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Abstract

We assessed the utility of stable isotope analysis as a tool for understanding community

ecological structure in a species-rich clade of scincid lizards from one of the world’s most

diverse lizard communities. Using a phylogenetic comparative framework, we tested

whether į15N and į13C isotopic composition from individual lizards was correlated with spe-

cies-specific estimates of diet and habitat use. We find that species are highly divergent in

isotopic composition with significant correlations to habitat use, but this relationship shows

no phylogenetic signal. Isotopic composition corresponds to empirical observations of diet

for some species but much variation remains unexplained. We demonstrate the importance

of using a multianalytical approach to questions of long-term dietary preference, and sug-

gest that the use of stable isotopes in combination with stomach content analysis and empir-

ical data on habitat use can potentially reveal patterns in ecological traits at finer scales with

important implications for community structuring.

Introduction

The trophic ecology of vertebrate communities is contingent on an array of both historical and
contemporary interactions. By characterizing ecological traits among species and their relation
to phylogenetic and trophic structure, researchers can reveal the processes that influence com-
munity composition in diverse species assemblages [1–3]. However, detailed profiles of diet
can be difficult to obtain and may only provide a “snapshot” view in time (Dalerum and
Angerbjörn 2005; Inger et al. 2006; Lugendo et al. 2006; Cherel et al. 2007). For studying tro-
phic interactions in vertebrate communities, stable isotope analysis can potentially provide
integrated measures of resource use through time, without requiring intensive sampling over
broad temporal and spatial scales [4–5]. Stable isotope profiles thus afford complementary
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insights to analysis of stomach contents and resulting estimates of community trophic
structure.

These analyses are relatively robust to variability through time because an organism’s tis-
sues carry a unique isotopic signature based on ecophysiological properties and the sources
from which nutrients are assimilated, providing a proxy that can be used for the analysis of a
species’ trophic niche [4, 6–8]. This is a result of the relatively minimal fractionation of the sta-
ble isotope of carbon and the predictable enrichment of the stable isotope of nitrogen during
trophic transfer, resulting in the preservation of isotopic signature of the primary sources of
dietary carbon and reliable measures of trophic position [5].

A variety of existing studies have compared isotopic signatures to multivariate ecological
data and phylogenies to answer questions about community assembly ranging from niche
space occupancy to trait differentiation in ecomorphological radiations [5, 9–13]. While many
advances in isotope ecology have involved marine food webs, fewer studies have combined iso-
tope ratios with both ecological and phylogenetic data in terrestrial community assemblages;
those that do focus heavily on birds and mammals, with little data for reptile or amphibian
communities [14–17]. However, isotopic signatures of squamate reptiles are expected to cap-
ture temporally-averaged patterns of trophic resource use, due to the slow turnover rates of
Ď15N and Ď13C isotopes in tissues of poikilothermic vertebrates [15–16].

In this study, we combine stable isotope analysis with long-term ecological monitoring data
and a community phylogeny to examine whether isotope ratios provide information about the
trophic ecology of a diverse clade of scincid lizards from the spinifex deserts of the western
Australian arid zone. This clade—the sphenomorphine skinks [18]—includes the genera Ler-
ista and Ctenotus and is well-known as Australia’s most diverse terrestrial vertebrate radiation
[19]. Closely-related species within these and other genera are divergent in both habitat use
and dietary resources [1,20]. We first asked whether species are distinguishable in isotopic
space, and determined if there is phylogenetic signal for isotopic composition. We then inves-
tigated whether differences in isotopic composition were predicted by dietary differences as
revealed by detailed stomach content analyses. We also tested whether species whose diets are
dominated by prey from higher trophic levels (e.g., secondary consumers, such as spiders)
would demonstrate higher Ď15N values. Finally, we examined whether the variance in isotopic
composition among species was related to patterns of habitat use. We predicted that species
with similar isotopic signatures would show divergent habitat use patterns, because competi-
tion for dietary resources may have mediated shifts in habitat use in arid Australian lizards [1,
21–25].

