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Abstract.—Several authors have argued recently that extensive taxon sampling has a positive and
important effect on the accuracy of phylogenetic estimates. However, other authors have argued
that there is little bene�t of extensive taxon sampling, and so phylogenetic problems can or should
be reduced to a few exemplar taxa as a means of reducing the computational complexity of the
phylogenetic analysis. In this paper we examined �ve aspects of study design that may have led
to these different perspectives. First, we considered the measurement of phylogenetic error across a
wide range of taxon sample sizes, and conclude that the expected error based on randomly selecting
trees (which varies by taxon sample size) must be considered in evaluating error in studies of the
effects of taxon sampling. Second, we addressed the scope of the phylogenetic problems de�ned by
different samples of taxa, and argue that phylogenetic scope needs to be considered in evaluating
the importance of taxon-sampling strategies. Third, we examined the claim that fast and simple tree
searches are as effective as more thorough searches at �nding near-optimal trees that minimize error.
We show that a more complete search of tree space reduces phylogenetic error, especially as the taxon
sample size increases. Fourth, we examined the effects of simple versus complex simulation models
on taxonomic sampling studies. Although bene�ts of taxon sampling are apparent for all models,
data generated under more complex models of evolution produce higher overall levels of error and
show greater positive effects of increased taxon sampling. Fifth, we asked if different phylogenetic
optimality criteria show different effects of taxon sampling. Although we found strong differences
in effectiveness of different optimality criteria as a function of taxon sample size, increased taxon
sampling improved the results from all the common optimality criteria. Nonetheless, the method that
showed the lowest overall performance (minimum evolution) also showed the least improvement
from increased taxon sampling. Taking each of these results into account re-enforces the conclusion
that increased sampling of taxa is one of the most important ways to increase overall phylogenetic
accuracy. [Phylogenetic accuracy; phylogenetic error; taxon sampling.]

In recent years, there has been increased in-
terest in estimating large phylogenetic trees
of many taxa. Several factors have con-
tributed to this trend. First, it has become
computationally feasible to analyze large
data sets of many taxa and many charac-
ters (e.g., Soltis et al., 1998). Second, there
is intrinsic interest in the phylogeny of
large groups of organisms, and even interest
in eventually producing phylogenetic esti-
mates for the entire Tree of Life (see Hillis and
Holder, 2000). Third, many authors have ar-
gued thatadequate taxon sampling improves
phylogenetic estimation, and in some cases
may even make otherwise intractable prob-
lems tractable (e.g., Wheeler, 1992; Lecointre
et al., 1993; Hillis, 1996, 1998; Poe, 1998;
Rannala et al., 1998). Most recent authors
have argued that both the number of charac-
ters as well as the number of taxa sampled are
important determinants of phylogenetic ac-
curacy (Swofford et al., 1996). However, since
it is computationally much easier to analyze
data sets of few taxa than data sets of many
taxa, it is tempting to de�ne and investigate
a phylogenetic problem with as few taxa as
possible.

A recent paper by Rosenberg and Kumar
(2001) suggested that sampling few taxa
from a large and diverse group carries almost
no penalty in terms of the accuracy of the es-
timated phylogenetic tree, and that reduced
taxon sampling thus is not a problem for
phylogenetic analysis. A reanalysis (Pollock
et al., 2002) of the Rosenberg and Kumar
(2001) data supports the opposite conclu-
sion, and suggests that their study design
may not have been optimal to investigate the
effects of increased taxon sampling. How-
ever, Rosenberg and Kumar’s (2001) study
did raise several interesting hypotheses
about the relationships among phylogenetic
methodology, taxonomic sampling, and
phylogenetic accuracy, and led us to conduct
independent simulation studies to test the
effects of various aspects of study design
on conclusions about the importance of
thorough taxon sampling. In this paper, we
address �ve issues related to taxon sampling
and its effects on the accuracy of phylo-
genetic inference. First, we consider the
measurement of phylogenetic error across
a wide range of taxon sample sizes, and the
degree to which error in randomly selected
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trees relates to the issue of taxonomic
sampling. Second, we address the scope of
the phylogenetic problems addressed by
different samples of taxa, and methods that
can be used to hold the taxonomic scope of a
problem relatively constant across different
numbers of sampled taxa. Third, we examine
the claim of some recent authors that fast
and simple tree searches are as effective as
more thorough searches at �nding near-
optimal trees that minimize error. Fourth,
we examine the effects of using simple
versus complex simulation models on the
results of taxon sampling studies. Fifth, we
examine whether or not results of taxon
sampling studies are dependent on the use of
particular phylogenetic optimality criteria.

