees actually
contain any nodes that are simultaneously wrong and
strongly supported. Given that weak support for a clade
can be detected and taken into consideration, we believe
that it represents a relatively trivial problem in phyloge-
netic inference. Furthermore, although the users of
phylogenetic trees must be aware of the ambiguities in the
trees that they use, we note that the use of phylogenies to
test evolutionary questions need not require a fully-
resolved or strongly supported tree (DeBry 1992; Purvis
and Garland 1993; Losos 1994).

BUILDING BETTER SIMULATIONS

Given the many problems of Lamboy’s study, can we
make practical suggestions as to how to design a better
computer simulation study? We can, and we believe that
more rigorous simulation studies have already become
standard for the field (e.g., Kim and Burgman 1988;
Huelsenbeck and Hillis 1993). There are at least four
important ingredients to a good simulation study: 1) use
of a specific (and specified) model (or models) of evolution
to generate the data; 2) unbiased treatment of the
parameters potentially important in determining perfor-
mance; 3) comprehensive examination of the effects of
variation in the parameters of interest, and 4) unbiased
evaluation of the results.

Examples of different models of evolution that have
been used to generate character data for simulations
include allele frequencies evolving by random genetic
drift (Nei et al. 1983; Kim and Burgman 1988; Rohlf and
Wooten 1988) and DNA sequences evolving by the
Jukes-Cantor and Kimura mutation models (Huelsenbeck
and Hillis 1993; Huelsenbeck 1995). Results of phylogenetic
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simulations are known to be highly dependent on the
model of evolution (e.g., Rohlf et al. 1990; Wheeler 1992;
Huelsenbeck 1995). Because of this fact, simulators need to
specify the model of evolution and, ideally, examine the
effects of changing the model. Results should not be
considered to be general unless they are shown to be
relatively insensitive to details of the model. Lamboy did
not specify an explicit evolutionary model, and he tried to
draw general conclusions from results that appear to be
highly specific to the details of his simulations.

Parameters that have already been shown to be
important in determining accuracy include: 1) relative
branch lengths (Felsenstein 1978); 2) absolute branch
lengths (Huelsenbeck and Hillis 1993); 3) number of
characters (Kim and Burgman 1988; Charleston et al. 1994;
Hillis et al. 1994ab), and 4) tree shape (Fiala and Sokal
1985; Rohlf et al. 1990). These parameters must be set or
varied in an unbiased fashion, to avoid predetermining
the results from the outset (Huelsenbeck 1995). Further-
more, results concerning the performance of a method
must always be reported with the caveat that they may
apply only to the specific conditions under which they
were generated. For example, Huelsenbeck and Hillis
(1993) qualified their results with the warning that they
may apply only to the four-taxon case (hence their paper’s
title). In contrast, Lamboy did not emphasize in his
abstract that parsimony analysis of morphological data
performs poorly when the number of characters is small,
but rather that it generally performs poorly.

Because factors such as tree shape and branch lengths
can bias the results of simulation studies, it is important to
define the parameter space of interest and analyze it as
completely as possible. Biased selection of model trees, for
instance, has led to biased conclusions about the relative
success of different methods. For example, by analyzing
only trees with branch lengths known to positively
mislead parsimony, Tateno et al. (1994) mistakenly
concluded that distance correction is superior to weighted
parsimony at high rates of evolution. This highlights the
need for thorough examination of problems and explain-
ing the results of simulations in context. In the case of the
relationship of number of characters to phylogenetic
success, character number can be varied systematically for
a given set of model conditions, so that the minimum
number of characters needed to find the correct tree with
high probability can be identified (Hillis et al. 1994b). Of
course, this finding will be limited to the model examined
and the tree evaluated, so even in this case the results
should not be overgeneralized.

Finally, the results of a study must be analyzed in as
unbiased a manner as possible. We have already identified
at least two sources of bias in Lamboy’s analysis. First, his
measures of phylogenetic accuracy were unrealistic,
uninformative, and misleading. Second, his method of
comparing his results to real studies of morphology was
based on an inappropriate measure that in any case was
calculated differently among the relevant studies. These
problems combine to make Lamboy’s study largely
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uninterpretable; certainly his conclusions are not justified
by his data.