Materials and methods

Isotopic analysis

We quantified isotopic composition from ethanol-preserved liver tissue from adult spheno-
morphine skinks of three genera (Ctenotus, Lerista, and Eremiascincus) that regionally co-
occur in the western Australian arid zone. Whole-animal voucher specimens and tissue sam-
ples were collected from populations at Lorna Glen (Matuwa) and Yamarna Station in West-
ern Australia’s Great Victoria Desert in 2004–2006 under permit SF0004654 to DLR (Western
Australia Department of Parks and Wildlife). These locations are approximately 321.5 km
apart but are broadly similar in physiography and have similar squamate reptile communities.
For continuity with previous literature [1,24,26], we note that one of the focal species found in
both regions, Ctenotus helenae, was recently synonymized with Ctenotus inornatus [27] and
the current name is used here. A total of 141 individuals from 14 species were analyzed for iso-
topic content, with 2–20 individuals sampled per species. Liver tissue preserved in EtOH was
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dried and ground using a 1/8” metal bead lysing matrix from MP Biomedicals. Pulverized tis-
sue was weighed in tin capsules and stored in a desiccator until used for analysis. Carbon and
nitrogen stable isotope ratios (Ď13C and Ď15N respectively) were measured on a Finnigan MAT
Delta Plus IRMS coupled to an elemental analyzer (Carlo Erba NC2500) at the Cornell Univer-
sity Stable Isotope Laboratory. Stable isotope ratios were expressed as a delta (Ď) in ‰ (per mil
or parts per thousand) according to:

ÖRsample � RstandardÜ
Rstandard

 �
⇥ 1000 à dsample�standard

where Rsample is the ratio of the heavy isotope to light isotope (13C/12C or 15N/14N) in the sam-
ple, Rstandard is the ratio of the heavy isotope to light isotope in the working reference gas,
which is calibrated against an internationally known IAEA standard (V-PDB for Ď13C and
atmospheric nitrogen for Ď15N), and dsample-standard is the difference in isotopic composition of
the sample relative to that of the reference, expressed in units per mil (‰). Errors associated
with linearity were corrected at the Cornell Laboratory using a two-point normalization (linear
regression) of all Ď13C and Ď15N data using two additional in-house standards that loosely
resemble the samples being analyzed (HCRN, a corn standard, and CBT, a trout standard;
these standards are run once every ten samples to identify variability in measurement or long-
term drift). Note that preservation in EtOH has not been found to have a significant effect on
isotopic composition of tissue from a range of consumer taxa [28–30], although one study has
found that for liver tissue specifically, preservation in 95% EtOH leads to an increase in Ď13C of
around 1.5 ‰ [31].

Ecological data

Data on habitat use was collected by DLR and collaborators [1] as a total of 14 habitat variables
relating to vegetation structure and substrate type, collected at Lorna Glen for each of 928 indi-
vidual pitfall traps as part of a long term study on community structure for arid-zone verte-
brates. Examples of measurements include a visual estimate, within a 3-m radius of each trap,
of the percentage of ground covered by vegetation such as hummock grasses (spinifex) or che-
nopod shrubs; the percentage of exposed ground composed of substrates such as sand or
gravel; and additional measurements of habitat qualities such as soil compaction and volume
of woody debris. The mean value was computed for each habitat variable for each species over
all pitfall traps where the species was collected, and means were transformed according to the
method (log, logit, or arcsine square root) leading to the best approximation of normality. A
complete description of habitat variables and methodology used to derive species-specific hab-
itat scores can be found in [1]. Habitat data are available for 9 species in the present study, all
of which are represented in the Lorna Glen isotope dataset and 7 of which are represented in
the Yamarna isotope dataset.

Skinks were collected at Yamarna by ERP and collaborators from 1978–1979 and deposited
in collections at the Western Australian Museum and the University of Texas. Stomach con-
tents were removed from preserved animals through dissection, and prey items were sorted
into 63 categories, including but not limited to centipedes, spiders, termites, ants, and beetles.
Percent stomach volume occupied by each prey class was calculated for individual lizards, and
means were calculated for each species. Ontogenetic shifts in diet are generally considered rare
in small lizards [32–34] and fewer than five percent of lizards in our dataset had body sizes
consistent with juvenile status. Hence, we believe ontogenetic dietary change is only a marginal
contributor to the overall variation in isotopic composition within the focal taxa. Empirical
dietary data were available for only 8 species after selection for sample size (N� 5), and
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subsequent statistical analyses were conducted separately for Lorna Glen (6 of 8 species repre-
sented) and Yamarna (8 of 8 species represented) communities.