As we have noted, our current attention
to these issues was raised by Rosenberg and
Kumar’s (2001) study on taxon sampling and
its effects on phylogenetic accuracy. Aswe in-
corporated many of the aspects of the study
design used by Rosenberg and Kumar to ad-
dress these issues and use their study to dis-
cuss several issues of analysis, we begin with
a brief description of their study design be-
fore discussing our methods.

ROSENBERG AND KUMAR ’S STUDY DESIGN

Rosenberg and Kumar (2001) addressed
the effects of partial taxon sampling on the
error rate of phylogenetic estimation. They
used a model tree of 66 taxa that was based
on a published study of eutherian mammals
(Murphy et al., 2001; Eizirik et al., 2001).
Rosenberg and Kumar then conducted sim-
ulations under the Jukes-Cantor model of
evolution (henceforth JC; Jukes and Cantor,
1969) and varied number of nucleotides and
rate of evolution across 50 sets of conditions
(which they termed “genes”). Rosenberg and
Kumar (2001) stated that their results were
similar when a more complex model of evo-
lution (Hasegawa et al., 1985) was used, but
they did not show these results. The num-
ber of sites per gene was selected from a uni-
form distribution of 200–3,000 (not 500–3,000
as described in their text; see their Table 1),
and the branch lengths of the model tree were
scaled by selecting a scaling factor from a
gamma distribution with a shape parameter
of 1.

For each of the 50 conditions examined
(combinations of nucleotide length and rate
of evolution), Rosenberg and Kumar (2001)

simulated 100 replicates. For each condition
they then randomly selected subsamples of
5–50 taxa from the full set of taxa for analy-
sis, and measured error between the true tree
and the estimate (see the section below titled
Measurement of Error for further description
and discussion of error measurement). They
evaluated and compared three measures of
error: EG (the proportion of error between
the true tree and the estimated tree from the
full sample of 66 taxa), ES (the proportion of
error between the true tree and the estimated
tree from the subsample of taxa), and EP (the
proportion of error between the true tree and
the subsample of taxa, as pruned from the full
analysis). For each simulation, they analyzed
the data using minimum evolution (ME),
uniformly weighted maximum parsimony
(MP), and maximum likelihood (ML) criteria,
as well as the neighbor-joining (NJ) heuris-
tic. (They used PAUP¤ [Swofford, 2000] for
all analyses; see Swofford et al. [1996] for a
description of the methods.) However, they
only presented detailed data for the ME
criterion, stating that the results for the
other criteria were “quite similar.” They used
a single-tree heuristic search with nearest-
neighbor-interchange branch swapping to
estimate the optimal trees for each criterion.

METHODS

Data Simulation

Our datasets were simulated on the
Rosenberg and Kumar model tree (provided
by M. S. Rosenberg; see Appendix I) under
a number of common evolutionary models
using Seq-Gen, version 1.2.5 (Rambaut and
Grassly, 1997). Simulation models included
JC (Jukes and Cantor, 1969), HKY(Hasegawa
et al., 1985), HKY with continuous gamma-
distributed rate heterogeneity (Yang, 1993),
and the General Time Reversible Model with
continuous gamma-distributed rate hetero-
geneity and a proportion of invariant sites
(Lanave et al., 1984; Tavaré, 1986; Yang, 1993;
Swofford et al., 1996). A single dataset was
simulated under each model. The particular
parameter values we used (see Appendix II)
are ones estimated by maximum likelihood
on a tree obtained by a parsimony search for
two of the genes present in the Murphy et al.
(2001) dataset (12S rRNA and cnr 1, a protein-
coding gene). All simulated datasets were
3,000 bases long, as we wished to avoid con-
founding the issue of sampling additional
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taxa by also varying sequence length (see
Pollock et al. [2002] for a discussion of the ef-
fects of sequence length on taxon sampling).
Thus, we selected the upper bound of the se-
quence lengths examined by Rosenberg and
Kumar (2001) for our simulations.