PARSIMONY AND ACCURACY: WHAT IS KNOWN?

Given that we have objections to Lamboy’s characteriza-
tion of the performance of parsimony, how would we
describe (in general) the accuracy of parsimony based on
simulation studies? First, parsimony is highly sensitive to
certain extreme combinations of branch lengths, where
branch length is defined as the amount of actual,
estimated, or potential character change (summed across
characters) for a given lineage. In particular, parsimony is
inconsistent (i.e., adding characters increases support for
an incorrect clade) when two or more unrelated terminal
branches are very long compared to adjacent terminal or
internal branches (see Fig. 2). This property of parsimony
was first described by Felsenstein (1978) and has been
shown with computer simulations of gene frequency data
by Kim and Burgman (1988) and more recently for DNA
sequence data by Huelsenbeck and Hillis (1993) and
others. Although some other phylogenetic methods (e.g.,
maximum likelihood) are consistent when there are long,
unrelated branches (i.e., adding more characters eventu-
ally leads to estimating the correct tree), all methods are
highly inefficient under these conditions (they require a
very large number of characters to get the true phylogeny).
Furthermore, most other methods are biased in the same
direction as is parsimony, such that the long branches will
tend to appear together in the estimated trees (Hillis et al.
1994b; Huelsenbeck 1995).

Parsimony (and other methods) also performs poorly
when there are few variable characters, and when
branches become so long or characters are evolving so
quickly that the phylogenetic information present is

‘effectively randomized (Hillis and Huelsenbeck 1992;

Huelsenbeck and Hillis 1993; Huelsenbeck 1995). These
latter two problems are less severe, because poor character
support for a clade and data sets that approach random
levels of noise can be easily detected. The problem of
long-branch attraction is more difficult, because as more
data are added, character support (and confidence) for the
incorrect node will increase (Zharkikh and Li 1992b; Hillis
and Bull 1993). However, the problem potentially can be
solved by adding more taxa to subdivide the long
branches (Hendy and Penny 1989; Swofford and Olsen
1990), and it is not known whether long-branch attraction
is actually common in real data sets.

Although the branch-length problem may be character-
ized as relatively well-understood, several questions re-
main, namely that 1) all studies of branch-length
problems so far have allowed for only a limited set of
possible branch-length combinations; 2) the effects of
different numbers of taxa have not been addressed in a
critical fashion, and 3) the application of these studies
to determining when long branches are attracting in a
given data set in the real world is still unclear. However,
parametric bootstrapping (Bull et al. 1993b; Hillis et al.
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FiG. 2.  The problem of long-branch attraction. Parallel
changes in taxa B and D are interpreted as support for
grouping these two taxa, and the addition of more
characters tends to increase support for this incorrect
clade. Thus, long branches cause parsimony (and many
other phylogenetic methods) to be inconsistent and
positively misled.

1994a; Huelsenbeck et al., in press) is beginning to be used
to evaluate the performance of phylogenetic methods for
particular data sets, and is particularly useful for detecting
potential branch-length probems.

Many other problems in parsimony analysis have now
been addressed using computer simulations, but many of
these remain unresolved. For example, character weight-
ing based on differences in rates of change among
characters generally improves parsimony analysis
(Huelsenbeck and Hillis 1993; Chippindale and Wiens
1994; Huelsenbeck 1995), although the effects of imperfect
knowledge of actual rates (the typical situation with real
data) are poorly known, as is the success of many
weighting schemes [i.e., dynamically weighted patsimony
and combinatorial, EOR (expected to observed ratio), and
successive weighting]. Taxa that are relatively incomplete
(missing character observations) generally decrease accu-
racy (Huelsenbeck 1991b), although this decrease can be
offset if the taxa are older. Simulations have alternatively
shown that adding taxa may increase (Wheeler 1992) or
decrease (Charleston et al. 1994) accuracy, even when the
number of characters is held constant. Combining data
sets may reduce the accuracy of parsimony analysis
relative to separate analysis of “good” and “bad” data sets
(Bull et al. 1993a), although whether this means it is
generally better not to combine data sets or to include
more homoplastic data is still questionable (Chippindale
and Wiens 1994; Wiens and Chippindale 1994). Concerted
evolution in multigene families generally causes errors in
parsimony analysis of molecular data at intermediate
levels of gene conversion (Sanderson and Doyle 1992).
Basic problems that remain to be addressed using
computer simulations include the non-independence of
lineages and characters and the consequences of different
methods for treating intraspecific variation (Wiens 1995).