Data analysis

All statistical and phylogenetic analyses were performed in the R programming/statistical envi-
ronment [35]. We first assessed variation in isotopic composition among species using a one-
way ANOVA with unequal variances for Ď13C and Ď15N values separately (Ď13C: Bartlett’s K-
squared = 33.39, d.f. = 16, P = 0.007; Ď15N: Bartlett’s K-squared = 32.68, d.f. = 16, P = 0.008). A
oneway ANOVA was also performed for Ď13C and Ď15N values to determine if there was any
effect of geographic region (Yamarna vs. Lorna Glen) on isotopic composition.

We tested for phylogenetic signal for Ď13C and Ď15N values pooled from both communities
using a branch-length transformation test (Pagel’s ĕ; [36]) as implemented in the function
phylosig from the package phytools [37]. Briefly, the method compares the likelihood of a phe-
notypic dataset under a model where patterns of trait covariation are predicted by phylogeny
to a null model where no phylogenetic correlation in species trait values exists. Analyses were
conducted on the maximum clade credibility tree from a previously-published distribution of
time-calibrated species-level phylogenies for Australian sphenomorphine skinks that included
all species from the Lorna Glen and Yamarna communities [19]. We also tested for phyloge-
netic signal for Ď13C and Ď15N values in each regional community separately, to minimize the
potential effects of regional variation on species mean values.

We tested for an association between isotopic composition and habitat use using a Mantel
test to compare pairwise Euclidean distance matrices of species’ mean values for Ď13C and
Ď15N to a distance matrix computed from fourteen habitat variables from [1]. Carbon and
nitrogen values were analyzed together and separately, factored by location. To assess the rela-
tionship between dietary similarity and stable isotope composition, we used a Mantel test to
compare species’ isotopic means to dietary similarity as inferred from stomach content analy-
ses. Because the majority of species from these datasets belong to the genus Ctenotus, we also
conducted these analyses with the non-Ctenotus species removed. Non-Ctenotus taxa included
several species from the genus Lerista, a fossorial and highly limb reduced clade that is ecolog-
ically distinct from sphenomorphine lineages. We also tested for an association between stom-
ach contents and habitat use to identify correlations between trophic ecology and microhabitat
that may have gone undetected by isotopic analysis. We used Mantel tests implemented in the
ade4 package [38].

We also conducted phylogenetically informed three-way Mantel tests for habitat and diet
associations with isotopic composition separately for the two regional communities using a
permutation algorithm, demonstrated to be less prone to type-I error than the traditional
Mantel test [39–40].

To further compare results of stable isotope analysis with stomach content analyses, we
tested whether isotopic measures of trophic position were correlated with the estimated tro-
phic rank of each species as inferred from stomach content analysis. We used species’ positions
along the Ď15N axis as a proxy for trophic ordering in isotopic space; these values were com-
pared to species’ ordering predicted by a weighted trophic rank calculated based on the mean
proportion of prey items in a species’ stomach and their general trophic position. Prey items
were assigned a trophic rank from 1 to 5 under the following coding scheme: 1 = producer;
2 = primary grazer (exclusively phytophagous consumer); 3 = omnivorous consumer (phy-
tophagous and predator of primary grazers); 4 = predator of omnivorous consumers; and
5 = predator of vertebrate prey species. Prey items that were identified only as higher order tax-
onomic groups with the potential to contain species from multiple ranked categories were
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assigned a value intermediate between the two ranks. The weighted trophic rank was then cal-
culated as follows:

Weighted trophic rank à
Xn

ià1

ÖpiTiÜ

where i is a given prey item, n is the number of distinct prey types present in a species’ stom-
ach, pi is the proportion of the ith prey item in the stomach, and Ti is the corresponding tro-
phic rank of the prey item. This calculation ensures that a species’ trophic score will be more
strongly affected by the rank of prey items on which it concentrates heavily, similar to the
process of isotopic assimilation wherein species’ tissues accumulate the isotopes (and more
strongly reflect the trophic level, with predictable isotopic enrichment) of the prey they prefer-
entially consume.