Subsampling

Subsampling of taxa was performed using
a CCC program written by one of us (D.J.Z.).
Eleven subsample-sizes were selected rang-
ing from 4 to 60 taxa, from the complete
model set of 66 taxa (the entire sample of taxa
was also evaluated). For each sample-size of
taxa, the procedure was as follows:

1. Randomly select a set of taxa using
random-number generation.

2. Determine the diameter (the maximum
distance between any two taxa in a tree)
of this subset based on the branch-lengths
of the model tree and place it into the ap-
propriate diameter “bin.” (The rationale
for this step is discussed in the section ti-
tled Taxon Subsamples, in RESULTS AND
DISCUSSION. Brie�y, our goal was to exam-
ine the effects of taxon subsampling across
problems that spanned a similar phyloge-
netic scale.)

3. Repeat 1 and 2, discarding identical sub-
sets, until all bins contain 100 subsamples.

The diameter-bins ranged from 0.10 (the di-
ameter of the smallest quartet) to 0.45 (the
diameter of the entire 66-taxon tree), in in-
crements of 0.05 (thus, the smallest bin con-
tained trees of 0.10–0.15 diameter). As the
number of taxa in the subsample increased,
the number of bins for which possible sub-
samples exist necessarily decreases. Thus,
quartet subsamples (samples of four taxa)
covered seven diameter categories (giving
700 subsamples), whereas subsamples of
60 taxa covered only the largest four diam-
eter bins (giving 400 subsamples). The same
subsamples were used in all of our analyses.

Analysis

All subsamples were analyzed using
PAUP¤ 4.0b8 (Swofford, 2000). Except for
the maximum likelihood analyses and the
experiment examining the effect of search
thoroughness (see the section titled Thor-
oughness of Searches), all subsets were sub-
jected to a heuristic search with �ve random

stepwise-addition starting trees followed by
tree-bisection-reconnection (TBR) branch
swapping (see Swofford et al., 1996 for a de-
scription of these methods). Due to compu-
tational constraints, the likelihood searches
were conducted with a single stepwise-
addition starting tree, followed by TBR
branch swapping using the JC model of evo-
lution. ME searches were conducted using
JC and HKY C 0 distance corrections. With
both distances measures, we conducted ME
searches allowing negative branch-lengths
(set to zero for score calculation), and also
with branch-lengths constrained to non-
negative values. For the ME searches using
HKY C 0 distances, the alpha shape parame-
ter was set to its simulation value (0.399). For
all searches, all equally optimal trees were
retained.

To assess accuracy of reconstruction, the
Robinson and Foulds (1981) symmetric dis-
tance measure (henceforth RF distance) was
calculated between the optimal tree(s) and
the model tree pruned to contain the same
taxa. When we found multiple equally opti-
mal solutions, we calculated the average RF
distance of all solutions to the true tree. The
measurement of phylogenetic error is a point
of discussion, and is presented below.

RESULTS AND DISCUSSION

Measurement of Error

The measure of error used by Rosenberg
and Kumar is fairly standard, and one of
us has used the same measure in previous
studies (e.g., Hillis, 1996). This measure of
error (E) uses the RF distance between the
true tree and the estimate, divided by twice
the number of internal branches in the com-
parison (the maximum possible RF distance,
or RFmax). For any size tree, E ranges from
0 to 1; a value of 1 indicates that no internal
branches are shared in common between the
true tree and the estimate, and a value of 0 in-
dicates complete agreement between the two
trees. As long as the number of taxa in the
analysis remains constant (or large), E pro-
vides a reasonable measure that combines er-
ror from false negatives (branches absent in
the estimate but present in the true tree) and
false positives (branches present in the esti-
mate but absent in the true tree). However, in
comparing the relative error across trees with
different numbers of taxa, the measure E has
a major drawback. For trees with only four
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taxa, for example, there are only three possi-
ble solutions. One of the solutions has an RF
distance of 0, and the other two have RF dis-
tances of 2. Thus, the expected RF distance
(RFexp) between a randomly selected topol-
ogy of four taxa and a true tree is 1.33, not
2 (the value of RFmax for trees of four taxa).
The expected distance only approaches the
maximum distance asymptotically with in-
creasing numbers of taxa (Penny et al., 1982).
If one simply examined the error associated
with choosing trees at random across a diver-
sity of sample sizes, E would be lowest for
trees with few taxa and would gradually in-
crease with taxon sample size. Therefore, this
measure does not provide a uniform compar-
ison for evaluating the improvement of phy-
logenetic methods across varying numbers
of taxa. (Note that this is a different prob-
lem related to measurement of error in taxon
sampling studies than the one discussed by
Pollock et al., 2002).