CONCLUSIONS AND RECOMMENDATIONS

In his study, Lamboy questioned the current emphasis
on phylogenetic research because of purportedly finding
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that parsimony analysis of morphological data performs
poorly in simulation. However, this pessimistic view is the
resultof 1) using an unrealistically small number of char-
acters relative to the number of taxa in half of his simu-
lations, a situation well-known to give inaccurate results;
2) generating true trees that are unrealistic and nearly
impossible to reconstruct because they contain numerous
polytomies, and requiring that estimated trees include
these polytomies to be considered correct; 3) using a
misleading and largely uninformative measure of accu-
racy (counting only whether estimated trees are exactly
right or wrong, rather than counting how many nodes are
correctly recovered); 4) summing across a biased set of
simulations to make general conclusions, and 5) using
an inappropriate and inconsistently calculated index to
compare simulated data to results in the real world.
Furthermore, Lamboy simulated data with no special
properties of morphological characters, so previous
simulation studies that do not share the deficiencies of
Lamboy’s study actually provide a much more realistic
picture of the success of phylogenetic analyses, morpho-
logical or otherwise. These previous studies indicate that
the current emphasis on phylogenetic research is sup-
ported by methods that perform well under a wide variety
of conditions, whether the source of the data is molecular
or morphological.

Although we disagree with Lamboy’s pessimism, we
cannot claim to know whether most reported trees based
on parsimony analysis of morphological data are right or
not. However, we suspect that many morphological trees
are mostly right—how else could one explain the general
observation that so many clades strongly supported by
morphological data are also strongly supported by
molecular data (Donoghue and Sanderson 1992)? Futher-
more, the fact that levels of homoplasy are so similar
between molecular and morphological data sets (Sander-
son and Donoghue 1989) suggests that if trees based on
morphology are not generally accurate, they are no more
inaccurate than trees based on other kinds of data.

In many ways, molecular systematists are ahead of
morphologists in being concerned about accuracy. For
example, methods for testing for support and signal were
seemingly developed with molecular data in mind, and
have been slow in becoming widely used by morpholo-
gists. We argue that all systematists need to be aware of
basic problems such as: 1) weakly-supported nodes
(because of few and/or conflicting characters); 2) data
matrices with random levels of noise; 3) long branch
attraction; 4) character non-independence, and 5)non-
independence of lineages (e.g., lateral gene transfer,
hybridization). Statistical methods have been developed
that potentially can detect some of these problems, includ-
ing 1) bootstrapping and Faith’s (1991) PTP test; 2) the
gl index and Archie’s (1989a) randomization test; 3)
parametric bootstrapping, and 4) Maddison’s (1990)
test of correlated evolution. Other problems, common in
or specific to morphological data, also can have a
significant impact on results and therefore need to be
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considered, such as the problem of defining and ordering
morphological character states in an unbiased manner
(Stevens 1991; Mabee 1993), the treatment of continuous
(Thiele 1993) and discrete intraspecific variation (Wiens
1995), and the use of fossil or incomplete taxa (Donoghue
et al. 1989; Huelsenbeck 1991b; Wiens and Reeder 1995).
All of these considerations will play a role in making
parsimony analysis of morphological data more rigorous
and more accurate.
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—ABSTRACT. This commentary responds to Wiens and
Hillis" critique of a simulation study I conducted that
examined the ability of maximum parsimony to find the
true tree when morphological characters were used in the
phylogenetic analysis. It rebuts all the main criticisms of