Results

We found a significant effect of species category on both Ď13C and Ď15N values (p< 0.0001 for
both) (Table 1, Fig 1), indicating that species differ significantly in their position in isotopic
space. There was also a significant effect of location on Ď15N values (p< 0.0001), but not on
Ď13C values (p = 0.755) (Table 1). We found that Ď15N values for several species collected at
Yamarna were significantly lower than values for those same species collected at Lorna Glen;

Table 1. ANOVA results of stable isotope analysis showing effects of species and location.

d.f. į15N į13C

F P F P

Species 13 14.1 �0.0001 6.994 �0.0001

Location 1 36.37 �0.0001 0.098 0.755

Species:Location 6 4.521 0.0004 2.491 0.0267

Species, Yamarna 11 6.313 �0.0001 8.937 �0.0001

Species, Lorna Glen 8 25.21 �0.0001 3.555 0.00236

Significant P-values are shown in boldface.

doi:10.1371/journal.pone.0172879.t001

Fig 1. Differentiation in isotopic space for scincid lizards from Lorna Glen and Yamarna communities.
į13C and į15N signatures measured in units per mil for individuals collected from the Lorna Glen (A) and
Yamarna (B) regional communities; note clustering of individuals by taxon. Species are significantly
differentiated in isotopic space (Table 1), suggesting that stable isotope profiles contain information about
species-specific ecological traits.

doi:10.1371/journal.pone.0172879.g001
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the ranges for both isotopes also differed by location (Figs 2 and 3, Tables 1 and 2). Assuming
a Ď15N enrichment of 2.5‰ for each trophic transfer (a meta-analytical study of isotopic
enrichment [41] does not include lizards, but finds that tissue from birds yields values of tro-
phic enrichment between 2–3‰, with bird liver specifically yielding measurements closer to
2‰), both communities appear to span four to five trophic levels (Fig 1). This was not consis-
tent with estimates of trophic position from stomach content data (Table 3, Fig 4).

There was no phylogenetic signal for Ď13C or Ď15N values from the pooled dataset. For Ď13C,
the maximum likelihood estimate of Pagel’s ĕ was approximately zero (ĕ = 5.75 x 10−5); using
a likelihood-ratio test, this value is not significantly different from a null model with no phylo-
genetic signal (P = 1 for ĕfree versus ĕ = 0). The maximum likelihood estimate of Pagel’s ĕ for
Ď15N was also approximately zero (ĕ = 5.74 x 10−5), and not significantly different from the
null model (P = 1 for ĕfree versus ĕ = 0). Additionally, there was no phylogenetic signal for iso-
topic values when separated by community (Lorna Glen: ĕ = 7.235 x 10−5 for Ď13C, ĕ = 7.235 x
10−5 for Ď15N, P = 1 for ĕfree versus ĕ = 0; Yamarna: ĕ = 5.92 x 10−5 for Ď13C, ĕ = 5.92 x 10−5 for
Ď15N, P = 1 for ĕfree versus ĕ = 0). We note that tests of phylogenetic signal may have relatively
low power for small phylogenies [36]. However, we consider it unlikely that low statistical
power is driving these relationships given that maximum likelihood estimates of ĕ converged
on zero (e.g., ĕ< 0.001) for all analyses.

We found a significant positive relationship between pairwise distances in isotopic and hab-
itat space for species of Lorna Glen (r = 0.43, p = 0.01) (Fig 5B). We distinguished the contribu-
tions of carbon and nitrogen by performing separate Mantel tests for Ď15N and Ď13C. We
found no relationship between species’ distance for Ď13C values and species’ distance in habitat
space, while distances for Ď15N and habitat values result in an r = 0.44 with p = 0.01. The

Fig 2. Regional differences in mean į13C and į15N signatures for species present in both communities. (A) Species’ mean į15N from Lorna
Glen vs. mean į15N from Yamarna. Signatures tend to be higher for species from Lorna Glen, and there is no significant correlation between
communities (r = 0.68, p = 0.09). 1:1 relationship shown for reference as a dashed line. (B) Species’ mean į13C from Lorna Glen vs. mean į13C from
Yamarna. There is no significant correlation between communities (r = 0.54, p = 0.21), but a near significant correlation emerges upon removal of the
outlier point representing Ctenotus dux (r = 0.80, p = 0.057; r2 = 0.548). 1:1 relationship shown for reference as a dashed line.

doi:10.1371/journal.pone.0172879.g002
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correlation between isotopic composition and habitat use is strengthened after removing the
non-Ctenotus taxa, which are ecologically distinct from the Ctenotus species that comprise the
majority of sphenomorphines in the community (r = 0.63, p = 0.01; N = 7). The significant
positive relationship between isotopic signature and habitat use for all species persists after
accounting for autocorrelation based on phylogenetic relatedness using a phylogenetically per-
muted Mantel test (r = 0.44, p = 0.048); however, the relationship for only Ctenotus species
becomes nonsignificant (r = 0.63, p = 0.31; N = 9). There is no relationship between distances
in isotopic and habitat space for Yamarna species (r = -0.35, p = 0.98) (Fig 5A), and these
results hold when comparing only Ctenotus species and when conducting a phylogenetically
permuted Mantel test (r = -0.40, p = 0.93; r = 0.11, p = 0.87).