The problem discussed above can be easily
corrected (as previously noted by Poe, 1998)
by standardizing the observed RF distance
between the true tree and an estimated tree
by the expected RF distance (RFexp) to a ran-
domly selected tree, rather than by RFmax . We
calculated RFexp exactly for treesup to 10 taxa,
and estimated RFexp for larger trees. We used
PAUP¤ 4.0b8 to generate either all possible
trees for a particular number of taxa, or a
sample of at least 3 million trees for more
than 10 taxa. The RF distance was then cal-
culated between each of the random trees in
the set to an arbitrary reference tree. The ex-
pectation of this distribution was calculated
by multiplying the RF distances by the num-
ber of trees from the set having that distance
to the reference tree, summing these values,
and dividing by the total number of trees.
We then de�ne adjusted error (Eadj) as the RF
distance between the true tree and the esti-
mate, divided by RFexp, and absolute error (E)
as the RF distance between the true tree and
the estimate, divided by RFmax. The two mea-
sures converge with increasing taxon sample
sizes (see Fig. 1). The expected adjusted er-
ror for randomly selected trees is 1.0 for all
taxon sample sizes; thus, Eadj can be used to
compare the improvement of a given infer-
ence method across a range of taxon sample
sizes. Note thatEadj can take on values greater
than one if the actual distance is greater than
would be expected from selecting a random
tree of that size, as might occur if a particu-

FIGURE 1. Ratio of RFexp to RFmax as a function of
number of taxa.

lar method were positively misleading (e.g.,
Felsenstein, 1978).

Although the effect of evaluating Eadj in-
stead of E matters only at small taxon sample
sizes, it removes an artifact that otherwise
clouds the relationship between phyloge-
netic error and number of taxa in the analy-
sis. Figure 2 shows a comparison of these two
measures (E and Eadj) as a function of taxon
sample size for the model tree of Rosenberg
and Kumar. Although there is a strong de-
crease in both absolute and adjusted error
with increasing sample size, there is an initial
increase in absolute error as the samples in-
crease from 4–10 taxa. However, this effect
is often eliminated when adjusted error is
measured, as in this example. It seems clear
that the apparent lower error for the smallest
sample sizes is sometimes simply a function
of randomly selected trees having a higher

FIGURE 2. Absolute and adjusted error as a func-
tion of taxon sample-size for a dataset generated with
the HKY model of evolution on the Rosenberg and
Kumar (2001) model tree and analyzed under uniformly
weighted parsimony. Data points represent the average
error over all subsample diameters.
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FIGURE 3. Two quartets of taxa sampled from the model tree of Rosenberg and Kumar (2001), shown as heavy
lines within the entire model tree. (a) A quartet of large diameter, containing taxa that span the same depth of
phylogenetic time as the full data set. (b) A quartet of small diameter, containing taxa that represent complete taxon
sampling for a subtree.

probability of matching a limited number of
possible internal branches. Thus, for the re-
mainder of our analyses, we present results
using Eadj rather than E.

Taxon Subsamples

One issue that should be taken into ac-
count in studies of taxon sampling relates to
the fact that all subsamples from a larger set
of taxa do not represent problems of equiva-
lent phylogenetic scale (see Fig. 3). A quar-
tet of taxa may represent widely scattered
taxa in a larger tree (Fig. 3a), or it may rep-
resent a small, completely sampled subtree
from a larger tree (Fig. 3b). One would expect
that a quartet of taxa such as that shown in
Figure 3b would not present a dif�cult phy-
logenetic problem (nor a problem compara-
ble to that posed by all the taxa), whereas
the quartet of taxa shown in Figure 3a
would present a much harder (but more rele-
vant) problem. Rosenberg and Kumar (2001)

selected random subsamples of taxa from the
tree shown in Figure 3 with no effort to hold
the depth of the phylogeny or the diameter
of the sampled tree (the maximum distance
between any two taxa) constant. The diam-
eter of the quartet in Figure 3a is approxi-
mately equal to that of the full data set, but
the diameter is much smaller for the quar-
tet in Figure 3b. Under the Rosenberg and
Kumar study design, both sets of taxa would
represent equally “incomplete” taxon sam-
pling, and each would be compared against
the respective pruned subtrees.

The dif�culty of phylogenetic analysis is
known to increase with increasing diam-
eter of the underlying tree, especially for
trees with small numbers of taxa (e.g., see
Huelsenbeck and Hillis, 1993). This point is
illustrated for quartets of taxa randomly se-
lected from the model tree of Rosenberg and
Kumar in Figure 4. For any given method
of analysis, as the diameter of the tree in-
creases, the error also generally increases.
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FIGURE 4. Error as a function of tree diameter for quartets of taxa under (a) uniformly weighted parsimony,
(b) maximum likelihood, and (c) minimum evolution. The same quartets and data (simulated under the JC model)
were used for the analyses shown in (a), (b), and (c). Quartets were sampled from the model tree in the diameter
categories listed, and then analyzed for data simulated under the JC model (cross-hatched bars), JC with branch-
lengths multiplied by two (white bars), and JC with branch-lengths multiplied by six (black bars).
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Thus, any comparison of the effects of sub-
sampling taxa from a larger tree should
hold tree diameter relatively constant. Other-
wise, one is comparing apples to oranges by
comparing simple tree problems (small di-
ameter trees) to hard tree problems (large di-
ameter trees). The usual description of “in-
creased taxon sampling” generally involves
adding taxa but keeping the diameter of
the sampled tree relatively constant. That is,
added taxa lead to a more densely sampled
group of interest, not additions of distantly
related taxa. If one were interested in study-
ing the phylogeny of mammals, for example,
a taxon sample consisting of four primates
would not address the relevant problem. If
“increased taxon sampling” were used to ad-
dress this limitation, we would add more
mammals rather than birds or beetles. Like-
wise, comparing error in a tree of 66 mam-
mals (the full tree shown in Fig. 3) to error in
a tree of four relatively closely related species
(as in Fig. 3b) says little about the importance
of taxon sampling on reducing error for the
problem of interest (mammalian phylogeny).

We have addressed this issue by con-
sciously selecting subsamples from the full
tree with respect to their diameters. Thus, we
explicitly either present the average error for
subsamples of various sizes over the entire
range of possible diameters (e.g., Fig. 2, partb
of Figs. 5–8), or compare trees of similar di-
ameters (e.g., part a of Figs. 5–8). For the
simpler simulation models, the differences in
error between problems of different diame-
ters quickly disappear with larger taxon sub-
samples, and problems of all diameters show
similar error (Fig. 5a). For more complicated
models, however, there is a greater difference
in dif�culty between problems of different
diameters for the entire range of taxon num-
bers (Fig. 5b). However, in both cases, the
greatest differences occur with the smallest
taxon samples: very small diameter trees of
few taxa are clearly easier to estimate than
are trees of few taxa that span the full range
of the model tree. The net effect of sampling
across all possible diameters of trees, then,
is to in�ate the apparent phylogenetic accu-
racy of small samples. This higher accuracy
is real, but it simply results from examining
a smaller portion of the overall phylogenetic
tree (e.g., as in Fig. 3b versus 3a).

Tree diameter is not the only considera-
tion that is likely to affect taxon subsampling
and its relationship to the accuracy of phylo-

FIGURE 5. The effect of tree diameter on error rate as
a function of taxon sample size, under the MP criterion.
Data simulated under (a) a simple model (JC), and (b) a
more complex model (HKY C 0).

genetic inference. Dif�culty of phylogenetic
problems is also related to the size of internal
branches in the underlying trees. For this rea-
son, other metrics (such as average distance
among taxa, rather than maximum diameter
of the tree) might also be considered in ana-
lyzing the effect of taxon sampling strategies
on phylogenetic accuracy. However, we con-
sider tree diameter (a measure of the depth
or scope of the phylogenetic problem) to be
the most relevant aspect that should be con-
trolled in such studies.

Thoroughness of Searches

Some recent authors have suggested that
thorough searches of tree space are not im-
portant for improving the accuracy of phy-
logenetic inference. For instance, Rosenberg
and Kumar (2001) stated that the relatively
simple tree searches that they performed
(single-tree heuristic searches combined with
nearest-neighbor-interchange branch swap-
ping) were adequate to �nd near-optimal
trees, and that more thorough searches
would not be expected to decrease phylo-
genetic error. We tested this hypothesis un-
der the MP criterion, and show the results in
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FIGURE 6. The effect of search thoroughness on er-
ror rate, as a function of taxon sample size, under the
MP criterion. SA: stepwise addition; SA C NNI: stepwise
addition plus nearest-neighbor-interchange branch
swapping; SA C TBR: stepwise addition plus tree-
bisection-reconnection branch swapping. (a) Results for
subsamples from the largest diameter bin; (b) results av-
eraged over all diameters. Simple searches result in es-
timates of greater error than do thorough searches. The
importance of thorough searches increases with increas-
ing numbers of taxa. These simulations were conducted
under the HKY C 0 model.