We found a significant and positive relationship between species’ distances in isotopic and
dietary space for both Lorna Glen (r = 0.37, p = 0.05) (Fig 5D) and Yamarna (r = 0.37,
p = 0.05) (Fig 5C) communities, but these results were not significant when the null distribu-
tion was constructed using phylogenetically-informed permutations (r = 0.67, p = 0.14;
r = 0.61, p = 0.13). However, we note that phylogenetically-permuted Mantel tests have
been shown to exhibit low power [39]. Computing distance with termites as the sole prey cate-
gory (proportions in diet ranging from 10–75% for species in a dataset from ERP, Table 3)
revealed a significant correlation with distance in isotopic space for Yamarna species (r = 0.73,
p = 0.02), b b but not Lorna Glen. Additionally, species’ ordering along the Ď15N axis did not
match predictions based on calculations of weighted trophic rank for either community

Fig 3. Regional shifts in mean stable isotope signature. Mean į15N and į13C signatures of the same species are significantly
different depending on location (p = 0.0004 and p = 0.0267 respectively). There is no clear trend for the shift in į13C signature, but
į15N signatures are lower in Yamarna for all species except C. inornatus.

doi:10.1371/journal.pone.0172879.g003
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Table 2. Means and ranges of į15N and į13C signatures for species from Yamarna and Lorna Glen.

Species Mean į15N Mean į13C Range į15N Range į13C

Yamarna

Ctenotus calurus 6.26 -17.42 4.24 7.45

Ctenotus dux 8.23 -18.47 2.54 2.81

Ctenotus grandis 9.4 -17.96 1.92 5.07

Ctenotus inornatus 10.09 -19.24 4.22 1.87

Ctenotus leae 8.47 -22.54 3.90 4.93

Ctenotus pantherinus 7.02 -15.86 5.40 3.46

Ctenotus piankai 8.78 -17.42 2.64 3.31

Ctenotus quattuordecimlineatus 9.42 -18.59 3.42 3.51

Ctenotus brooksi 9.56 -21.75 2.60 4.62

Eremiascincus fasciolatus 7.77 -20.56 1.74 1.62

Lerista bipes 7.62 -18.79 5.11 7.17

Lerista desertorum 11.61 -22.25 4.68 1.37

Range 5.35 6.68

Lorna Glen

Ctenotus calurus 8.77 -17.33 5.48 4.33

Ctenotus dux 10.22 -21.46 0.81 2.50

Ctenotus inornatus 10.02 -18.10 3.54 6.91

Ctenotus leonhardii 12.91 -19.28 2.56 3.55

Ctenotus pantherinus 9.51 -16.85 3.42 5.61

Ctenotus quattuordecimlineatus 13.09 -18.30 2.88 8.39

Ctenotus schomburgkii 15.48 -20.03 0.68 4.68

Lerista bipes 7.88 -19.98 2.13 5.32

Lerista desertorum 12.39 -19.85 5.82 9.52

Range 7.60 4.61

Units are measured in parts per thousand (‰, per mil) of international standards.

doi:10.1371/journal.pone.0172879.t002

Table 3. Weighted trophic rank of sphenomorphine species based on stomach content analyses.

Species Major Prey Proportion of
Major Prey in Diet

Trophic Rank
of Major Prey

Average Trophic
Rank of Other

Prey

Weighted Trophic Rank of
Sphenomorphine Consumer

Mean į15N of
Sphenomorphine

Consumer

Lorna
Glen

Yamarna

Lerista bipes Isoptera 0.48 2 3.1 2.5 7.88 7.62

Ctenotus calurus Isoptera 0.14 2 2.1 2.0 8.77 6.26

Ctenotus dux Isoptera 0.57 2 2.6 2.3 10.22 8.23

Ctenotus grandis Vertebrates 0.72 5 3.0 3.3 — 9.4

Ctenotus inornatus Isoptera 0.55 2 2.6 2.1 10.02 10.09

Ctenotus pantherinus Isoptera 0.10 2 3.2 2.1 9.51 7.02

Ctenotus piankai Pentatomidae 0.79 2 2.3 2.3 — 8.78

Ctenotus
quattuordecimlineatus

Isoptera 0.75 2 2.5 2.2 13.09 9.42

Comparisons with mean į15N show mismatches in species order based on predicted trophic rank and actual trophic position based on isotopic analysis.

doi:10.1371/journal.pone.0172879.t003
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(Lorna Glen: r = -0.20, p = 0.70; Yamarna: r = 0.35, p = 0.39), although trophic spread was
relatively consistent between estimates based on stomach content and isotopic signature for
Yamarna (Table 3, Fig 4).