Figure 6. Although increased taxon sam-
pling reduced error for all searching meth-
ods, the effects were greater for thorough
searches than for simple searches, and the
importance of thorough searching increased
with increasing sample size. Rosenberg and
Kumar’s (2001:10753) assertion that “[a]
more exhaustive, time consuming search is
not necessary because it is clear that it does
not improve phylogenetic accuracy” is not
supported by our analyses. This disagree-
ment may in part be due to the more com-
plex simulation model used in our study (see
Complexity of Simulations, below).

Figure 6a also illustrates that, under some
limited conditions, phylogenetic error can in-
crease through the addition of a small num-
ber of taxa. This phenomenon is apparent
for trees of large diameter but few taxa (e.g.,
the left side of Fig. 6a). This appears to cor-
respond to the similar conditions examined

by Poe and Swofford (1999), who also noted
that phylogenetic error can increase by the
addition of one or a few taxa to large diam-
eter trees that contain only a few taxa. How-
ever, additional taxa added to the analysis
eventually reduced error in these cases in our
study (e.g., the right side of Fig. 6a). There-
fore, although not all taxon additions result
in reduced error, the overwhelming trend ap-
pears to be increased phylogenetic accuracy
with addition of taxa.

Complexity of Simulations

Rosenberg and Kumar (2001) noted that
simulation studies should have a certain ad-
vantage in studying the properties of taxon
sampling because the true tree is known. Al-
though we agree with this point, the ben-
e�t gained by being able to compare in-
ferred trees to a true tree is minimized if the
evolutionary model used in simulations is
overly simplistic. For instance, the JC model
used by Rosenberg and Kumar (2001) incor-
porates little of the complexity of real se-
quence evolution. (Rosenberg and Kumar
noted that they repeated the study using
the HKY model of evolution, but did not
show those results and stated that they made
no difference in their conclusions.) Simu-
lated sequence data, especially data simu-
lated under a very simple model of evolu-
tion, are known to be “easier” to analyze
phylogenetically than are data from nature,
and the dif�culty of the estimation problem
increases with increasing model complexity
(e.g., Yang, 1996; Rannala et al., 1998; Pollock
and Bruno, 2000). The easier the task of infer-
ence, the lessadding more data (either taxa or
characters) should be expected to help. Thus,
the effects of taxon sampling would be ex-
pected to be least noticeable when analyz-
ing data simulated under a simple model of
evolution.

The idea of simulating a number of “real-
istic” genes and testing the effects of taxon
sampling over a variety of parameter values
is an appealing one. The fact that the only
parameters that were varied in Rosenberg
and Kumar’s (2001) simulations were the
length of the genes and the rate of evolu-
tion, however, leaves out much of what is
known to vary among genes. No model de-
vised to date fully captures all factors in-
volved in real sequence evolution. Nonethe-
less, incorporation of some well studied and
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FIGURE 7. The effects of simulation models of vary-
ing complexity on error rate, as a function of taxon sam-
plesize, under the MPcriterion. (a) Results for the largest
diameter bin; (b) results averaged over all diameters.
“JC£ 6” indicates that the Jukes-Cantor model was used,
but that rates of evolution were increased sixfold across
the tree compared to the model branch-lengths used by
Rosenberg and Kumar (2001).

adequately modeled factors should provide
a more reasonable assessment of the effects
of increased taxon sampling on phyloge-
netic accuracy. Examples of such factors in-
clude variation in substitution rates among
sites, differential equilibrium base frequen-
cies, and differential probabilities of substi-
tution. Therefore, we examined the effects of
taxon sampling on data simulated under sev-
eral models of evolution (see Fig. 7). In every
case, error was greatly reduced by including
increased numbers of taxa in the analyses.
However, the overall error increased with in-
creasing complexity of the underlying model
of evolution, and taxon sampling provided a
greater reduction in the total amount of error
for the more complex models. If error reduc-
tion is measured as a proportion (rather than
as an absolute difference), then this conclu-
sion does not necessarily hold (e.g., error was
completely eliminated in the largest taxon
samples for the simplest model of evolution;
Fig. 7). Note that an increase in error can also
be generated by increasing the rate of evo-

lution (and thus overall tree diameter). This
is illustrated for the JC model with rates of
evolution increased sixfold (Fig. 7).

Effects of Optimality Criteria

We also tested whether or not the effects
of taxon sampling on phylogenetic accuracy
are dependent on the optimality criterion ex-
amined. We present the results for analyses
conducted with uniformly weighted parsi-
mony, minimum evolution (with both JC and
HKY C 0 distances), and maximum like-
lihood in Figure 8. Increased sampling of
taxa reduces error for all of the methods, so
this basic result does not appear to depend
on the optimality criterion selected. How-
ever, increased taxon sampling appears to be
least important for the ME criterion. Both MP
and ML show more rapid improvement with

FIGURE 8. The relationship between error and taxon
sample size for four optimality criteria. ME(HKY C
0): minimum evolution with HKY C 0 distances
and branch-lengths constrained to non-negative values;
ME(JC): minimum evolution with JC distances and neg-
ative branch-lengths allowed; MP: uniformly weighted
parsimony; ML: maximum likelihood, under the JC
model. The results for the two versions of ME searches
shown represent the best and worst combinations of
distances measured and branch-length constraints (i.e.,
highest and lowest error) that we examined; the in-
termediate combinations are not shown for simplicity.
(a) Results for the largest diameter bin; (b) results av-
eraged over all diameters. These simulations were con-
ducted under the HKY C 0 model.
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increasing taxon sample sizes compared to
ME, and as a result both MP and ML show
lower error than does ME for the larger taxon
samples. Given this behavior, it does not ap-
pear advisable to use the ME criterion for
trees of many taxa, or to use the ME criterion
exclusively in studies of the effects of taxon
sampling on phylogenetic accuracy.

CONCLUSIONS

All of the simulation analyses that we con-
ducted agree on one point: increased taxon
sampling has a clear and strongly positive
effect on the accuracy of phylogenetic analy-
ses. This conclusion supports the �nding of
most other previous studies on the impor-
tance of thorough taxon sampling in phy-
logenetic analysis, but it is in stark con-
trast to the recent paper by Rosenberg and
Kumar (2001) on this topic. Although reanal-
ysis of the Rosenberg and Kumar (2001) data
also demonstrates that increased taxon sam-
pling results in increased accuracy of the in-
ferred trees (Pollock et al., 2002), there are
a number of reasons why the study design
of Rosenberg and Kumar clouded this over-
whelming pattern. Our results suggest that
studies of the effects of taxon sampling on
phylogenetic accuracy should closely con-
sider several aspects of study design. For in-
stance, investigators should consider (1) how
error is measured (so as not to bias con-
clusions as a result of randomly selecting
correct trees for small samples), (2) appro-
priate strategies for sampling taxa (to keep
the scope of the phylogenetic problem rea-
sonably constant), (3) the complexity of tree
searches (to ensure that near-optimal trees
are found for all samples of taxa), (4) the
complexity of evolutionary models used in
simulations (to ensure that the problems are
reasonably realistic), and (5) the different ef-
fects of increased taxon sampling on differ-
ent optimality criteria. When these aspects
of study design are incorporated (either sep-
arately or together) into an analysis of the
effects of taxon sampling on phylogenetic ac-
curacy, the importance of maximizing num-
ber of taxa examined becomes overwhelm-
ingly clear.

Although thorough taxon sampling ap-
pears to be highly advantageous for phylo-
genetic analysis, it is not a panacea. Obvi-
ously, systematists must also be concerned
with collecting enough data, and with col-

lecting data that express appropriate levels
of variation for the problem at hand. In some
cases, increased taxon sampling will simply
not be possible (because of lack of extant taxa
to sample, for instance). In many cases, how-
ever, the best option available for increas-
ing the accuracy of a phylogenetic analysis
will be increased taxon sampling. Biologists
should avoid the temptation to de�ne a phy-
logenetic problem with as few taxa as pos-
sible; the additional effort to sample taxa
more broadly will almost always result in
more accurate (as well as useful) estimates of
phylogeny.
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APPENDIX I. MODEL TREE OF ROSENBERG
AND KUMAR (2001)

As provided by M. S. Rosenberg. The tree is in NEXUS
format, and can be viewed in PAUP¤ (Swofford, 2000).