We found no significant relationship between species pairwise distances in diet and habitat
space (Mantel test: r = -0.26, p = 0.86; phylogenetically permuted Mantel test: r = 0.19, p = 0.6).

Discussion

Isotopic signatures demonstrate that sphenomorphine skinks of a diverse community from
the western Australian arid zone are differentiated in a stable isotope space defined by Ď13C
and Ď15N, implying that isotopic composition is tracking an underlying set of species-specific
ecological attributes. We find that differences between species are correlated with habitat and
unrelated to phylogeny at the scale of this study. Additionally, while empirical data on gut con-
tent analysis are shown to function as a moderate predictor of isotopic content, stable isotope
analysis may suggest alternative dietary habits in some species in addition to variation among
sites. Our study shows that stable isotope signatures could be a useful but imperfect surrogate
for identifying ecological differentiation among lizard species in the Australian deserts. How-
ever, we did not find evidence that trophic position as inferred from stomach content analysis
is correlated with isotopic estimates of trophic position based on Ď15N signatures.

Stable isotopes and stomach content analysis

Previous studies using stomach content analyses have found separation in dietary habits
among Ctenotus species [20,26]. Our results from stable isotope analysis confirm that species
appear differentiated in diet space, and suggest that this differentiation persists through time,

Fig 4. Trophic estimates from stomach contents do not correlate with į15N ranking. (A) Mean į15N signature vs. weighted trophic rank based on
stomach content analyses for the Lorna Glen regional community (based on gut contents for species collected in Yamarna). Lines represent į15N
range for each species. Isotopic signatures suggest that the focal taxa span 4–5 trophic levels (assumed enrichment 2.5‰ per level), while the
corresponding range inferred from stomach contents is 2–3. There is no significant correlation between į15N ranking and estimated trophic rank (r =
-0.20, p = 0.70). (B) Corresponding analysis for the Yamarna regional community. Isotopic estimate of trophic level range is narrower (3) than for Lorna
Glen, but more similar to estimates derived from stomach contents (2–3). There is no significant correlation between į15N ranking and estimated
trophic rank (r = 0.35, p = 0.39). Diet data were not available for all species present in the Yamarna dataset, and the full set appears to span 4–5 trophic
levels, see Fig 1). Prey item images are numbered by assigned trophic rank (see text for details) and aligned along the y-axis according to estimated
relative nitrogen content (as predicted from a 2–3‰ enrichment per trophic transfer [41] beginning at 0‰ for spinifex primary producers; but note
Acacia vegetation is enriched in į15N, and prey items associated with these plants may reflect this enrichment [42]).

doi:10.1371/journal.pone.0172879.g004
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Fig 5. Pairwise distances in isotopic and ecological space for species from Lorna Glen and Yamarna regional communities. Euclidean
distances in isotope vs. habitat space are uncorrelated for (A) Yamarna species (r = -0.35, p = 0.98) and are positively correlated for (B) Lorna Glen
species (r = 0.43, p = 0.01). Euclidean distances in isotope vs. diet space are positively correlated for (C) Yamarna species (r = 0.37, p = 0.05) and (D)
Lorna Glen species (r = 0.37, p = 0.05).

doi:10.1371/journal.pone.0172879.g005
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given the timescales over which isotopic assimilation and turnover occur in reptile tissue [15–
16]. Stable isotope signatures of the species in this study are comparable to values reported for
reptiles in existing analyses [15–16,43]. While Ď15N and Ď13C values for prey items in the GVD
are not available for comparison to signatures of their consumers, previous studies on detrital
and grazing food webs in desert and other terrestrial ecosystems show that isotope signatures
provide reliable measures of trophic links in these communities, and are subsequently detect-
able in higher order consumers [43–45]. These studies also demonstrate fine scale variation
among prey items of the same trophic order that represent differences in grazing among C3

and C4 plant types, and that this variation is reflected by the spread of intraguild isotopic signa-
tures in predators, similar to patterns of differentiation along the Ď13C axis detected by the
present study (Fig 1).