(((((((((((((Megaptera novaeangliae:0.0143, Tursiops
truncatus:0.0186):0.0157, Hippopotamus amphibius:
0.0314):0.0043, (Tragelaphus eurycerus:0.02, Okapia john-
stoni:0.0143):0.0343):0.0071, Sus scrofa:0.05):0.0014, Lama
glama:0.06):0.0171, ((Ceratotherium simum:0.0243, Tapirus
indicus:0.0229):0.0029, Equus caballus:0.03):0.0157):
0.0014, ((((Felis catus:0.0057, Leopardus pardalis:0.0057):
0.0014, Panthera onca:0.0057):0.03, (Canis familiaris:
0.0357, Ursus arctos:0.0443):0.0014):0.0171, Manis
pentadactyla:0.0643):0.0014):0.0014 , ((Artibeus jamai-
censis:0.0643, Nycteris thebaica:0.0543):0.0114 , (Pteropus
giganteus:0.02, Rousettus lanosus:0.0157):0.0314):0.0071):
0.0014, ((Erinaceus concolor:0.1157, Sorex araneous:0.0843):
0.0057, (Asioscalops altaica:0.0257, Condylura cristata:
0.0286):0.0329):0.0086):0.0043 , (((((((((Cavia tschudii:
0.0343, Hydrochoeris hydrochaeris:0.0257):0.02, Agouti
taczanowskii:0.0271):0.0057, Erethizon dorsatum:0.0343):
0.0086, (Myocastor coypus:0.0829, Dinomys branickii:
0.0486):0.0014):0.0086 , (Hystrix brachyura:0.06, Hetero-
cephalus glaber:0.05):0.0071):0.0386 , ((((Mus musculus:
0.0286, Rattus norvegicus:0.0443):0.0257, Cricetus griseus:
0.0443):0.0557, Pedetes capensis:0.0714):0.0043, (Castor
canadensis:0.0629, Dipodomys heermanni:0.1143):0.0043):
0.0057):0.0014, (Tamias striatus:0.0514, Muscardinus
avellanarius:0.1043):0.0086):0.0043 , (Sylvilagus �ori-
danus:0.0429, Ochotona hyperborea:0.0814):0.0257):0.0071,
((((((Hylobates concolor:0.0157, Homo sapiens:0.0114):
0.0086, Macaca mulatta:0.02):0.01, (Ateles fusciceps:
0.0143, Callimico goeldii:0.02):0.02):0.0329, Cynocephalus
variegatus:0.0543):0.0029 , (Lemur catta:0.0443, Tarsius sp.:
0.0814):0.0086):0.0014, Tupaia minor:0.0829):0.0014):
0.0029):0.0029, (((Choloepus hoffmanni:0.0029, Choloe-
pus didactylus:0.0071):0.0329 , (Tamandua tetradactyla:
0.0143, Myrmechophaga tridactyla:0.0114):0.0371):0.0057,
(Euphractus sexcinctus:0.0071, Chaetophractus villosus:
0.0043):0.0443):0.0243):0.0086 , ((((Trichechus manatus:
0.0329, Loxodonta africana:0.0486):0.0043, Procavia
capensis:0.0686):0.0129 , (Echinops telfairi:0.1257, Oryc-
teropus afer:0.0543):0.0014):0.0043 , (Macroscelides
proboscideus:0.0286, Elephantulus rufescens:0.03):0.0729):
0.0114):0.04, (Didelphis virginianus:0.0571, Macropus
eugenii:0.0657):0.1414):0.0;

APPENDIX II. PARAMETER VALUES USED
IN S IMULATIONS

1. HKY:
Transition/Transversion ratio: 2.93
Base frequencies: A:0.37, C:0.24, G:0.12, T:0.27

2. HKY C continuous gamma rate heterogeneity:
Same as HKY, plus shape parameter for gamma dis-
tribution: 0.399

3. GTR C continuous gamma rate heterogeneity C
invariant sites:
Rate matrix:
A ! C: 3.297 A ! G: 12.55 A ! T: 1.167

C ! G: 2.060 C ! T: 13.01
G ! T: 1.00

Base frequencies: A:0.1776, C:0.3336, G:0.2595,
T:0.2293
Shape parameter for gamma distribution: 0.8168
Proportion of invariant sites: 0.5447
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