Despite a significant correlation between similarity in isotopic signature and similarity in
dietary habits for both communities, much of the variation remains unexplained (Fig 5C and
5D). Isotopic composition better predicts dietary habits for the Yamarna community, from
which data for stomach content analyses were collected. This is congruent with our results sug-
gesting that intraspecific dietary habits differ between sites (Fig 3). Isotopic signatures for
Yamarna species are correlated with the proportion of termites in a species’ diet, and are better
matched to the trophic spread predicted by stomach content analysis than Lorna Glen signa-
tures (Fig 4). However, for some species, the weighted trophic rank was a poor predictor for
isotopic composition in both communities. For example, stomach content analyses indicate
that C. quattuordecimlineatus feeds mostly on first and second order consumers (weighted tro-
phic rank between 2 and 3), while the high Ď15N values of this species from both Yamarna and
Lorna Glen suggest a diet of tertiary or higher consumers, 3–4 trophic transfers (at 2.54‰
[41]) from the base of the food chain. Likewise, mismatches between the ordering of species
along the Ď15N axis and their weighted trophic rank relative to other species occurs in both
communities; for example, trophic positioning based on stomach content analysis implies that
C. grandis feeds almost exclusively at one full trophic level above C. inornatus, but the mean
Ď15N signatures of these species in the Yamarna community imply that they feed at roughly the
same trophic level (and the mean Ď15N signature of C. grandis is in fact lower than that of C.
inornatus) (Table 3, Fig 4B). However, while the ordering of species along the Ď15N axis is rear-
ranged compared to what might be predicted from gut content analyses, most species pairs
differ by less than what is expected for a single trophic transfer (2.54‰, [41]). Therefore,
omnivorous species could feed more preferentially on higher or lower trophic order prey
items than expected from gut content analyses, and these differences are reflected by the intra-
guild variation of sphenomorphine species in isotopic space.

Discrepancies between isotopic composition and stomach contents may be considered a
reflection of biases in gut content analysis, in the relationship between isotopic composition
and diet, or both. Stomach content analysis typically provides a “snapshot” view of an organ-
ism’s diet for a particular point in time and space, and may include biases of digestion rate and
identification accuracy [14,46–48]. Likewise, isotopic data may not accurately reflect dietary
patterns due to sampling error (e.g., small sample sizes), fractionation differences among spe-
cies or prey items, or external sources of variation [49–50]. Furthermore, stomach content
data came from sites at Yamarna that excluded certain habitats common to both regions (e.g.
Acacia-dominanted shrubland). Because signatures from these habitat types may be reflected
in some of the isotopic variation, this incongruence may explain the lack of strong correlation
between isotopic data and stomach contents. Additionally, temporal incongruences among the
datasets may reflect variation introduced by environmental change. Wildfires in the arid Aus-
tralian interior can cause major turnover in plant communities, and lizard diets from the
Great Victoria Desert have been shown to fluctuate during fire succession cycles [20,51];
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discrepancies between isotopic data and stomach content data collected for this study during
different years may well be due to fine-scale ecological variation associated with successional
history.

Stable isotopes and habitat use

For the species of Lorna Glen, variation in Ď15N isotopic signature is correlated with diver-
gence in habitat use, such that species closer in habitat space are also more similar in nitrogen
isotopic composition. Because we lack isotopic data for prey items for the communities con-
sidered here, the present study cannot say definitively whether increased similarity in isotopic
composition is directly attributable to increased similarity in diet. Correspondingly, all species
could be differentiated in diet and isotopic similarity is potentially attributable to habitat-spe-
cific differences in baseline Ď15N signatures, due to differential nitrogen-fixing abilities of vege-
tation. However, this explanation cannot account for the lack of association between Ď13C and
habitat. Moreover, discrepancies between habitat variables and isotopic signature may reflect
successional changes between the time of collection for habitat and isotope data, as discussed
above.

Despite the absence of a significant relationship between Ď13C composition and habitat use,
changes in isotopic composition with individual habitat variables reveal predictable patterns of
variation. Sites in the study region are characterized by a mosaic of habitats with dominant
vegetation types that differ in their use of C3 and C4 photosynthetic pathways; among these are
Acacia groves (C3), spinifex sandplains (C4), and chenopod shrublands (C4). Because plants
that utilize a C4 photosynthetic pathway discriminate less strongly against the heavy stable iso-
tope of carbon (13C) than C3 plants, C4 plants tend to exhibit Ď13C signatures between -17 to
-9‰, while C3 plants exhibit Ď13C signatures between -32 to -22‰ [42]. Since carbon is not
significantly enriched through trophic transfers [4,52], prey items found in different habitats
will reflect the baseline signatures of primary producers [4]. Because most species’ means for
Ď13C are intermediate between the ranges expected for C3 and C4 plants, skinks of these com-
munities seem to be feeding on prey items that utilize both types of vegetation, or on predators
that utilize two types of prey with differing C3/C4 phytophagy preferences. Species strongly
associated with spinifex grasses (C. pantherinus, C. calurus, C. inornatus, C. quattuordecimli-
neatus, C. grandis [1]), which utilize a C4 photosynthetic pathway, exhibit higher Ď13C signa-
tures than species that are more strongly associated with Acacia woodlands (C. schomburgkii
and C. leonhardii [1]), in which the trees utilize a C3 photosynthetic pathway (Welch’s two
sample t-test, p = 0.03). Additionally, Acacia plants are nitrogen-fixing, resulting in soil and lit-
ter that is enriched in Ď15N [42]; and the two species associated with this habitat demonstrate
some of the highest Ď15N signatures (Table 2).

Variation between sampling sites

In addition to revealing how dietary differentiation persists through time, results from stable
isotope analysis show that species separation is also consistent among sites; however, several
species from Yamarna demonstrate a significantly lower signal for Ď15N values than the same
species collected at Lorna Glen. A greater diversity or abundance of predatory arthropods in
the Lorna Glen community might contribute to the higher Ď15N signatures exhibited by species
from this site. Such hypotheses are speculative, although nearby regions have been observed by
the authors to show some variation in macroinvertebrate communities. Alternatively, potential
differences in successional history between the two regions could have resulted in different
plant communities [20], which could in turn allow for variation in populations of lower tro-
phic order prey items like termites (in addition to promoting variability in Ď13C signatures
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among sites). While plant communities of the two study regions are broadly comparable, we
lack quantitative data necessary to assess variation. Thus, the present study is unable to distin-
guish whether inconsistencies in signatures between sites reflect variation in baseline resource
values of Ď15N and Ď13C, or a change in food web structure [53], and isotopic signatures of con-
sumer prey species from each site are recommended for accurate comparisons of trophic posi-
tion [53].

Recent advancements in stable isotope analysis have enabled the comparison of ecological
groups using multivariate ellipse-based metrics in a Bayesian framework, eliminating uncer-
tainty derived from small sample sizes and allowing for robust statistical comparison among
communities by accounting for natural variability within the system [54]. These descriptive
metrics, expanded from a previous study [5], can be used as measurements of niche structure
and incorporated with other axes of ecological information to obtain more comprehensive
estimates of niche hypervolume. However, the lack of strong structure exhibited by isotopic
data along ecological axes of diet and habitat in the present study, in addition to the lack of
coordination between datasets, could make inference of niche width from species’ arrange-
ments in isotopic space somewhat unreliable. Obtaining isotopic signatures for the prey items
available to Sphenomorphine skinks in the GVD would also be beneficial, and would allow
researchers to exploit isotope mixing models that would provide more precise estimates of the
relative contribution of each prey category to an individual’s diet [55].

Conclusion

This study demonstrates that stable isotope analysis is useful in revealing patterns of species
separation in the hyperdiverse lizard communities of the western Australian arid zone. Despite
intraspecific variation in resource use and interspecific similarities in prey preference, our
results show that stable isotopes can reveal patterns of trophic differentiation within and
between sites when combined with stomach content analysis. These methods are an attractive
complement to high-resolution analyses of individual stomach contents (e.g., [20,24], etc.) as
they potentially provide a temporally integrated index of trophic ecology in reptile communi-
ties. However, much variation remains unexplained in our study, highlighting the need for a
more comprehensive isotopic analysis of both prey and consumer species. The trophic ecology
of lizard communities of the Great Victoria Desert and adjacent regions is perhaps as well
studied as any squamate reptile assemblage [21–24], yet the incongruences noted here suggest
that much remains to be learned about this and other systems.
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